• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte*

    2009-05-14 08:24:52SUNZihong孫紫紅andYUANAnbao袁安保
    關(guān)鍵詞:紫紅安保

    SUN Zihong (孫紫紅) and YUAN Anbao (袁安保)**

    ?

    Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte*

    SUN Zihong (孫紫紅) and YUAN Anbao (袁安保)**

    Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China

    Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical performance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio(Ni(OH)2)/(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.

    PVA based alkaline polymer electrolyte, Ni(OH)2/AC supercapacitor, electrode active material mass ratio, electrochemical performance

    1 INTRODUCTION

    As a charge storage device, electrochemical supercapacitor has the advantages of higher energy density than conventional electrostatic capacitor and higher power density than commonly used rechargeable battery, as well as long cycle life. Therefore, supercapacitors attracted great attentions in recent years for possible use in consumer electronics as power sources and in electric vehicles as auxiliary power systems. Compared with supercapacitors with liquid electrolytes, there have been fewer researches about supercapacitors with polymer or gel electrolytes [1-17]. Park. reported a hybrid supercapacitor using Ni(OH)2/activated carbon (AC) composite positive electrode, AC negative electrode, and 6 mol·L-1KOH electrolyte [18]. The specific capacitance of the hybrid capacitor (HC) was found to be far higher than that of the symmetrical AC/AC electric double layer capacitor (EDLC) owing to the high faradic specific pseudocapacitance of Ni(OH)2. Recently, Nohara. reported a polymerNi(OH)2/AC hybrid supercapacitor using a cross-linkedpotassium polyacrylate (PAAK) based PAAK-KOH-H2Opolymer hydrogel electrolyte [15]. This HC was charge/ discharge tested in the voltage range of 0.4-1.2 V. The capacitance and high-rate dischargeablity were found to be superior to that of the symmetrical AC/AC capacitor, and a good charge/discharge cyclic stability was achieved. However, the electrode active material mass ratio and specific capacitance data for the capacitor were not mentioned in the article.

    Electrochemical devices with polymer electrolytes have the particular advantages of leak-free, flexible, and safety. In fact, polymer electrolytes have been successfully applied to polymer lithium ion batteries and polymer electrolyte membrane fuel cells. Alkaline KOH solution is a well-known electrolyte, which can be used in various electrochemical systems, such as batteries with K2FeO4or NiOOH cathode [19, 20]. Recently, alkaline polymer electrolytes, especially the polyvinyl alcohol (PVA) based alkaline polymer electrolytes, have attracted increasing attentions owing to their high ionic conductivity [14, 21-37]. However, we found that PVA based alkaline polymer electrolytes tend to lose water profoundly in atmosphere, resulting in reduction of conductivity and mechanical property [33]. In order to overcome this drawback, small amount of hydrophilic sodium polyacrylate (PAAS) was added to PVA for modification, and a novel PVA-PAAS-KOH-H2O type PVA based alkaline polymer electrolyte film with a high room-temperature ionic conductivity of 9.67×10-2S·cm-1was prepared in our previous work [37]. In the present work, the polymer Ni(OH)2/AC hybrid supercapacitors using this alkaline polymer electrolyte were fabricated, and the influence of electrode active material mass ratio on their electrochemical performance were investigated.

    2 EXPERIMENTAL

    2.1 Preparation and conductivity determination of alkaline polymer electrolyte film

    Alkaline polymer electrolyte film was prepared using a solution-casting method. Given amount of PVA and PAAS were dissolved, respectively, in distilled water and magnetically stirred for several hours. The two solutions were then mixed, and a definite amount of KOH solution was added to the mixture. The mixture was stirred again for some time, and finally, a homogeneous solution was obtained. The solution was poured onto a clean glass plate for evaporation of excessive water in air atmosphere, and then the alkaline polymer electrolyte film was obtained. The thickness of the film is ca. 0.5 mm with a composition of PVA (13.84%, by mass until specified otherwise)-PAAS (0.73%)-KOH (36.43%)-H2O (49%). The addition of PAAS to PVA in the present work is aimed to improve the water retention capacity of the PVA based alkaline polymer electrolyte film, and hence, to make the electrolyte film flexible with a higher ionic conductivity.

    2.2 Fabrication of polymer Ni(OH)2/AC supercapacitors

    Nickel hydroxide positive electrode was prepared by mixing a given amount of Ni(OH)2with 5% cobalt powder and 2% acetylene black, then some polytetrafluoroethylene (PTFE) emulsion was added to the mixture to form slurry. The slurry was filled into a foamed nickel with an apparent area of 2 cm×2 cm, dried at 65°C, and rolled to a sheet. Activated carbon negative electrode was prepared by mixing a given amount of AC and acetylene black with a mass ratio 85︰15, and the remaining procedure was the same as the procedure for the preparation of Ni(OH)2electrode. The liquid Ni(OH)2/AC capacitor consisted of a Ni(OH)2positive electrode and an AC negative electrode separated by a polypropylene separator and 6 mol·L-1KOH solution as electrolyte. It was charge/discharge cycled for three times at a lower current density (0.1C rate for the Ni(OH)2electrode) for activation. The activated Ni(OH)2electrode and AC electrode were then separated and dried naturally in air atmosphere. The polymer Ni(OH)2/AC capacitors were fabricated using the PVA based alkaline polymer electrolyte film sandwiched by the activated Ni(OH)2and AC electrodes. In order to make the electrodes contact well with the polymer electrolyte film, the fabricated polymer capacitors were rolled again to an appropriate thickness.

    2.3 Electrochemical testing of polymer Ni(OH)2/AC supercapacitors

    Electrochemical impedance spectroscopy (EIS) measurements for the liquid and polymer Ni(OH)2/AC capacitors were carried out in the frequency range of 10-2-106Hz, using a Solartron 1287 electrochemical interface coupled with a 1255B FRA. Galvanostatic charge/discharge tests of the polymer capacitors were performed using a LAND auto-cycler (Wuhan, China) in the voltage range of 0.3-1.5 V. All the work was carried out at room temperature.

    The charge/discharge current density and specific capacitance of the polymer capacitors in the present work were calculated according to the following Eqs. (1) and (2), respectively:

    whereis the charge/discharge current density,is the charge/discharge current,is the total mass of the active materials of positive and negative electrodes,sis the specific capacitance of the capacitor,is the discharge time, andDis the operating voltage range.

    3 RESULTS AND DISCUSSION

    3.1 Electrochemical impedance spectroscopy study

    Figure 1 Electrochemical impedance spectroscopy measurements

    ● liquid; ○ polymer

    3.2 Charge/discharge curves of polymer capacitors

    Figure 2 shows the charge/discharge curves of the polymer capacitors with different active material mass ratios at a current density of 300 mA·g-1. The observed charge and discharge curves, herein, are curved somewhat with a fundamental symmetry, which are similar to the observations reported in literatures [15, 38]. This suggests a faradic pseudocapacitive characteristic of the capacitors [38], which is different from that of a typical capacitor. At the same charge/discharge current density, the charge/discharge durations for the three capacitors are quite different. With increasing mass ratio(Ni(OH)2)/(AC), the charge/discharge duration (in other words, the specific capacity or specific capacitance) decreases. This is because the specific capacitance of the Ni(OH)2electrode (faradic pseudocapacitance) is far larger than that of the AC electrode (EDLC capacitance). For every capacitor, the capacity of the positive electrode exceeds that of the negative electrode,.., the AC negative electrode governs the capacity of the capacitor. With the increase in mass ratio, the relative amount of AC in the capacitor decreases. Thus, on the one hand, the specific capacitance of the capacitor should decrease. On the other hand, the actual applied current density of the AC electrode should increase, resulting in increase of electrode polarization. Hence, with the increase in mass ratio, the charge/discharge duration or specific capacitance decreases.

    Figure 2 Charge/discharge profiles of the polymer i(OH)2/AC capacitors with different mass ratios at a current density of 300 mA·g-1

    3.3 Rate dischargeability of polymer capacitors

    Figure 3 Variation of discharge specific capacitance with charge/discharge current density for the polymer Ni(OH)2/AC capacitors with different active material mass ratios

    3.4 Cycle lives of polymer Ni(OH)2/AC capacitors

    Figure 4 Charge/discharge cycle lives of the polymer Ni(OH)2/AC capacitors with different active material mass ratios at a current density of 300 mA·g-1

    Figure 5 Nyquist plots of the impedance for the polymer Ni(OH)2/AC capacitor before and after long-term charge/ discharge cycling and the close-up view of the left plot in high-frequency region

    ●?before cycling;○?after cycling

    4 CONCLUSIONS

    Polyvinyl alcohol (13.84%)-PAAS (0.73%)-KOH (36.43%)-H2O (49%) alkaline polymer electrolyte filmwas prepared by a solution-casting method. This polymer electrolyte showed a high ionic conductivity of ca. 0.1 S·cm-1at room temperature. Polymer Ni(OH)2/AC hybrid electrochemical capacitors were fabricated using this alkaline polymer electrolyte, Ni(OH)2positive electrode, and AC negative electrode. Electrochemical impedance spectroscopy results indicated that the fabricated polymer capacitor shows a good interfacial compatibility at the electrode/polymer electrolyte interface. This polymer electrolyte film can be used in Ni(OH)2/AC capacitors. Galvanostatic charge/discharge results demonstrated that with decrease in electrode active material mass ratio, the specific capacitance of the polymer Ni(OH)2/AC capacitor increases, but the rate dischargeability and charge/discharge cycleability decreases. In other words, the electrode active material mass ratio has a crucial influence on electrochemical performance of the capacitor. Hence, we should consider simultaneously the specific capacitance, rate dischargeability, and long-term charge/discharge cycleability when designing a polymer Ni(OH)2/AC hybrid supercapacitor.

    1 Lassègues, J.C., Grondin, J., Becker, T., Servant, L., Hernandez, M., “Supercapacitor using a proton conducting polymer electrolyte”,, 77, 311-317(1995).

    2 Panero, S., Clemente, A., Spila, E., “Solid state supercapacitors using gel membranes as electrolytes”,, 86-88, 1285-1289 (1996).

    3 Osaka, T., Liu, X., Nojima, M., Momma, T., “An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder”,..., 146, 1724-1729 (1999).

    4 Gu, H.B., Kim, J.U., Song, H.W., Park, G.C., Park, B.K., “Electrochemical properties of carbon composite electrode with polymer electrolyte for electric double-layer capacitor”,., 45, 1533-1536 (2000).

    5 Chojnacka, J., Acosta, J.L., Morales, E., “New gel electrolytes for batteries and supercapacitor applications”,., 97-98, 819-821(2001).

    6 Lewandowski, A., Zajder, M., Frackowiak, E., Béguin, F., “Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte”,., 46, 2777-2780 (2001).

    7 Erokhin, V., Raviele, G., Glatz-Reichenbach, J., Narizzano, R., Stagni, S., Nicolini, C., “High-value organic capacitor”,..., 22, 381-385 (2002).

    8 Hashmi, S.A., Upadhyaya, H.M., “Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte”,, 152/153, 883-889 (2002).

    9 Latham, R.J., Rowlands, S.E., Schlindwein, W.S., “Supercapacitors using polymer electrolytes based on poly(urethane)”,, 147, 243-248 (2002).

    10 Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M., Iwakura, C., “Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte”,., 48, 749-753 (2003).

    11 Sung, J.H., Kim, S.J., Lee, K.H., “Fabrication of all-solid-state electrochemical microcapacitors”,., 133, 312-319 (2004).

    12 Lufrano, F., Staiti, P., “Performance improvement of Nafion based solid state electrochemical supercapacitor”,., 49, 2683-2689 (2004).

    13 Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., Morita, M., Iwakura, C., “Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte”,., 49, 4871-4875 (2004).

    14 Yang, C.C., Hsu, S.T., Chien, W.C., “All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes”,., 152, 303-310 (2005).

    15 Nohara, S., Asahina, T., Wada, H., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., Iwakura, C., “Hybrid capacitor with activated carbon electrode, Ni(OH)2electrode and polymer hydrogel electrolyte”,., 157, 605-609 (2006).

    16 Kalpana, D., Renganathan, N.G., Pitchumani, S., “A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors”,., 157, 621-623 (2006).

    17 Choudhury, N.A., Shukla, A.K., Sampath, S., Pitchumani, S., “Cross-linked polymer hydrogel electrolytes for electrochemical capacitors”,..., 153, A614-A620 (2006).

    18 Park, J.H., Park, O.O., Shin, K.H., Jin, C.S., Kim, J.H., “An Electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode”,.., 5, H7-H10 (2002).

    19 Xu, Z.H., Wang, J.M., Shao, H.B., Zhang, J.Q., “Physical properties and electrochemical performance of solid K2FeO4samples prepared byandelectrochemical methods”,...., 15, 39-43 (2007).

    20 Sun, Y.Z., Pan, J.Q., Wan, P.Y., Xu, C.C., Liu, X.G., “Electrolytic preparation, structure characterization and electrochemical performance of NiOOH”,...., 15, 262-267 (2007).

    21 Lewandowski, A., Skorupska, K., Malinska, J., “Novel poly(viny alcohol)-KOH-H2O alkaline polymer electrolyte”,, 133, 265-271 (2000).

    22 Yang, C.C., Lin, S.J., “Preparation of composite alkaline polymer electrolyte”,.., 57, 873-881 (2002).

    23 Mohamad, A.A., Mohamed, N.S., Alias, Y., Arof, A.K., “Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries”,.., 337, 208-213 (2002).

    24 Mohamad, A.A., Mohamed, N.S., Yahya, M.Z.A., Othman, R., Ramesh, S., Alias, Y., Arof, A.K., “Ionic conductivity studies of poly(viny alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells”,, 156, 171-177 (2003).

    25 Zhang, G.D., Zhang, X.G., “A novel alkaline Zn/MnO2cell with alkaline solid polymer electrolyte”,, 160, 155-159 (2003).

    26 Yang, C.C., “Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte”,.., 58, 33-38 (2003).

    27 Yang, C.C., Lin, S.J., Hsu, S.T., “Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells”,., 122, 210-218 (2003).

    28 Yang, C.C., Lin, S.J., “Preparation of alkaline PVA-based polymer electrolytes for Ni-MH and Zn-air batteries”,..., 33, 777-784 (2003).

    29 Palacios, I., Castillo, R., Vargas, R.A., “Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)-KOH-H2O”,., 48, 2195-2199 (2003).

    30 Li, Z.Y., Liu, Y., Liu, H.T., He, P., Li, J.H., “Preparation and characterization of an alkaline poly(vinyl alcohol) electrolyte with high ambient conductivity”,...., 18, 625-630 (2005).

    31 Liu, J.M., Wang, J.H., Yang, H.B., Zhou, Z.X., “Electrochemical stability of PVA alkaline gelpolymer electrolyte and its application in Ni/Zn secondary battery”,, 38, 37-41 (2005). (in Chinese)

    32 Yang, C.C., Lin, S.J., Wu, G.M., “Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes”,..., 92, 251-255 (2005).

    33 Yuan, A.B., Zhao, J., “Composite alkaline polymer electrolytes and its application to nickel-metal hydride batteries”,., 51, 2454-2462 (2006).

    34 Saion, E., Teridi, M.A.M., “Effect of radiation on conductivity of solid PVA-KOH-PC composite polymer electrolytes”,, 12, 53-56 (2006).

    35 Mohamad, A.A., Arof, A.K., “Effect of storage time on the properties of PVA-KOH alkaline solid polymer electrolyte system”,, 12, 57-61 (2006).

    36 Yang, C.C., Chiu, S.J., Chien, W.C., “Development of alkaline direct methanol fuel based on crosslinked PVA polymer membranes”,., 162, 21-29 (2006).

    37 Sun, Z.H., Yuan, A.B., “Preparation and properties of PVA-PAAS based alkaline polymer electrolytes”,.., 31, 804-807 (2007). (in Chinese)

    38 Park, J.H., Kim, S., Park, O.O., Ko, J.M., “Improved asymmetric electrochemical capacitor using Zn-Co co-doped Ni(OH)2positive electrode material”,.., 82, 593-597 (2006).

    2007-06-21,

    2008-08-08.

    Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102).

    ** To whom correspondence should be addressed. E-mail: abyuan@shu.edu.cn

    猜你喜歡
    紫紅安保
    崔國(guó)靖
    野菊花
    中軍軍弘集團(tuán)秦皇島安保公司 以黨建為統(tǒng)領(lǐng) 打造“軍”字品牌安保企業(yè)
    公民與法治(2022年6期)2022-07-26 06:16:42
    紫紅獐牙菜對(duì)四氧嘧啶性糖尿病小鼠的降糖作用
    跟蹤導(dǎo)練(一)
    紫紅扁擔(dān)
    如何找準(zhǔn)安保與宣傳的平衡點(diǎn)——以G20杭州峰會(huì)安保宣傳為例
    02 飛控技術(shù)與機(jī)場(chǎng)安保引關(guān)注
    建設(shè)全球最大最先進(jìn)核安保示范中心
    軍工文化(2017年12期)2017-07-17 06:08:14
    紫葡萄
    午夜精品国产一区二区电影| 熟女电影av网| 熟女av电影| 亚洲美女搞黄在线观看| 九九爱精品视频在线观看| 九九爱精品视频在线观看| 国产色婷婷99| 在线观看一区二区三区激情| 国产免费又黄又爽又色| kizo精华| 国产欧美亚洲国产| 香蕉丝袜av| 久久免费观看电影| 人人妻人人澡人人看| 成人国语在线视频| 在线观看免费高清a一片| 少妇熟女欧美另类| 蜜桃在线观看..| 中文天堂在线官网| 有码 亚洲区| 热99国产精品久久久久久7| 老熟女久久久| 老司机影院毛片| 青草久久国产| 亚洲 欧美一区二区三区| 下体分泌物呈黄色| av视频免费观看在线观看| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 下体分泌物呈黄色| kizo精华| 亚洲人成电影观看| 观看美女的网站| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| 日日啪夜夜爽| 日韩欧美一区视频在线观看| 婷婷色麻豆天堂久久| 亚洲精品国产一区二区精华液| 我要看黄色一级片免费的| 亚洲av在线观看美女高潮| videosex国产| 亚洲一级一片aⅴ在线观看| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 中文字幕人妻丝袜制服| 久久久久国产一级毛片高清牌| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 色播在线永久视频| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| 亚洲综合色惰| av国产精品久久久久影院| 亚洲精品在线美女| 日韩精品免费视频一区二区三区| 90打野战视频偷拍视频| 亚洲国产av新网站| 日韩成人av中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 国产成人a∨麻豆精品| 在线看a的网站| 成年人免费黄色播放视频| 亚洲人成77777在线视频| 欧美xxⅹ黑人| 丝袜美腿诱惑在线| 母亲3免费完整高清在线观看 | 五月开心婷婷网| 狠狠婷婷综合久久久久久88av| 成人手机av| 亚洲国产av影院在线观看| 男女边吃奶边做爰视频| 少妇猛男粗大的猛烈进出视频| 欧美日韩av久久| 精品国产超薄肉色丝袜足j| 精品亚洲成a人片在线观看| 赤兔流量卡办理| 欧美日韩综合久久久久久| 午夜日本视频在线| 肉色欧美久久久久久久蜜桃| 成人毛片a级毛片在线播放| 可以免费在线观看a视频的电影网站 | 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 少妇人妻久久综合中文| av在线播放精品| 久久精品夜色国产| 久久久久久久亚洲中文字幕| 国产在线视频一区二区| 免费女性裸体啪啪无遮挡网站| 免费观看a级毛片全部| 久久ye,这里只有精品| 国语对白做爰xxxⅹ性视频网站| 国产成人欧美| kizo精华| 永久网站在线| 午夜日本视频在线| 日韩大片免费观看网站| 亚洲精品久久午夜乱码| 欧美日韩av久久| 91成人精品电影| 日本黄色日本黄色录像| 交换朋友夫妻互换小说| 久久久久精品久久久久真实原创| 免费播放大片免费观看视频在线观看| 99香蕉大伊视频| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产一区二区精华液| 久久韩国三级中文字幕| 日韩一区二区三区影片| tube8黄色片| 久久精品国产亚洲av涩爱| 国产熟女欧美一区二区| 国产 一区精品| 成人国产av品久久久| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 国产高清国产精品国产三级| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 国产在视频线精品| 免费在线观看完整版高清| 日本色播在线视频| 丝袜美足系列| 亚洲精品久久成人aⅴ小说| 国产精品国产三级专区第一集| 天堂8中文在线网| 午夜精品国产一区二区电影| 日本黄色日本黄色录像| 免费观看av网站的网址| 观看美女的网站| 亚洲三区欧美一区| 欧美激情 高清一区二区三区| 麻豆av在线久日| 丰满乱子伦码专区| 一二三四在线观看免费中文在| 国产又爽黄色视频| 欧美激情高清一区二区三区 | 天堂中文最新版在线下载| 丝袜人妻中文字幕| av网站在线播放免费| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 久久婷婷青草| 在线天堂最新版资源| 少妇人妻久久综合中文| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 国产精品久久久久久精品古装| 美女中出高潮动态图| 黄色一级大片看看| 成人毛片a级毛片在线播放| 日日撸夜夜添| 91在线精品国自产拍蜜月| 一边摸一边做爽爽视频免费| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 69精品国产乱码久久久| 久久影院123| 亚洲五月色婷婷综合| 亚洲国产看品久久| 99国产精品免费福利视频| 国产乱人偷精品视频| 尾随美女入室| 边亲边吃奶的免费视频| 亚洲av福利一区| 久久韩国三级中文字幕| 亚洲图色成人| 亚洲中文av在线| 中文天堂在线官网| 日本午夜av视频| 久久人人爽av亚洲精品天堂| 春色校园在线视频观看| 欧美亚洲日本最大视频资源| 成人午夜精彩视频在线观看| 99精国产麻豆久久婷婷| 亚洲美女黄色视频免费看| 有码 亚洲区| 午夜福利影视在线免费观看| 久久久久久久大尺度免费视频| 国产不卡av网站在线观看| 美女大奶头黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 免费黄网站久久成人精品| 男女下面插进去视频免费观看| 两个人看的免费小视频| 亚洲伊人色综图| 精品人妻偷拍中文字幕| av国产精品久久久久影院| 人妻人人澡人人爽人人| 久久精品熟女亚洲av麻豆精品| 91国产中文字幕| 国产精品久久久久久av不卡| 男人添女人高潮全过程视频| 香蕉国产在线看| 最近手机中文字幕大全| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| 精品国产露脸久久av麻豆| 多毛熟女@视频| 久久精品夜色国产| 免费大片黄手机在线观看| 成年女人毛片免费观看观看9 | 久久99热这里只频精品6学生| 一级a爱视频在线免费观看| 久久狼人影院| www.av在线官网国产| 日日啪夜夜爽| 精品人妻在线不人妻| 永久免费av网站大全| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 18禁观看日本| 亚洲精品美女久久久久99蜜臀 | 在线观看www视频免费| 久久av网站| av在线观看视频网站免费| 国产片内射在线| 亚洲五月色婷婷综合| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 下体分泌物呈黄色| 尾随美女入室| 五月伊人婷婷丁香| 丰满迷人的少妇在线观看| 亚洲av综合色区一区| 精品酒店卫生间| 亚洲精品国产一区二区精华液| 美国免费a级毛片| 一区福利在线观看| 看非洲黑人一级黄片| 久久影院123| 看非洲黑人一级黄片| 国产亚洲最大av| 久久久国产一区二区| 综合色丁香网| 亚洲精品国产av成人精品| 99久久综合免费| 国产伦理片在线播放av一区| 1024视频免费在线观看| 哪个播放器可以免费观看大片| 久久热在线av| 午夜福利视频在线观看免费| 制服诱惑二区| 一区二区三区乱码不卡18| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 亚洲精品在线美女| kizo精华| 一本—道久久a久久精品蜜桃钙片| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 一本久久精品| 亚洲第一青青草原| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 三上悠亚av全集在线观看| 少妇的逼水好多| 女性生殖器流出的白浆| 亚洲精品aⅴ在线观看| 如日韩欧美国产精品一区二区三区| 色吧在线观看| √禁漫天堂资源中文www| 99国产综合亚洲精品| 黄片无遮挡物在线观看| 亚洲精品乱久久久久久| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 国产成人精品一,二区| 香蕉丝袜av| 久久这里只有精品19| 午夜福利视频精品| 自线自在国产av| 国产精品av久久久久免费| 日韩中字成人| 久久午夜综合久久蜜桃| videossex国产| 国产无遮挡羞羞视频在线观看| 国产深夜福利视频在线观看| 热99久久久久精品小说推荐| 亚洲第一区二区三区不卡| 国产欧美日韩综合在线一区二区| 男女高潮啪啪啪动态图| 丰满少妇做爰视频| 妹子高潮喷水视频| 免费看不卡的av| 老鸭窝网址在线观看| 爱豆传媒免费全集在线观看| 热re99久久国产66热| 国产欧美日韩一区二区三区在线| 久久久久精品人妻al黑| 香蕉国产在线看| 亚洲情色 制服丝袜| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 91国产中文字幕| 我的亚洲天堂| 午夜精品国产一区二区电影| 亚洲欧美成人精品一区二区| www.精华液| 精品亚洲成国产av| 国产欧美日韩综合在线一区二区| 飞空精品影院首页| 成人手机av| a 毛片基地| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 国产精品麻豆人妻色哟哟久久| 男女免费视频国产| 久久午夜福利片| 日韩电影二区| av免费观看日本| 欧美日韩精品网址| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 久久久国产精品麻豆| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 国产色婷婷99| 亚洲av福利一区| 十八禁高潮呻吟视频| 日本色播在线视频| 欧美亚洲日本最大视频资源| 中文欧美无线码| 水蜜桃什么品种好| 欧美激情高清一区二区三区 | 亚洲图色成人| 免费播放大片免费观看视频在线观看| 丝袜在线中文字幕| 成人黄色视频免费在线看| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 亚洲欧美精品综合一区二区三区 | 国产av国产精品国产| 伦精品一区二区三区| 激情五月婷婷亚洲| 国产精品国产av在线观看| 国产成人精品婷婷| 久久国产精品男人的天堂亚洲| 成人国产av品久久久| 国产男女超爽视频在线观看| 午夜福利视频精品| 宅男免费午夜| 亚洲国产精品一区三区| 国产伦理片在线播放av一区| 我的亚洲天堂| 在线天堂中文资源库| 天堂8中文在线网| 蜜桃在线观看..| 欧美国产精品一级二级三级| 免费看不卡的av| 男女国产视频网站| 亚洲精华国产精华液的使用体验| 精品第一国产精品| 精品少妇黑人巨大在线播放| 观看美女的网站| 欧美激情 高清一区二区三区| 国产视频首页在线观看| 蜜桃在线观看..| 国产人伦9x9x在线观看 | 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 欧美国产精品一级二级三级| 亚洲精华国产精华液的使用体验| 久久人人爽av亚洲精品天堂| 精品少妇黑人巨大在线播放| 黄色毛片三级朝国网站| 成人免费观看视频高清| av卡一久久| 亚洲av电影在线进入| 少妇猛男粗大的猛烈进出视频| 国产欧美亚洲国产| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 观看美女的网站| 久久久久精品人妻al黑| 91精品国产国语对白视频| 女性生殖器流出的白浆| 咕卡用的链子| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说| 高清黄色对白视频在线免费看| 超碰成人久久| 美女大奶头黄色视频| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 人妻系列 视频| 丝袜人妻中文字幕| 免费看av在线观看网站| 欧美日韩一级在线毛片| 欧美成人午夜免费资源| av片东京热男人的天堂| 国产成人精品一,二区| 欧美精品国产亚洲| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 少妇的逼水好多| 制服人妻中文乱码| 不卡视频在线观看欧美| 高清不卡的av网站| 亚洲av电影在线进入| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 五月天丁香电影| 老鸭窝网址在线观看| 亚洲欧美日韩另类电影网站| 午夜av观看不卡| 飞空精品影院首页| 日韩一卡2卡3卡4卡2021年| 久久久国产欧美日韩av| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 久久青草综合色| 五月开心婷婷网| 午夜老司机福利剧场| 精品国产乱码久久久久久男人| 久久国内精品自在自线图片| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| 最新的欧美精品一区二区| 久久久精品区二区三区| 久久精品国产自在天天线| 亚洲伊人色综图| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦在线免费观看视频4| 亚洲中文av在线| 美国免费a级毛片| 午夜福利在线观看免费完整高清在| 99久国产av精品国产电影| 边亲边吃奶的免费视频| 麻豆乱淫一区二区| av免费观看日本| 久久精品国产亚洲av天美| 七月丁香在线播放| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 一区福利在线观看| 日韩不卡一区二区三区视频在线| av女优亚洲男人天堂| 成年人免费黄色播放视频| 色吧在线观看| 侵犯人妻中文字幕一二三四区| 国产欧美亚洲国产| www.精华液| 狠狠精品人妻久久久久久综合| 亚洲中文av在线| 十分钟在线观看高清视频www| 亚洲一区中文字幕在线| 日韩,欧美,国产一区二区三区| 午夜av观看不卡| 亚洲av免费高清在线观看| 国产在线视频一区二区| 色哟哟·www| 熟女av电影| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 精品一区二区三区四区五区乱码 | 久久久久久伊人网av| 国产淫语在线视频| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 我要看黄色一级片免费的| 美女大奶头黄色视频| 亚洲成人一二三区av| 日本wwww免费看| 亚洲国产毛片av蜜桃av| 成人18禁高潮啪啪吃奶动态图| 捣出白浆h1v1| 婷婷色综合www| 美女大奶头黄色视频| 精品国产超薄肉色丝袜足j| 一区二区av电影网| 久久婷婷青草| 亚洲精品av麻豆狂野| 丝袜美腿诱惑在线| 一边摸一边做爽爽视频免费| 久久这里只有精品19| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线观看一区二区三区| 在线天堂中文资源库| 久久国内精品自在自线图片| 大香蕉久久成人网| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃在线观看..| 精品少妇内射三级| 边亲边吃奶的免费视频| 国产精品蜜桃在线观看| 亚洲成国产人片在线观看| 国产精品国产av在线观看| 91精品国产国语对白视频| 午夜福利网站1000一区二区三区| 热re99久久精品国产66热6| 最新中文字幕久久久久| 美女午夜性视频免费| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 日本欧美视频一区| 国产综合精华液| 香蕉丝袜av| 日韩中文字幕欧美一区二区 | 五月伊人婷婷丁香| 国产xxxxx性猛交| 午夜免费鲁丝| 亚洲av日韩在线播放| 999精品在线视频| 99久久中文字幕三级久久日本| 国产午夜精品一二区理论片| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡| 高清在线视频一区二区三区| 丰满乱子伦码专区| 久久精品人人爽人人爽视色| 一级a爱视频在线免费观看| 中文字幕人妻熟女乱码| 一级爰片在线观看| 日本av手机在线免费观看| 欧美xxⅹ黑人| 飞空精品影院首页| 一边亲一边摸免费视频| 五月开心婷婷网| 国产成人aa在线观看| 亚洲av成人精品一二三区| 国产精品香港三级国产av潘金莲 | 国产视频首页在线观看| 欧美日韩综合久久久久久| 曰老女人黄片| 搡女人真爽免费视频火全软件| 久久婷婷青草| 嫩草影院入口| 1024视频免费在线观看| av在线app专区| 成人漫画全彩无遮挡| 你懂的网址亚洲精品在线观看| 热re99久久精品国产66热6| 可以免费在线观看a视频的电影网站 | 亚洲成av片中文字幕在线观看 | 国产精品.久久久| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 少妇的逼水好多| 午夜91福利影院| 超色免费av| 女人高潮潮喷娇喘18禁视频| 亚洲情色 制服丝袜| 永久网站在线| 丝袜在线中文字幕| 国产精品免费大片| videosex国产| 久久人人爽人人片av| 日日撸夜夜添| 深夜精品福利| 欧美国产精品va在线观看不卡| 99香蕉大伊视频| 久久这里有精品视频免费| 国产1区2区3区精品| 伊人亚洲综合成人网| www.自偷自拍.com| 中国国产av一级| 人体艺术视频欧美日本| 蜜桃国产av成人99| av又黄又爽大尺度在线免费看| 99re6热这里在线精品视频| 不卡av一区二区三区| 少妇被粗大猛烈的视频| 国产午夜精品一二区理论片| 午夜老司机福利剧场| 午夜av观看不卡| 在线观看免费视频网站a站| 精品卡一卡二卡四卡免费| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 黄色毛片三级朝国网站| 丝袜人妻中文字幕| 一级爰片在线观看| 91精品国产国语对白视频| 18在线观看网站| 国产精品久久久av美女十八| 亚洲,一卡二卡三卡| 视频在线观看一区二区三区| 免费黄频网站在线观看国产| 日本爱情动作片www.在线观看| 老鸭窝网址在线观看| 国产野战对白在线观看| av国产精品久久久久影院| 亚洲激情五月婷婷啪啪| 少妇精品久久久久久久| 国产1区2区3区精品| av在线观看视频网站免费| 精品一区二区三卡| 在线观看免费高清a一片| 男女啪啪激烈高潮av片| tube8黄色片| 卡戴珊不雅视频在线播放| 亚洲精品日韩在线中文字幕| 午夜福利视频在线观看免费| 久久 成人 亚洲| 2022亚洲国产成人精品| 午夜影院在线不卡| 丝袜美足系列|