• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor

    2019-02-25 07:22:42UshaandSubha
    Chinese Physics B 2019年2期

    K Usha and P A Subha

    1 Department of physics,University of Calicut,Kerala 673635,India

    2 Department of physics,Farook College,University of Calicut,Kerala 673632,India

    Keywords:HR model,memristor,Hamilton energy,energy feedback,synchronization

    1.Introduction

    The transmission of nerve impulses in the brain occurs via the propagation of action potentials and a large fraction of the total energy consumed by brain is utilized to generate the firing patterns.The evaluation of required metabolic energy to maintain the signaling activity in neurons is an active research area.[1]The collective dynamics of neural networks have a considerable in fluence in the propagation of information from one region to another and their collective behavior can be greatly in fluenced by the energy demands.Neuron models are used to analyze the connection between energy demands and firing modes.[2]The Hamilton energy associated with the dynamical system can be derived using the generalized Hamiltonian approach.[3]Using this formalism,Sarasola et al.have derived the energy function associated with Lorenz,Rossler,and Chua systems.[4]Moujahid et al.have reported the energy consumption during the synchronization process in electrically coupled HR neurons.[5]The consumption of energy in transmitting nerve impulse using Hodgkin-Huxley model has also been reported.[6]

    It is important to investigate the energy utilization of neurons subjected to different kinds of external force during information encoding.Biological experiments confirm that the electrical activities of neurons change by adjusting extracellular calcium or potassium concentrations.[7]The Hindmarsh-Rose(HR)neuron oscillates periodically for small and large external current,whereas for intermediate currents they become chaotic.[8]The periodic external forcing also in fluences the bursting modes and neuronal activities.[9]In addition,computational models have been developed to study the effect of noise.[10-12]The statistical features of Gaussian white noise seem to be appropriate to mimic the complex behavior shown by a neuron under the in fluence of other neurons and the environment.Zambrano et al.have analyzed the synchronization of uncoupled FitzHugh-Nagumo neurons with common noise both experimentally and numerically.[13]Noise-induced resonances in the HR model has also been studied.[14]Wang et al.have reported that,the forced HR neurons with white Gaussian noise leads to firing modes like multi-modal firing,intrinsic oscillation,and bi-modal firing.[15]Lindner et al.have studied the dynamics of mathematical models of excitable systems in the presence of white Gaussian noise.[16]

    Recent studies confirm that a two terminal electric device called memristor can mimic the the key characteristics of synapses and neurons.A memristor models the effect of electromagnetic field created as a result of the exchange of ions across the nerve membrane.The electrical activities in the cardiac tissues exposed to electromagnetic radiation can be described using memristor models.This provides signi ficant clues about the mechanism of heart disorders induced by electromagnetic radiation.[17]The synchronization of coupled memristive neural network via pinning control has been proposed by Guan et al.[18]Recently Ma et al.have discussed the RCL-shunted junction circuit with memristor.[19]The control of dynamical systems with negative feedback in energy has recently been reported.[20]

    In this paper,we analyze the energy aspects of single and coupled HR neuron model with a memristor.The HR neuron model with quadratic flux controlled memristor is presented in Section 2.The Hamilton energy of the system is derived in Section 3 and the energy change in the presence of different external stimuli has been discussed.In addition,the control of chaotic trajectories by applying a negative feedback is discussed in this section.The energy aspects during the synchronization process of electrically and chemically coupled HR neurons are studied in Section 4.Finally,Section 5 concludes the study.

    2.Model

    The continuous exchange ofcharged ions across the nerve membrane induce an electromagnetic field that controls the membrane potential of neurons.Recently Ma et al.proposed that memristors can be used to bridge the magnetic flux and membrane potential.This coupling in fluences signal transmission via the superposition of electric field.[9,21]Memristors are used to realize the coupling.The HR model with memristor is capable of producing biologically relevant dynamical states such as anti-phase oscillations,co-existence of resting and spiking state etc.[22]The dynamical equations of HR neuron model with quadratic flux controlled memristor have the form:[9]

    where ρ(φ)= αφ2+βφ +γ.The membrane potential of the neuron is represented using the variable x.y denotes the recovery variable representing the rate of change of fast current of K+or Na+ions and z denotes the adaptation variable that capture the slower dynamics of other ion channels.The parameters a and b denote activation and inactivation of the fast ion channel.R and xedescribe activation and inactivation of the slow ion channel.The speed of variation of z is controlled by r.[23-25]The parameter I represents the external stimuli.[26,27]The fourth variable φ denotes magnetic flux across the nerve membrane.A memristor with memductance ρ(φ)=d q(φ)/dφ is used to realize the coupling between magnetic flux of the field and membrane potential.It is possible to model ρ(φ)using a quadratic term.The memductance after suitable scaling is taken as ρ(φ)= αφ2+βφ +γ,α,β,and γ are parameters.[28]The term k1ρ(φ)x denotes the induced current through electromagnetic induction,where k1represents the modulation intensity of electromagnetic field.Relation between induced current and flux change can be understood using Faraday’s law of electromagnetic induction.[29]The term k2x represents the change in magnetic flux induced by membrane potential of the cell and k3φ denotes the leakage of magnetic flux.The parameters used are a=3.0,b=5.0,R=4.0,r=0.006,I=3.1,and xe=-1.61.[30]

    We have analyzed the dynamics of the system in Eq.(1)by varying the external current I.The fourth order Runge-Kutta algorithm is applied for numerical calculations.The memristor parameters are taken as β =1.0,γ=1.0,k2=0.9,and k3=0.5.The value of k1is fixed at 0.1 and by increasing the value of α the inter spike interval bifurcation(IS I)diagrams have been plotted.Figures 1(a),1(b),and 1(c)show the distribution of ISI for α=0.1,0.4,and 0.8 respectively.It is found that as the value of α is increased,the system eventually transforms to its normal response state.The study has been extended by fixing α=0.1 and by varying k1.Figures 1(d),1(e),and 1(f)represent the I versus IS I for k1=0.8,0.4,and 0.1 respectively.From the plots it is clear that,for constant α,a decrease in k1is needed for normal firing.The response of a neuron with electromagnetic induction described by quadratic flux controlled memristor to external signals can be enhanced by properly selecting the memristor parameters.[21]

    Fig.1.The ISI bifurcation diagram of HR neuron with memristor.Figures 1(a),1(b),and 1(c)shows I versus ISI for k1=0.1 and α=0.1,0.4,and 0.8.Figures 1(d),1(e),and 1(f)are drawn for α =0.1,k1=0.8,0.4,and 0.1.The parameters β and γ are set as 1.0.

    3.Energy aspects

    In this section,we derive the Hamilton energy of HR model with quadratic flux controlled memristor.The differential equation of an autonomous dynamical system is of the form:˙x=f(x).According to Helmholtz’s theorem the velocity vector field f(x)can be written as:

    where fccomponent of the vector field is conservative.This does not contribute to the energy change along any trajectory of the system and satis fies the following equation,

    The function H(x)is the generalized Hamiltonian for the conservative system as long as it can be rewritten in the form˙x=J(x)?H,where J is a skew symmetric matrix that satis fies Jacobi’s closure condition.[31]The component fdis composed of velocity-dependent terms and contribute to the divergence.[9]The dissipation of energy due to the fdpart obeys the relation:

    The conservative and dissipative part of HR model in Eq.(1)can be expressed in the form:

    where

    and

    Then,according to Eq.(3),the Hamilton energy associated with the system will satisfy the following partial differential equation:

    A general solution for Eq.(5)is of the form:

    The rate of change of Hamilton energy function is:

    simplifying and rearranging Eq.(9),the expression for˙H takes the form,and hence obeys the relation in Eq.(4).

    The average energy of the system is evaluated using the expression,

    where T is the energy calculation period(1000 time units)and t0is the starting time to calculate the average energy.Figure 2 shows the variations in the average energy with the external forcing current(I).The parameters used are taken as:a=3.0,b=5.0,R=4.0,r=0.006,xe=-1.61,k1=0.1,k2=0.9,and k3=0.5,α =0.4,β =0.02,and γ=0.1.[9]From the plot it is clear that as I is increased,the average energy decreases.

    Fig.2.The variations in average energy of HR neuron with quadratic flux controlled memristor for different values of external current.

    We have further analyzed the rate of change of Hamilton energy in the resting and bursting state of membrane potential by applying various external stimuli.

    Case 1:Constant external stimulus

    A constant external current(I)has been applied to the system.The value of I is changed from 2.0 to 3.0 at t=1000 and then switched to 1.0 at t=1500,as depicted in Fig.3(a).

    Fig.3.(a)Variation of external current(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The external current I is changed from 2.0 to 3.0 at t=1000 time units and switched to 1.0 at t=1500 time units.

    The corresponding variations in energy utilization and membrane potential are shown in Figs.3(b)and 3(c)respectively.From the plots it is clear that as the external current is varied the bursting mode of neuron change and for generating each action potential energy is consumed.The energy demand is a maximum during the repolarization period of the spike and at a minimum during the refractory period between two spikes.The energy utilization approaches zero when the membrane potential is close to the quiescent state.

    Case 2:Periodic external stimulus

    The effect of periodic stimulus in neural activity has been analyzed by applying an inputofthe form I=I1+A sin(0.05t),where I1=3.1 and A represents the amplitude.The membrane potential and energy utilization during the electrical activities are plotted.The value of A is changed from 0.1 to 1.0 at t=1000 and then switched to 2.0 at t=1500,as shown in Fig.4(a).In the case of periodic input,A acts as a control parameter for generating different types of electrical responses.As A is increased,the number of spikes per burst in membrane potential is also increased;as shown in Fig.4(c).The transition in bursting mode induce some transition in Hamilton energy.In the case of state with less number of spikes per burst,the Hamilton energy consumed also become smaller as depicted in Fig.4(b).

    Fig.4.(a)Variation of periodic input(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The external periodic forcing has the form I=I1+A sin(0.05t).I1 is fixed at 3.1 and A is changed from 0.1 to 1.0 at t=1000 and then switched to 2.0 at t=1500.

    Case 3:White Gaussian noise

    The in fluence of noise in the firing pattern is discussed in Fig.5.

    Fig.5.External noise variations(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The noise applied is I=I1+ζξ(t).I1=3.1,ζ is changed from 0.01 to 0.1 at t=1000 and then switched to 1.0 at t=1500.

    White Gaussian noise is added through the electrical potential of the membrane;i.e.,the effective current imposed to the neuron contains a random term.[32]The noise is of the form I=I1+ζξ(t),with parameters 〈ξ(t)〉=0,〈ξ(t)ξT(t+τ)〉=δ(τ)and ζ defines the noise intensity.The value of I1is fixed as 3.1 and ζ is changed from 0.01 to 0.1 at t=1000 and then switched to 1.0 at t=1500 as shown in Fig.5(a).The corresponding variations in membrane potential are shown in Fig.5(c).From the plotitisclearthatthe bursting mode changes with the increase in noise intensity.The energy utilization in the presence of noise is depicted in Fig.5(b).It is confirmed that noisy external stimulus can trigger complex discharge in energy utilization and the effect of noise is more evident in the refractory period of the action potential.

    The bifurcation diagrams in(A-Xmax)and(A-ISI)planes for periodic input are shown in Figs.6(a)and 6(b)respectively.The amplitude of periodic forcing is varied as 0≤A≤4.The plots show that,an alternate sequence bursting states occur with the increase in A.The bifurcations in the presence of the noisy external forcing are shown in Figs.6(c)and 6(d).The noise intensity is varied in the range 0≤ζ≤1.It is found that an increase in ζ produces the complex rhythm and the electrical discharge of the nerve cell becomes more complex leading to chaos.

    Fig.6.The bifurcation diagrams.Figures 6(a)and 6(b)show X max and IS I by varying the amplitude of periodic forcing.Figures 6(c)and 6(d)show X max and ISI by varying the intensity of external noise.

    4.Energy feedback

    The Hamilton energy of the system depends on all system parameters,and hence the changes made to energy function causes significant change in the phase space of the dynamic system.[20]The change in energy is realized by giving a negative feedback as follows:

    where k4is the feedback gain.The phase space dynamics in the(X-H)plane by varying k4has been plotted.

    Case 1:Constant external stimulus

    The formation of attractors in the presence of constant current(I=3.1)is illustrated in Fig.7.The phase space for k4=0.0,k4=1.0,k4=5.0,k4=10.0 are shown in Figs.7(a),7(b),7(c),and 7(d),respectively.As the feedback gain is increased,the number of dense orbits in the attractor is reduced and the chaotic trajectories are controlled.The results are further confirmed by plotting the largest Lyapunov exponent(LLE).The variation of LLE with k4is shown in Fig.8.It is found that the LLE is decreased below zero with increase in k4and ensure the stabilization of chaotic trajectories.

    Fig.7.The phase space of dynamics for I=3.1.The energy feedback obeys Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    Fig.8.Transition of LLE for different feedback gains in energy function in the presence of constant external current.The inserted figure is the enlarged version.

    Case 2:Periodic external stimulus

    The phase space dynamics in the presence periodic input I=I1+2sin(0.05t)for k4=0,k4=1.0,k4=5.0,and k4=10.0 are shown in Figs.9(a),9(b),9(c),and 9(d)respectively.

    Fig.9. The phase space of dynamics for periodic external forcing I=I1+A sin(0.05t),where I1=3.1 and A=2.0.The energy feedback is according to Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    The plots show that,as the feedback gain k4is increased the Hamilton energy function which is composed of the variables and bifurcation parameters controls the evolution of the system and the chaotic trajectories are stabilized.The variation of LLE is shown in Fig.10.The maximum value of LLE is nearly equal to 0.008,greater than compared to the one obtained for constant external current.

    Fig.10.Transition of LLE with k4.Periodic variations are applied in the external current.The inserted figure is the enlarged version.

    Case 3.White Gaussian noise

    The phase portrait of the system with energy feedback in the presence of the external noise I=I1+ζξ(t)has also been studied with I1=3.1 and ζ=1.As the feedback gain k4is increased,the noisy trajectories are controlled.Figures 11(a),11(b),11(c),and 11(d)represent the mechanism of the chaos control for k4=0,k4=1.0,k4=5.0,and k4=10.0 respectively.The LLE for noisy external forcing has the largest value in comparison with the previous cases as shown in Fig.12.The increased Lyapunov exponent indicates sensitivity to initial conditions.

    Fig.11.Phase space in the presence of white Gaussian noise,(I=2+ξ(t)).The energy feedback obeys Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    Fig.12.Variations of LLE with k4.White Gaussian noise is added as the external stimuli.The inserted figure is the enlarged version.

    5.Synchronous dynamics

    5.1.Electrical coupling

    The dynamic equations for electrically coupled HR neuron model with quadratic flux controlled memristor has the form,

    where

    The parameter geis the coupling strength of synaptic junction and D describes the field coupling strength.The parameters used are a=3.0,b=5.0,R=4.0,r=0.006,xe=-1.61,k1=0.1,k2=0.9,and k3=0.5,α=0.4,β=0.02,and γ=0.1.[9]We have evaluated the effect of modulation intensity of electromagnetic field in regulating the average energy of neurons in the synchronized state.

    Figure 13(a)shows the average energy variations for k1=0.1.The plot verifies that with increase in coupling strength the〈H〉changes in a waving pattern and it suddenly stabilizes at the point of synchronization.The membrane potential of both neurons are equal in the synchronized state and this leads to the vanishing of coupling term.As a result the energy in the synchronized state returns to its initial uncoupled value.Our results with quadratic flux controlled memristor are in accordance with the results obtained for HR model without memristor in Ref.[1].The variation in〈H〉for an increased value of k1(k1=0.5)is shown in Fig.13(b).From the plot it is clear that as the value of k1is increased,the onset of synchronization occurs at a low value of ge.The results imply that,an autonomous chaotic system with linear feedback coupling will move to its natural oscillatory regime in the synchronized state by gaining or dissipating energy.If the system continues in the same state,then the change in total average energy will be zero due to the repeating nature of trajectories with arbitrarily close energy values.

    Fig.13.Average energy of electrically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.5.

    The transition to the synchronized state is further confirmed by plotting the transverse Lyapunov exponents(TLE).[26].Figure 14(a)shows the variations of two of the largest TLEs with gefor k1=0.1.With increase in ge,the largest TLE(λ⊥1)also starts to increase,reaches a maximum,and then starts to decrease.λ⊥1crosses zero at ge=0.41 indicating a transition from desynchronized state to synchrony at this point.

    Fig.14.TLEs of electrically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.5.

    Figure 14(b)shows the variations in TLEs for k1=0.5.Here λ⊥1crosses zero at a low value of ge(ge=0.37).These results are consistent with the average energy changes shown in Fig.13.

    5.2.Chemical coupling

    The equationsgoverning the dynamicsofchemically coupled HR neuron model with quadratic flux controlled memristor has the form,

    where

    The parameter gcis the coupling strength of synaptic junction and D describes the field coupling strength.Vs,the reversal potential is always greater than x for all neuron at all times.For each neuron to reach the threshold,we choose θ=-0.25,Vs=2,and λ=7.5.[33]

    The change in average energy with gcfor k1=0.1 is shown in Fig.15(a).From the plot it is clear that the fluctuating nature of average energy disappears at the point of synchronization.This occurs at gc=1.55.After that,the system shows an interesting behavior;i.e.,〈H〉linearly increases with increase in gc.

    Fig.15.Average energy of chemically coupled HR model by varying g c for(a)k1=0.1.The green,red,black,and blue lines in the inset plot shows the AD state obtained for g c=1.55,1.7,1.8,and 2,respectively.(b)Average energy variations for k1=0.2.The inset plot represents the time series of membrane potential corresponding to periodically oscillating(red)and AD(black)states.

    To unravel the reason for increase in〈H〉after gc=1.55,we have examined the time series of the system in the linearly increasing regime of 〈H〉.The results are shown in the inset plot of Fig.15(a).The ‘X’axis represents time and ‘Y’axis denotes the membrane potential.The plot verifies that,even though both neurons are synchronized(gc≥1.55),their membrane potential is in the amplitude death state(AD).The green,red,black and blue lines show the AD state which has been obtained for gc=1.55,1.7,1.8,and 2 respectively.As the value of gcis increased the value of membrane potential at which AD takes place also increases.Thus,in chemical synaptic coupling where the interaction terms do not go to zero permits a change in average energy in the synchronized state.We have further analyzed the effect of k1in regulating〈H〉.Figure 15(b)shows the 〈H〉variations for k1=0.2.For 0< gc≤ 0.55,〈H〉shows some fluctuations and this region corresponds to the desynchronized state.After that,〈H〉remainsconstantfor0.55<gc≤1.484 and linearly increasesfor 1.484<gc≤2.0.The time evolution of membrane potential corresponds to these two cases are shown in the inset plot of Fig.15(b).The periodically oscillating(red)time series is for the constant〈H〉regime,i.e.,in the synchronized state there occurs a transition to stable orbit and the total average energy change is zero due to the repeating nature of trajectories.The black line in the inset plot is the time evolution of membrane potential corresponding to the linearly increasing regime of〈H〉.Here also AD occurs at different points for different values of gcleading to a net average energy change.Thus it can be concluded that,an extra amount of energy is needed when a coupled system is forced to oscillate in different regions of the phase space where the average energy change is not zero.The extra demand of energy required for the collective dynamics is provided by the coupling mechanism.[34]In the central nervous system,some specialized structures are located at the postsynaptic sites for producing ATP molecules to balance the energy demands.[35]

    Fig.16.TLEs of chemically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.2.

    The transition to the synchronized state isverified by plotting the TLEs.Figure 16(a)depicts the variations of two of the largest TLEs with chemical coupling strength for k1=0.1.The λ⊥1crosses zero at gc=1.55 corresponds to the synchronized state.For k1=0.2,this transition occurs at a low value of gc(gc=0.55),as shown in Fig.16(b).

    6.Results and conclusions

    We have analyzed the energy aspects of single and coupled HR neuron models with a quadratic flux controlled memristor.The bifurcation analysis of single system by increasing the value of I suggest that the response of the system in the presence of external stimuli can be improved by properly modulating the electromagnetic induction.Based on Helmholtz theorem the rate of change of Hamilton energy of HR model with memristor has been derived.It is found that the average Hamilton energy decreases with increase in I.The time evolution of membrane potential and the rate of change of energy function for different external stimuli have been analyzed.In the case of constant external current,the electrical mode of neuron changes with the external forcing and energy is consumed for generating each action potential.In the presence of periodic stimuli,the firing mode changes with the change in amplitude of external forcing.The energy consumption of bursting state with less number of spikes per burst is found to be low compared to burst with more number of spikes.The analysis of the system by applying Gaussian white noise reveals that,bursting mode changes with increase in noise intensity.The bifurcation analysis corresponding to periodic input shows the presence of intermittently occurring states with the variations in A.The bifurcation diagram in the presence of noise reveals that as the noise intensity is increased,the system shows complex chaotic dynamics.The dependence of Hamilton energy function on system parameters is used to control and stabilize chaotic trajectories by giving a negative energy feedback.The suppression of chaotic trajectories and the stabilization of phase space of the system for periodic input and noise are discussed.As the feedback gain in the energy function is increased,the initially positive LLE become negative which in turn ensure the stabilization of chaotic trajectories.

    In the case of electrically coupled neurons,as geis increased the〈H〉changes in a fluttering pattern and it stabilizes at the point of synchronization.The energy in the synchronized state returns to its initial uncoupled value due to the vanishing of coupling term in the synchronized state.This study has been repeated by increasing k1and found that for an increased value of k1the onset of synchronization occurs at a low value of ge.The average energy variations exhibit three important regions when the neurons are coupled via chemical synapse.The fluctuating region indicates desynchrony.In the region where the〈H〉remains constant,the system shows synchronization with periodically oscillating dynamicsand the total average energy change is zero due to the repeating nature of trajectories.In the linearly increasing regime,the dynamics are AD.As the value of gcis increased,the value of membrane potential at which the system stabilizes is also increased and leads to a net average energy change.We conclude that if two neurons are coupled and forced to oscillate,then their phase space may contain different oscillatory regimes.As a result,the change in average energy of the system will not be zero and an additional amount of energy is used to sustain the synchronized state.The proposed method will be useful to study the energy aspects of other coupled chaotic and hyperchaotic systems.Possible extensions to neural networks can providefiner insight to the energy modulation mechanism of various biological systems.

    Acknowledgments

    UK would like to acknowledge University Grants Commission,India for providing financial assistance through JRF scheme for doing the research work.PAS would like to acknowledge DST,India for their financial assistance through the FIST program.

    黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 婷婷丁香在线五月| 高潮久久久久久久久久久不卡| av不卡在线播放| 韩国精品一区二区三区| 捣出白浆h1v1| 欧美乱妇无乱码| 成人18禁在线播放| 老司机深夜福利视频在线观看| 亚洲全国av大片| 深夜精品福利| 亚洲人成电影观看| 婷婷丁香在线五月| 又黄又粗又硬又大视频| 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 欧美乱妇无乱码| av天堂久久9| 一边摸一边抽搐一进一出视频| www.自偷自拍.com| 又大又爽又粗| 国产色视频综合| 美女 人体艺术 gogo| 成熟少妇高潮喷水视频| www.精华液| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品人妻蜜桃| 一级毛片高清免费大全| 欧美乱码精品一区二区三区| 欧美日韩精品网址| 老汉色∧v一级毛片| av中文乱码字幕在线| 国产高清激情床上av| 欧美黑人欧美精品刺激| 国产午夜精品久久久久久| 夜夜爽天天搞| 欧美国产精品一级二级三级| 黄色成人免费大全| 亚洲片人在线观看| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 最近最新中文字幕大全电影3 | 人人妻人人爽人人添夜夜欢视频| 亚洲熟女精品中文字幕| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片 | 正在播放国产对白刺激| 777久久人妻少妇嫩草av网站| 日韩成人在线观看一区二区三区| 亚洲性夜色夜夜综合| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 黄色a级毛片大全视频| 建设人人有责人人尽责人人享有的| 丰满的人妻完整版| 这个男人来自地球电影免费观看| 搡老乐熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利乱码中文字幕| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 91国产中文字幕| 精品一区二区三区四区五区乱码| 91大片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 叶爱在线成人免费视频播放| 亚洲成a人片在线一区二区| 香蕉久久夜色| 亚洲片人在线观看| 99riav亚洲国产免费| 黄色丝袜av网址大全| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 国产1区2区3区精品| ponron亚洲| 女性生殖器流出的白浆| 女警被强在线播放| 亚洲国产欧美网| 极品少妇高潮喷水抽搐| 亚洲精品中文字幕一二三四区| 成年女人毛片免费观看观看9 | videosex国产| 色婷婷av一区二区三区视频| 岛国在线观看网站| 国产蜜桃级精品一区二区三区 | 日韩免费av在线播放| 国产精品.久久久| bbb黄色大片| 咕卡用的链子| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 久久人妻av系列| 老汉色∧v一级毛片| 久久久久久久午夜电影 | 亚洲成人手机| 国产一区在线观看成人免费| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜一区二区| 欧美色视频一区免费| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| www.精华液| 建设人人有责人人尽责人人享有的| 国产一区二区三区综合在线观看| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 日韩欧美一区视频在线观看| av福利片在线| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 麻豆国产av国片精品| 91精品国产国语对白视频| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 美女扒开内裤让男人捅视频| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 亚洲av日韩精品久久久久久密| 在线av久久热| 麻豆乱淫一区二区| 啦啦啦 在线观看视频| 免费不卡黄色视频| 欧美日韩精品网址| 天堂√8在线中文| 精品一区二区三区四区五区乱码| 一二三四在线观看免费中文在| 精品乱码久久久久久99久播| 精品久久久久久电影网| 色老头精品视频在线观看| 国产精品国产av在线观看| 成年人黄色毛片网站| 看黄色毛片网站| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 午夜影院日韩av| 久久精品国产亚洲av高清一级| 高清在线国产一区| 一进一出抽搐gif免费好疼 | 夫妻午夜视频| 男人舔女人的私密视频| 国产成人精品无人区| 成人影院久久| 日本五十路高清| 午夜亚洲福利在线播放| 国产高清videossex| 黄色 视频免费看| 天天添夜夜摸| 国产在线精品亚洲第一网站| 午夜影院日韩av| 中亚洲国语对白在线视频| 国产成人av激情在线播放| 自线自在国产av| 久久精品国产亚洲av高清一级| 欧美大码av| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 午夜91福利影院| 一区福利在线观看| 免费在线观看黄色视频的| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人av| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 咕卡用的链子| 亚洲av成人av| svipshipincom国产片| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 亚洲精品中文字幕一二三四区| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 久9热在线精品视频| 高清欧美精品videossex| 精品国产美女av久久久久小说| 久久久国产成人免费| 欧美人与性动交α欧美软件| 久久香蕉国产精品| 法律面前人人平等表现在哪些方面| 午夜视频精品福利| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| 99re在线观看精品视频| 久久香蕉激情| 曰老女人黄片| 国产av精品麻豆| 91大片在线观看| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 又黄又粗又硬又大视频| 日本黄色日本黄色录像| 国产单亲对白刺激| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区久久久樱花| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av| 国产av又大| av不卡在线播放| 十八禁网站免费在线| 在线av久久热| 黑人巨大精品欧美一区二区蜜桃| 国产精品偷伦视频观看了| netflix在线观看网站| 国产av一区二区精品久久| 精品国产一区二区久久| 水蜜桃什么品种好| 亚洲av电影在线进入| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 久久久久国内视频| 香蕉久久夜色| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮喷水抽搐中文字幕| 国产97色在线日韩免费| 欧美亚洲日本最大视频资源| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av高清一级| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 久久香蕉精品热| 久久中文字幕一级| 一级毛片精品| 亚洲成av片中文字幕在线观看| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 亚洲精品自拍成人| 国产免费男女视频| 大香蕉久久网| 精品国产乱子伦一区二区三区| 欧美在线黄色| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 国产成人精品在线电影| 怎么达到女性高潮| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 99精国产麻豆久久婷婷| av国产精品久久久久影院| 精品视频人人做人人爽| 亚洲一区高清亚洲精品| 午夜视频精品福利| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 岛国毛片在线播放| 欧美大码av| 在线观看一区二区三区激情| av片东京热男人的天堂| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 精品一区二区三区视频在线观看免费 | 亚洲中文av在线| 成人影院久久| 日韩欧美一区二区三区在线观看 | 999久久久国产精品视频| 18禁裸乳无遮挡免费网站照片 | 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 欧美日韩一级在线毛片| 午夜两性在线视频| 啪啪无遮挡十八禁网站| 国产免费男女视频| 午夜福利在线免费观看网站| 精品国产乱子伦一区二区三区| 国产免费av片在线观看野外av| 久久精品国产99精品国产亚洲性色 | 很黄的视频免费| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影| 久久香蕉精品热| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点 | 18禁国产床啪视频网站| 欧美一级毛片孕妇| 免费看a级黄色片| 69精品国产乱码久久久| 麻豆乱淫一区二区| 中国美女看黄片| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 久久中文看片网| 最新在线观看一区二区三区| av线在线观看网站| 久99久视频精品免费| 国产99白浆流出| 国产精品 国内视频| 超碰成人久久| 日韩欧美免费精品| 91九色精品人成在线观看| 亚洲中文av在线| 一级毛片女人18水好多| 在线免费观看的www视频| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美丝袜亚洲另类 | 亚洲精品国产区一区二| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 免费人成视频x8x8入口观看| 九色亚洲精品在线播放| 交换朋友夫妻互换小说| 在线十欧美十亚洲十日本专区| 午夜福利在线免费观看网站| 韩国av一区二区三区四区| 19禁男女啪啪无遮挡网站| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 亚洲视频免费观看视频| 在线播放国产精品三级| 两个人免费观看高清视频| 777米奇影视久久| 午夜影院日韩av| x7x7x7水蜜桃| 亚洲少妇的诱惑av| 色婷婷av一区二区三区视频| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 乱人伦中国视频| 国产麻豆69| 亚洲专区中文字幕在线| 国产精品美女特级片免费视频播放器 | 免费观看精品视频网站| 亚洲精品美女久久久久99蜜臀| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 久久ye,这里只有精品| 国产免费av片在线观看野外av| 日韩欧美在线二视频 | 精品少妇久久久久久888优播| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 热99久久久久精品小说推荐| 9色porny在线观看| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 19禁男女啪啪无遮挡网站| 国产激情欧美一区二区| 色94色欧美一区二区| 色播在线永久视频| 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 亚洲一区中文字幕在线| 亚洲精华国产精华精| av免费在线观看网站| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 在线观看免费日韩欧美大片| 悠悠久久av| 欧美日韩视频精品一区| 久久久久久人人人人人| 国产成人av教育| 亚洲专区中文字幕在线| 亚洲成a人片在线一区二区| 午夜影院日韩av| 久久精品国产99精品国产亚洲性色 | 亚洲欧洲精品一区二区精品久久久| 热99久久久久精品小说推荐| 午夜免费鲁丝| 女人久久www免费人成看片| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频 | 99在线人妻在线中文字幕 | 大型av网站在线播放| 岛国在线观看网站| 18在线观看网站| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 身体一侧抽搐| 一进一出抽搐动态| 久久国产乱子伦精品免费另类| 老司机午夜福利在线观看视频| 国产不卡一卡二| 黑人猛操日本美女一级片| 91麻豆精品激情在线观看国产 | 国产成人欧美| 视频区图区小说| 新久久久久国产一级毛片| 中文字幕色久视频| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 国产亚洲欧美在线一区二区| 91九色精品人成在线观看| 一夜夜www| 又黄又爽又免费观看的视频| 十八禁人妻一区二区| 丰满饥渴人妻一区二区三| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 亚洲avbb在线观看| 亚洲精品一二三| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 夜夜爽天天搞| 不卡一级毛片| 久久久精品国产亚洲av高清涩受| 亚洲第一av免费看| 国产精品一区二区在线不卡| 国产三级黄色录像| 国内久久婷婷六月综合欲色啪| 国产精品国产av在线观看| 精品一区二区三区av网在线观看| 女人久久www免费人成看片| 好看av亚洲va欧美ⅴa在| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 大香蕉久久成人网| 韩国精品一区二区三区| 色综合欧美亚洲国产小说| 国产精品国产av在线观看| 黄色a级毛片大全视频| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 人成视频在线观看免费观看| 国产无遮挡羞羞视频在线观看| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 大码成人一级视频| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 91av网站免费观看| 在线观看免费视频日本深夜| 在线观看免费午夜福利视频| 午夜福利视频在线观看免费| 国产高清videossex| 99在线人妻在线中文字幕 | 中国美女看黄片| 老汉色∧v一级毛片| 日本撒尿小便嘘嘘汇集6| 亚洲国产看品久久| 亚洲情色 制服丝袜| videosex国产| 手机成人av网站| 国产色视频综合| 国产精品影院久久| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 老熟妇仑乱视频hdxx| 首页视频小说图片口味搜索| 精品国产美女av久久久久小说| 亚洲色图综合在线观看| 一夜夜www| 久久香蕉精品热| 人人妻人人澡人人看| 久久国产精品男人的天堂亚洲| 国产精品 欧美亚洲| 国产一区二区三区综合在线观看| 在线国产一区二区在线| 99国产精品一区二区蜜桃av | 十分钟在线观看高清视频www| 久久精品aⅴ一区二区三区四区| 精品国产乱子伦一区二区三区| 俄罗斯特黄特色一大片| 变态另类成人亚洲欧美熟女 | 成人手机av| 自线自在国产av| 校园春色视频在线观看| 另类亚洲欧美激情| 看片在线看免费视频| 久久人妻熟女aⅴ| 黄网站色视频无遮挡免费观看| 国产麻豆69| 国产高清激情床上av| 久久人人爽av亚洲精品天堂| 国产成人精品在线电影| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产成人免费| 在线视频色国产色| 久久久久久久久免费视频了| 欧美激情高清一区二区三区| 久久香蕉精品热| 精品一区二区三区四区五区乱码| 午夜福利一区二区在线看| 国产成人免费无遮挡视频| 天堂中文最新版在线下载| 国产亚洲一区二区精品| 久久久久久亚洲精品国产蜜桃av| 18禁国产床啪视频网站| 欧美日韩国产mv在线观看视频| 国产精品久久视频播放| 黑人巨大精品欧美一区二区蜜桃| 免费av中文字幕在线| 国产三级黄色录像| 国产乱人伦免费视频| 在线观看免费午夜福利视频| 一区福利在线观看| 91精品国产国语对白视频| 免费人成视频x8x8入口观看| 午夜精品国产一区二区电影| 大片电影免费在线观看免费| 19禁男女啪啪无遮挡网站| 又黄又爽又免费观看的视频| 国产熟女午夜一区二区三区| 国产又色又爽无遮挡免费看| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 老司机靠b影院| 成熟少妇高潮喷水视频| 成年人免费黄色播放视频| 欧美激情久久久久久爽电影 | 高清毛片免费观看视频网站 | a级片在线免费高清观看视频| 王馨瑶露胸无遮挡在线观看| 18在线观看网站| 涩涩av久久男人的天堂| 欧美久久黑人一区二区| 黄频高清免费视频| 欧美亚洲日本最大视频资源| 人妻久久中文字幕网| 亚洲精品粉嫩美女一区| 老司机在亚洲福利影院| 午夜老司机福利片| 午夜免费观看网址| 成人永久免费在线观看视频| 如日韩欧美国产精品一区二区三区| 午夜福利视频在线观看免费| 午夜免费鲁丝| 69av精品久久久久久| 18禁观看日本| 久久久久精品国产欧美久久久| 久久精品人人爽人人爽视色| 女同久久另类99精品国产91| 欧美丝袜亚洲另类 | 人妻一区二区av| av不卡在线播放| 午夜精品久久久久久毛片777| 精品一品国产午夜福利视频| 久久 成人 亚洲| av网站免费在线观看视频| 嫩草影视91久久| 搡老乐熟女国产| 欧美日韩乱码在线| 久久婷婷成人综合色麻豆| 亚洲avbb在线观看| 人人妻人人澡人人爽人人夜夜| 变态另类成人亚洲欧美熟女 | 国产国语露脸激情在线看| 亚洲精品久久成人aⅴ小说| 午夜日韩欧美国产| 十八禁人妻一区二区| 国产成人系列免费观看| 欧美最黄视频在线播放免费 | 99久久国产精品久久久| 久久精品国产清高在天天线| 欧美人与性动交α欧美软件| av福利片在线| 国产不卡av网站在线观看| 国产在视频线精品| 久久香蕉激情| 日韩欧美一区二区三区在线观看 | 国产亚洲欧美在线一区二区| 亚洲五月色婷婷综合| 国产成人免费观看mmmm| 一二三四社区在线视频社区8| 精品福利观看| 国产成人免费观看mmmm| 老汉色av国产亚洲站长工具| av免费在线观看网站| 女人精品久久久久毛片| 国产一区二区三区综合在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产区一区二久久| 成年人免费黄色播放视频| 变态另类成人亚洲欧美熟女 | 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| 美女国产高潮福利片在线看| 免费在线观看亚洲国产| 91精品三级在线观看| 国产精品1区2区在线观看. | ponron亚洲| 搡老乐熟女国产| 满18在线观看网站| 亚洲伊人色综图| 精品少妇久久久久久888优播| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品sss在线观看 | av免费在线观看网站| 18禁裸乳无遮挡动漫免费视频|