• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons

    2022-08-01 06:02:24XiaoFangOuyang歐陽小芳andLuWang王路
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王路小芳歐陽

    Xiao-Fang Ouyang(歐陽小芳) and Lu Wang(王路)

    School of Physics and Electrical Information,Shangqiu Normal University,Henan 476000,China

    Keywords: half-metal,antiferromagnetic,two-dimensional materials,spin polarization

    1. Introduction

    Spintronics, which utilizes spin as the carrier for information transportation and processing, is one of the most promising methodologies in achieving high-speed and lowenergy-consuming electronic devices.[1–4]A key challenge in this field is generating fully spin-polarized current around the Fermi level. Half metal, where only one spin channel is conductive while the other is insulating, can resolve this problem.[5]Recently,graphene has attracted extensive research attention because of extraordinary thermal, mechanical, and electrical properties.[6,7]However, the dirac point is difficult to switch on at the room temperature,which impedes applications in spintronics. Therefore, in order to overcome this problem,much effort has been made to find semiconductor with large band gap. Transitional metal sulfide(TMS)with relatively high and adjustable band gap achieved by adjusting the number of layers and components of sulfide, may resolve this problem.[8–11]Moreover,the optical band gap of TMS has been proved to be dependent on the temperature.[12,13]Nevertheless, the carrier mobility of these materials is much lower than 200 cm2/V·s,[14]which hinder their application seriously.

    Compared with the gapless graphene and silicene, black phosphorene has attracted great attention due to the thickdependent band-gap of 0.3 eV–2 eV.[15,16]On the other hand,in comparison with TMS, the black phosphorene has advantages of ultrahigh carrier mobility[17,18]and anisotropic thermal, optical, and electronic transport properties,[19–21]being excellent for application in spintronics.Furthermore,the fieldeffect-transistor(FET)based on few layer black phosphorus is found to have strikingly high on/off ratio of 105and a carrier mobility of 103cm2/V·s at the room temperature,[22]being beneficial for application in nano devices. Thus,phosphorene is becoming a potential material in the field of electronics,optoelectronics and spintronics due to the existence of above novel properties.[23,24]

    It is well-known that the pursuit on controlled magnetism of phosphorene in practise has been persisting goal in the field of spintronics. Many theoretical researches about the magnetism of phosphorene have been proposed to date. The doping black phosphorene with substitutional impurities such as Ti,Cr,Ni,Mn and Fe is a ferromagnetic semiconductor,being the same as dilute magnetic semiconductor (DMS). The spin polarization of 100%is achieved in the phosphorene nanoribbons doped with Ti, Cr, Mn, Co and Fe atoms.[25]Besides,the O2-(Co-phosphorene)[26]and V doped phosphorene[27]show half-metallic characteristics. However, the macroferromagnetism originated from the magnetic atoms is unfavorable for the application in nano devices.[28,29]Spin polarization introduced by non-magnetic impurities in phosphorene may resolve this problem,[30,31]in fact,it is difficult to control the doping site accurately.

    To better understand the effect of magnetism on electronic structure, the intrinsic magnetic properties of ZBPNRs are investigated in detail.[32–34]The antiferromagnetic ground state with ferromagnetic along same edge and antiferromagnetic between two opposite edges is found at the edge of ZBPNRs.[33]In addition, in-plane transverse electrical field has strong influence on the electronic structure of the ZBPNRs,resulting in the formation of topological insulate state.[35,36]Half-metallicity could be achieved in zigzag phosphorene nanoribbons with different groups decoration such as OH-NO2and NH2-NO2,[37]which avoid the drawback of macro-ferromagnetism deriving from the transitional metal atoms. Nevertheless,it is difficult to obtain the selective modification in experiment. Therefore,the study of the half-metal based on black-phosphorene without transitional metals,substitutional doping and magnetic field is utmost imperative.

    In this work,we present a systematic investigation on the electronic and magnetic properties of ZBPNRs by applying density functional theory. The widths of ZBPNRs are classified by the number of P atom across the ribbon width, as shown in Fig. 1(a). In order to obtain the magnetic ground state, non-magnetic and four different magnetic states displayed in Figs. 1(a)–1(d) are considered in the calculations.The ground state of ZBPNRs is dependent on the widths, as shown in Fig. 1(e). As for the narrow widths smaller than 8ZBPNRs,its ground state prefers the AFM1 order. With increasing of widths of ZBPNRs, the degeneracy between the AFM2 and AFM3 is formed, becoming the ground state, as shown in Fig. 1(e). More interesting, the addition of out-ofplane electric field can modulate the magnetic property, resulting in the split of antiferromagnetic degeneracy of AFM1 and realization of half-metal. Our results suggest a new way to obtain half-metal in the absence of transitional metal atoms,magnetic field and edge passivation, which is helpful in the construction of two-dimensional half-metal in spintronics.

    2. Methods

    Our investigation of ZBPNRs is all performed through Viennaab initiosimulation package[38,39]based on the projector augmented wave method.[40]The generalized gradient approximation(GGA)for the exchange–correlation functional are employed with plane wave energy cutoff of 500 eV.[41]The energy convergence criteria for electronic iterations is set to be 10-6eV. In the self-consistent potential calculation under electric field,8ZBPNRs of zigzag sheet with a set of 30×1×1 Monkhorst–Packk-points grid is used for Brillouin-zone integration,and when the density of states(DOS)is calculated,a 60×1×1k-point sampling is used.A vacuum space of at least 15 ?A was included in the unit cell to eliminate the coupling between neighboring cells. The electronic and magnetic properties of ZBPNRs with ranging from 4ZBPNRs to 20ZBPNRs are investigated in detail. The widths of ZBPNRs are referred according to the number of P atoms in the direction perpendicular to the zigzag edge. All atomic positions and the sizes of phosphorene are optimized until the atomic force becomes smaller than 0.01 eV/ ?A.

    Fig.1. (a)FM,(b)AFM1,(c)AFM2,(d)AFM3 are initial magnetic structures adopt for searching magnetic ground state. (e)The energy difference of five magnetic states as a function widths of ZBPNRs.

    3. Results and discussion

    The relaxed lattice constants of monolayer black phosphorene are 3.2989 ?A and 4.6291 ?A,which are in good agreement with other theoretical calculations.[33,34,42]The ZBPNRs is obtained by cutting the monolayer black phosphorene along zigzag direction. For searching the ground state,five different magnetic states including NM,F(xiàn)M,AFM1,AFM2 and AFM3 are calculated by spin-polarized GGA calculation. As shown in Fig.1,AFM1 is ferromagnetic within each edge but antiferromagnetic between two opposite edges. AFM2 is intra-edge antiferromagnetic with inter-edge ferromagnetic,while AFM3 is the state with both intra-edge and inter-edge antiferromagnetic arrangements. The total energies of nonmagnetic(NM),ferromagnetic(FM),and various antiferromagnetic(AFM)orders were calculated, respectively. It was found that the stable magnetic states could be achieved by allowing the system to be spin polarized. Both the AFM and FM configurations are in energy lower than NM state regardless of widths of the nanoribbons,indicating that spin polarization is a possible stabilization mechanism.

    More interesting, the ground state is dependent on the nanoribbon widths. Figure 1(e) shows the energy differenceEtotal-EAFM1per unit cell as a function of widths of nanoribbons. We can see that the AFM1 is ground state for the narrow nanoribbons with ranging from 4ZBPNRs to 8ZBPNRs.With increase of widths, AFM2 and AFM3 form a degenerate state with lowest total energy shown by red and blue line in Fig. 1(e), becoming the magnetic ground state, which manifest the weak interaction between two edges. The NM and FM will never be the ground state due to the dangling bond of edge atoms. The energy difference between the FM and AFM1 antiferromagnetic order marked by black line in Fig. 1(e) decreases with increase of widths and almost vanishes for 14ZBPNRs, because nanoribbon widths exceed the decay length of the spin polarization. Similar result was also found in pristine ZGNRs.[43,44]

    To give a further insight of the magnetism of pristine ZBPNRs, the electronic structures of NM, FM and AFM1 of 16ZBPNRs are calculated in detail. Figure 2(c) shows that two bands from the edge P atoms across the Fermi level result in metallic character of NM state. For analyzing the contribution of edge atoms,the orbital band structure is calculated.As shown in Fig. 2(d), we can see that the states around the Fermi level are mainly contributed by the electrons of pzorbital due to the dangling bonds. In the FM state, the spin up and spin down channels are pushed away from the Fermi level to higher and lower energies, as shown in Fig.2(b). An indirect band gap is realized in the AFM1 state owing to the spilt ofαandβbands, in which the valence band top atΓpoint and the conduction band bottom at theXpoint,as displayed in Fig.2(a).

    Fig.2. The band structure of 16ZBPNRs with AFM1 state(a),F(xiàn)M state(b),NM state(c),and(d)the orbital band structure of NM state.

    The spin density (SD) and partial density of states(PDOS)of 16ZBPNRs with AFM2 state are calculated. In the AFM2 state,theαandβbands are split just above and below the Fermi level, forming a semiconductor shown in Fig.3(c).The SD shown in Fig. 3(a) reveals the spatial distribution of both dangling bond states and the tails of the spin-polarized p-orbital states. It is obvious that the magnetic moment at the edge arises from both dangling bonds as well as edge localized p-orbital states. As shown in Fig. 3(b), the magnetism is mainly contributed by the edge atoms with 0.25μBand-0.25μB, respectively, resulting in a total absolute magnetic moment of 1μB, while the contribution of its adjacent atoms to the local magnetic moments are small with 0.009μBand 0.005μBin a unit cell,respectively.

    For analyzing the effect of electric field on magnetism of ZBPNRs, the electronic structure and magnetic properties of 8ZBPNRs with AFM1 state under electric field are calculated in detail. Table 1 shows that the total magnetic moment increased under the electric field due to the split of degeneracy of magnetic moment between opposite edge atoms, resulting the ferromagnetism of ZBPNRs, while the ferromagnetism disappears until the electric field increases to 4 V/nm. Figures 4(a)–4(c)indicate that the antiferromagnetic degeneracy is split by the out-of-plane electric field perpendicular to the ZBPNRs. As spin splitting energy increases with strength of electric field,the half-metallic ZBPNRs with about 0.2 eV half-metallic gap is achieved under the electric field with 3 V/nm. To further understand the atomic contribution to spin polarization, the PDOS under out-of-plane electric field with 3 V/nm are also calculated. Figure 4(d) shows that the edge atoms contribute significantly to the spin polarization, leading to the realization of half-metal with net spin down magnetic moment.

    Fig.3. The SD(a),the projection of SD on the upper layer(b)(red and blue represent spin up and spin down,respectively),(c)the PDOS of 16ZBPNRs with AFM2 state. The edge atoms are represented as No. 1, 4, 17 and 20,respectively.

    Fig. 4. The band structure of AFM1 state under electric field with 2 V/nm (a), 2.5 V/nm (b) and 3 V/nm (c), respectively. (d) The PDOS of edge atoms under the electric field with 3 V/nm, (e) the SD difference of 8ZBPNRs with AFM1 state under electric field ((ρup-ρdown)3 V/nm-(ρup-ρdown)0 V/nm), (f) the model under electric field. The red and green arrows indicate the spin direction.

    Table 1. Calculated magnetic moment under different electric field: magnetic moment of edge atoms((μ2(μB)),(μ10(μB)),(μ7(μB))and(μ15(μB))),the total magnetic moment of the system(μtot(μB)). Semiconductor and half-metallic structures are denoted as S-con and H-metal,respectively.

    The SD difference of 8ZBPNRs with AFM1 state between 3 V/nm and 0 V/nm is calculated.As shown in Fig.4(e),it is obvious that the spin-up charge density around No.2 and No. 10 decrease, while the spin-up charge density at No. 7 and No.15 atoms increase under the electric field. In order to probe the intrinsic mechanism,the magnetic moment are summarized in Table 1. We can see that when the electric field increase to 3 V/nm,the magnetic moments of No.2 and No.10 decrease from 0.25μBto 0.071μB, while this value of No. 7 and No. 15 reduce from-0.25μBto-0.105μB, resulting in net magnetic moment of about-0.07μBand the realization of half-metal. From Fig. 4(f), we come to a conclusion that the staggered potential applied by out-of-plane electric field are different for the opposite edges owing to the different horizontal plane,inducing the split of spin degeneracy as well as achieving of half-metal.

    The ZBPNRs with intra-edge ferromagnetic state and inter-edge antiferromagnetic order becomes half-metal under the action of out-of-plane electric field. This method is more advantageous in contrast to other complicated requirements such as select modification,transition metal doping,magnetic field, semihydrogenations and nitrogenations. In addition, in comparison with gapless graphene as well as TMS with small carrier mobility,the spintronic devices based on phosphorene have the advantage of high carrier mobility and high on/off ratio.The realization of half-metal based on phosphorene,which is independent on macroscopic ferromagnetism and selective doping,may expand the research scope of spintronic devices.

    4. Conclusions

    In conclusion, we have investigated the intrinsic electronic structure and magnetic properties of the ZBPNRs. We found that the antiferromagnetic state with intra-edge ferromagnetic and inter-edge antiferromagnetic is the ground state for the narrow widths and the half-metallic phosphorene is achieved by applying the out-of-plane electric field other than magnetic metal doping, defects, magnetic field and selective hydrogenation. Our findings may propose a new way to construct the nanoscale spintronic devices based on black phosphorene.

    Acknowledgment

    This work is supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,China(Grant No.21A140022).

    猜你喜歡
    王路小芳歐陽
    Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
    看有福的人做事,自己也能分得一些運(yùn)氣
    意林彩版(2022年1期)2022-05-03 10:25:07
    “1+X”證書制度下課證融通路徑實(shí)踐探索研究
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    基于微課的翻轉(zhuǎn)課堂教學(xué)模式應(yīng)用設(shè)計(jì)研究
    我家的健忘老媽
    求婚
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    求 婚
    安慰
    国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 国产高清有码在线观看视频| 久久精品国产99精品国产亚洲性色| 亚洲av中文字字幕乱码综合| 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 亚洲欧美一区二区三区黑人| 午夜激情欧美在线| 91老司机精品| 久久精品91蜜桃| 欧美av亚洲av综合av国产av| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 久久草成人影院| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 在线视频色国产色| 亚洲精品中文字幕一二三四区| aaaaa片日本免费| 美女被艹到高潮喷水动态| 日韩中文字幕欧美一区二区| 少妇丰满av| 一个人免费在线观看的高清视频| 男人和女人高潮做爰伦理| 亚洲精品乱码久久久v下载方式 | 99久久99久久久精品蜜桃| 一区二区三区高清视频在线| 亚洲国产欧洲综合997久久,| 男插女下体视频免费在线播放| 亚洲第一电影网av| 亚洲中文字幕日韩| 毛片女人毛片| 国产亚洲欧美98| 中文在线观看免费www的网站| 啦啦啦观看免费观看视频高清| 久久精品亚洲精品国产色婷小说| 国产亚洲精品av在线| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一小说| 日韩有码中文字幕| 美女高潮的动态| 脱女人内裤的视频| 国产精品99久久久久久久久| 国产亚洲精品久久久久久毛片| 精品久久久久久,| 亚洲熟妇中文字幕五十中出| 亚洲国产欧美一区二区综合| 两人在一起打扑克的视频| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 嫩草影视91久久| 美女黄网站色视频| 99在线视频只有这里精品首页| 91麻豆av在线| 韩国av一区二区三区四区| 国产视频一区二区在线看| 国产三级中文精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产精品久久久不卡| 色精品久久人妻99蜜桃| 18禁裸乳无遮挡免费网站照片| 欧美乱妇无乱码| 在线免费观看不下载黄p国产 | 日韩欧美在线二视频| 亚洲欧美日韩高清在线视频| 欧美日韩国产亚洲二区| 国产精品亚洲一级av第二区| 婷婷精品国产亚洲av在线| 国产精品免费一区二区三区在线| 国产精品女同一区二区软件 | 蜜桃久久精品国产亚洲av| 不卡av一区二区三区| 在线视频色国产色| 一边摸一边抽搐一进一小说| 久久久精品大字幕| 1000部很黄的大片| 国产精品av久久久久免费| 两人在一起打扑克的视频| 欧美日韩国产亚洲二区| 国产伦精品一区二区三区视频9 | 女警被强在线播放| 无限看片的www在线观看| 神马国产精品三级电影在线观看| av在线天堂中文字幕| 成年免费大片在线观看| 黄色日韩在线| 变态另类丝袜制服| 成人鲁丝片一二三区免费| 久久精品亚洲精品国产色婷小说| 男人舔女人下体高潮全视频| 久久精品91无色码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 亚洲,欧美精品.| tocl精华| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品吃奶| 午夜精品一区二区三区免费看| 999精品在线视频| 亚洲精品粉嫩美女一区| 狂野欧美激情性xxxx| 亚洲国产精品合色在线| av欧美777| 国产成人精品无人区| 亚洲国产精品久久男人天堂| 全区人妻精品视频| 国产精品爽爽va在线观看网站| av片东京热男人的天堂| 两性午夜刺激爽爽歪歪视频在线观看| 热99在线观看视频| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 在线视频色国产色| 一本久久中文字幕| netflix在线观看网站| 亚洲自拍偷在线| 两个人视频免费观看高清| 国产精品 欧美亚洲| 99视频精品全部免费 在线 | 欧美精品啪啪一区二区三区| 午夜福利欧美成人| 精品欧美国产一区二区三| 中文字幕av在线有码专区| 男女午夜视频在线观看| 欧美zozozo另类| 成人18禁在线播放| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| 国产精品一区二区精品视频观看| 十八禁网站免费在线| 午夜福利视频1000在线观看| 中文字幕av在线有码专区| 国产成人系列免费观看| 精品久久久久久久末码| 成人精品一区二区免费| 亚洲国产看品久久| 丝袜人妻中文字幕| 中文字幕av在线有码专区| 欧美av亚洲av综合av国产av| www.www免费av| 脱女人内裤的视频| 村上凉子中文字幕在线| 国产精华一区二区三区| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 久久久国产成人免费| 91九色精品人成在线观看| 亚洲片人在线观看| 欧美日韩福利视频一区二区| 国内精品一区二区在线观看| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 又黄又爽又免费观看的视频| 天堂动漫精品| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲av高清不卡| 琪琪午夜伦伦电影理论片6080| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | av女优亚洲男人天堂 | 亚洲五月天丁香| 淫妇啪啪啪对白视频| 国产精品影院久久| 99国产精品一区二区蜜桃av| 两性夫妻黄色片| 久久中文看片网| 90打野战视频偷拍视频| 午夜福利在线观看吧| 欧美3d第一页| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 国产精品免费一区二区三区在线| 日本 欧美在线| 色噜噜av男人的天堂激情| 搡老妇女老女人老熟妇| e午夜精品久久久久久久| 啦啦啦韩国在线观看视频| 身体一侧抽搐| 国产成人福利小说| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 男人舔奶头视频| 叶爱在线成人免费视频播放| 久久热在线av| 国产又色又爽无遮挡免费看| 亚洲国产色片| 国语自产精品视频在线第100页| 久久精品影院6| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 视频区欧美日本亚洲| 欧美另类亚洲清纯唯美| 国产高潮美女av| 搡老妇女老女人老熟妇| 亚洲av中文字字幕乱码综合| 在线永久观看黄色视频| 美女高潮的动态| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放| 国内精品久久久久精免费| 人人妻人人澡欧美一区二区| 国产伦人伦偷精品视频| 国产精华一区二区三区| 19禁男女啪啪无遮挡网站| 午夜福利在线观看吧| 黄色丝袜av网址大全| 变态另类成人亚洲欧美熟女| 免费av毛片视频| 久久亚洲真实| 成人欧美大片| 一级黄色大片毛片| 香蕉av资源在线| 99在线视频只有这里精品首页| 日韩欧美在线乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| xxx96com| 大型黄色视频在线免费观看| 亚洲18禁久久av| 一本一本综合久久| 免费在线观看日本一区| 此物有八面人人有两片| 综合色av麻豆| 婷婷丁香在线五月| 亚洲 欧美 日韩 在线 免费| 变态另类丝袜制服| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 午夜a级毛片| 久久久久国内视频| svipshipincom国产片| 亚洲中文字幕日韩| 国产午夜精品久久久久久| 首页视频小说图片口味搜索| 天天一区二区日本电影三级| 久久天堂一区二区三区四区| 成人av在线播放网站| 国产亚洲精品综合一区在线观看| 丁香欧美五月| 成人无遮挡网站| 麻豆一二三区av精品| av国产免费在线观看| 禁无遮挡网站| 无限看片的www在线观看| 99热只有精品国产| 欧美丝袜亚洲另类 | 久久精品人妻少妇| 久久亚洲真实| 观看免费一级毛片| 亚洲美女黄片视频| 日韩高清综合在线| 天堂av国产一区二区熟女人妻| 国产一区在线观看成人免费| 后天国语完整版免费观看| 亚洲专区字幕在线| 久久中文看片网| 桃色一区二区三区在线观看| 国产视频一区二区在线看| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 亚洲成人免费电影在线观看| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 精品国产超薄肉色丝袜足j| 黄色视频,在线免费观看| 国产综合懂色| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 亚洲国产日韩欧美精品在线观看 | 精品国产乱码久久久久久男人| 黑人欧美特级aaaaaa片| 国产av在哪里看| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 久久久色成人| 国产伦在线观看视频一区| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 韩国av一区二区三区四区| 99久久精品热视频| 一进一出抽搐动态| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 首页视频小说图片口味搜索| 国产亚洲精品久久久久久毛片| 亚洲国产欧美人成| 精品久久久久久成人av| 999久久久精品免费观看国产| 欧美日韩中文字幕国产精品一区二区三区| 又爽又黄无遮挡网站| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 成人永久免费在线观看视频| 午夜福利欧美成人| 这个男人来自地球电影免费观看| 亚洲精品456在线播放app | 精品久久久久久久末码| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 国产不卡一卡二| www.自偷自拍.com| 国产成人系列免费观看| 日本免费a在线| 精品久久蜜臀av无| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 国产视频内射| 成人高潮视频无遮挡免费网站| 午夜免费观看网址| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 日韩欧美三级三区| 亚洲人成伊人成综合网2020| 手机成人av网站| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 成熟少妇高潮喷水视频| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 757午夜福利合集在线观看| av在线天堂中文字幕| 少妇的逼水好多| 长腿黑丝高跟| 丁香六月欧美| 九九热线精品视视频播放| 日日夜夜操网爽| 亚洲av成人av| 中文字幕久久专区| 久久香蕉国产精品| 中文字幕高清在线视频| 欧美性猛交黑人性爽| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| www.999成人在线观看| 国产综合懂色| 亚洲18禁久久av| 国产高清三级在线| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 色综合站精品国产| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸| 波多野结衣巨乳人妻| 亚洲熟妇熟女久久| 中文字幕av在线有码专区| 久久精品综合一区二区三区| netflix在线观看网站| or卡值多少钱| 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 91九色精品人成在线观看| 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看| 99国产综合亚洲精品| 国产亚洲精品一区二区www| 天天添夜夜摸| 国产精品乱码一区二三区的特点| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区| 日韩欧美免费精品| 精品国内亚洲2022精品成人| 久久久久国产精品人妻aⅴ院| 九九在线视频观看精品| 亚洲国产欧美人成| 少妇的丰满在线观看| 一区二区三区激情视频| 国产精品女同一区二区软件 | 九色国产91popny在线| 亚洲美女黄片视频| 香蕉国产在线看| 欧美精品啪啪一区二区三区| 色综合站精品国产| 成人18禁在线播放| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 色av中文字幕| 一区二区三区高清视频在线| 麻豆av在线久日| 麻豆一二三区av精品| 国产精品香港三级国产av潘金莲| 一本一本综合久久| 亚洲成av人片在线播放无| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人巨大hd| 国产亚洲精品av在线| 亚洲18禁久久av| 午夜成年电影在线免费观看| 男人舔奶头视频| 午夜免费激情av| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 色噜噜av男人的天堂激情| 精品无人区乱码1区二区| 欧美日韩黄片免| 中亚洲国语对白在线视频| 手机成人av网站| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 不卡一级毛片| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| 国产成人系列免费观看| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 天堂av国产一区二区熟女人妻| 1024香蕉在线观看| 成人三级做爰电影| 免费看a级黄色片| 国产美女午夜福利| 1000部很黄的大片| 免费看十八禁软件| 超碰成人久久| 日韩三级视频一区二区三区| 国产av一区在线观看免费| 国产成人系列免费观看| 亚洲欧美日韩高清专用| 757午夜福利合集在线观看| 国产午夜精品久久久久久| 午夜久久久久精精品| 国产一区在线观看成人免费| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 嫩草影院精品99| 午夜久久久久精精品| av欧美777| 久久久久九九精品影院| 日本三级黄在线观看| 国产精品影院久久| 欧美黑人巨大hd| 精品国产乱子伦一区二区三区| av欧美777| 久久久久性生活片| 黄色 视频免费看| 一边摸一边抽搐一进一小说| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆 | 国产在线精品亚洲第一网站| 综合色av麻豆| 色老头精品视频在线观看| 丝袜人妻中文字幕| 日韩人妻高清精品专区| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 亚洲av第一区精品v没综合| 日本成人三级电影网站| 国产成人aa在线观看| 亚洲美女黄片视频| 精品久久久久久久久久久久久| АⅤ资源中文在线天堂| 国产免费男女视频| 亚洲精品久久国产高清桃花| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 手机成人av网站| 国产精品av久久久久免费| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 亚洲国产看品久久| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 狂野欧美激情性xxxx| 此物有八面人人有两片| 国产麻豆成人av免费视频| 久久久久久人人人人人| 一级作爱视频免费观看| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 激情在线观看视频在线高清| 俄罗斯特黄特色一大片| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 精品久久久久久久久久免费视频| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 非洲黑人性xxxx精品又粗又长| 男女下面进入的视频免费午夜| 国内精品久久久久精免费| 精品国产乱码久久久久久男人| 精品不卡国产一区二区三区| 免费在线观看亚洲国产| 色综合亚洲欧美另类图片| 99国产精品99久久久久| 亚洲国产欧美一区二区综合| 18禁观看日本| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 亚洲va日本ⅴa欧美va伊人久久| 免费看十八禁软件| 久久久久亚洲av毛片大全| 久久伊人香网站| 久久精品综合一区二区三区| 老司机在亚洲福利影院| 18禁黄网站禁片午夜丰满| 巨乳人妻的诱惑在线观看| xxx96com| 黄频高清免费视频| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 国产三级在线视频| 成年免费大片在线观看| 国产乱人视频| 最近在线观看免费完整版| 亚洲一区二区三区色噜噜| 一本一本综合久久| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 2021天堂中文幕一二区在线观| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| xxxwww97欧美| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻一区二区三区视频av | 欧美成人一区二区免费高清观看 | 最近最新免费中文字幕在线| 757午夜福利合集在线观看| 久久中文字幕一级| netflix在线观看网站| 免费观看人在逋| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 男人的好看免费观看在线视频| 日本黄大片高清| 一级作爱视频免费观看| 人人妻,人人澡人人爽秒播| www国产在线视频色| 国内揄拍国产精品人妻在线| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久久黄片| 国产精品电影一区二区三区| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 日本成人三级电影网站| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 美女高潮的动态| 国产高清视频在线观看网站| 国产精品国产高清国产av| 18禁黄网站禁片午夜丰满| 他把我摸到了高潮在线观看| 成人永久免费在线观看视频| 中国美女看黄片| 999精品在线视频| 精品一区二区三区四区五区乱码| 又粗又爽又猛毛片免费看| 99久久精品国产亚洲精品| 亚洲国产精品999在线| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 麻豆一二三区av精品| 性色av乱码一区二区三区2| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 高清在线国产一区| АⅤ资源中文在线天堂| 好看av亚洲va欧美ⅴa在| 国产精品 国内视频| 成人av一区二区三区在线看| 亚洲成a人片在线一区二区| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩高清在线视频| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| 麻豆av在线久日| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器 | 亚洲乱码一区二区免费版| www.精华液| 99精品欧美一区二区三区四区| 在线国产一区二区在线| 岛国在线免费视频观看| 一区二区三区激情视频| 午夜激情欧美在线| 国产一区二区在线观看日韩 |