• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    2015-11-21 07:27:31YqingLiHongleiBiNnGo

    Yqing Li,Honglei Bi,Nn Go,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    Yaqing Lia,Honglei Baib,c,Nan Gaoa,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    A R T I C L E I N F O

    Article history:

    Received 10 November 2014

    Accepted 29 December 2014

    Available online 16 February 2015

    D-shaped bluff body

    Open-loop flow control method was used to affect the development of a turbulent wake behind a D-shaped bluff body.Loud speakers were embedded inside the bluff body to produce two zero-net-massflux jets through 2 mm-wide span-wise slots located along the upper and lower edges on the rear wall. The drag forces for different actuation amplitudes(Cμ,the ratio between the momentum of the actuating jets and the moment deficit caused by the bluff body)and frequencies(StA)were examined.The effects of the phase difference in the two jets(0 andπ)were also studied.It was found that when Cμwas 0.1%,a drag reduction up to 5%was achieved when the velocities of the two jets varied in phase at a frequency of StA=0.16.When the velocities of the two jets variedπout of phase,significant drag increase was observed.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Flow separation over a bluff body can be found in many applications.Effectively controlling the development of the wake structures can reduce the form drag associated with the flow separations.Zero-net-mass-flux jet(or synthetic jet)actuator was widely used in the active control of separated flows.Compared with the passive control methods such as vortex generators,the active control methods have higher efficiency and better robustness.The periodic perturbations of the flow near the separation region promote the development of the large scale structures and enhance the momentumtransportacross the shearlayer.The pressure on the solid surface,the trajectory of the shear layer and the size of the re-circulation region are thus changed[1-5].Multiple synthetic jet actuators was also used to control the separated flow.Bigger et al.[6]used an array of 6 zero-net-mass-flux jets distributed azimuthally around the edge of a disk to control the wake.They found the size of the separation region could be reduced as much as 10%when the actions of the actuators were in phase and the momentum ratio Cμwas 0.4%.As much as 15%reduction in the separation length was found when the helical actuation was used where the phase difference between the adjacent actuators wasπ/3.Vukasinovic et al.[7]used an array of 11 actuators located azimuthally on a halfcircle around a hemisphere.They found that the separation length was reduced significantly when the actuation frequency was about10 times ofthe naturalshedding frequency(StA=17.4-30.5),and the momentum ratio of the jets was 0.75%-2.3%.Recently,Pastoor et al.[8]used a pair of synthetic jet actuators to force the wake behind a D-shaped body located in the center of a wind tunnel.The actuator issued oscillating jet flow from the upper and the lower edges of the rear surface and the velocity variations ofthe two actuators were in phase.They found the drag was reduced when the actuation frequency was smaller than the natural shedding frequency(0.1<StA<0.2)but increased when the actuation frequency was close to the natural shedding frequency of the turbulent wake(StA=Sto=0.24).When the actuation frequency was StA=0.15 and Cμwas larger than 0.5%,the drag was reduced by approximately 15%for the flow with a Reynolds number of 47000.

    Pastoor et al.[8]did notexamined closely how the drag changed with the actuation frequency and amplitude for smaller actuation amplitudes,particularly for momentum ratio(Cμ)less than 0.2%. The open loop control was conducted in the present investigation using a similar D-shaped body with momentum ratio less than 0.2% where Pastoor et al.[8]only studied a few combinations of actuation amplitude and actuation frequency.Smoke-wire visualization technique was also used to study the effect of actuation on the development of the large scale flow structures.The experimental methodologies will be presented in the next section,followed by the results and the summaries.

    Fig.1.Schematics of the test section in the wind tunnel.

    Fig.2.Schematics of the D-shaped body.

    The D-shaped body was supported by two aluminum square bars located at 123.5 mm downstream of the leading edge(or x=-165 mm)and z=±135 mm.The bars also served as force transducers with strain gauges glued to the center of the bars.The bars were drilled with equally spaced 2.4 mm holes at the locations above and below the strain gauges to minimize the drag caused by the supporting bars.Signals from the strain gauges were amplified using an amplifier with a gain of 100.

    There are two columns(z/H=±0.44)and 4 rows(y/H= ±0.08,±0.24)of 1 mm diameter pressure taps were mounted on the rear wall of the bluff body.Each pressure tap was connected to a CYH-130 pressure transducer using a 0.8 mm inner diameter flexible tubing to measure the mean static pressure on the rear wall.The pressure transducer was calibrated using a YJB-2500 water manometer with a resolution of 0.1 Pa.

    Smoke-wire visualization technique was used to study the evolution of the flow structures.A 304 stainless steel wire with a diameter of 0.1 mm was stretched vertically at 5 mm downstream ofthe rear surface of the bluffbody along in the centralplane ofthe tunnel(x/H=0.08,z=0).The metal wire was connected to two 2200μF capacitors using aluminum electrodes and heavy gauge wires.The capacitors discharged high current electricity through the metal wire and vaporized liquid droplets attached to the wire producing smoke filaments.A short amount of time after the start of discharging,a triggering signal was sent to the camera and the flash to record the streak-lines.The actions were controlled by a timing circuit with an Atmega16 micro-controller.The discharge voltage of the capacitor was set to 75 V(corresponding to a peak current of approximately 10 A)and the time delay between the discharging and the shutter triggering signal was 10 ms.Mixture of paraffin and diesel was applied to the wire using a brush.A Canon 5D Mk-II camera with a Yongnu 560II flash was used to record the image.The flash duration was approximately 0.12 ms,measured using an optical diode.The far side wall of the wind tunnel was painted with candle-soot paint to increase the quality of the pictures.

    Measurements were performed with a free-stream velocity(U∞)of 9.2 m/s,the blockage ratio of the test section was 21%,the incoming velocity was adjusted to U∞,c=11.7 m/s using a method given in Ref.[8].The Reynolds number and the Strouhal number of the actuation frequency are given by ReH=U∞,cH/ν and StA=fAH/U∞,c,respectively.All the measurements and visualizations were performed with Re=47000.Here in this paper,x,y,z are the stream-wise,vertical and span-wise coordinates,respectively.

    Measurements were first performed for the un-actuated baseline case.The boundary layer thickness measured near the rear wall(x/H=0.01,z/H=0)using a single hot-wire probe was 10.8 mm(δ/H=0.171),similar to Ref.[8].The drag coefficient(CD0)was found to be 0.57 and the averaged static wall pressure coefficient(CP0)was-0.51.Measurements of CP0agreed with the measurements in[8-10].Spectral analysis of the force signals indicated that the characteristic frequency of the un-actuated wake(Sto=foH/U∞,c)was approximately 0.24.

    The drag coefficient(CD)and the static pressure coefficients(CP)on the rear wall of the bluff body for non-dimensional actuating frequencies(StA)less than 0.33 and a fixed actuation amplitude(Cμ=0.1%)are shown in Fig.3.The drag and the static pressure coefficients were normalized using the results for the un-actuated case.The static pressure on the rear wall increased and the drag force decreased when StAwas less than 0.22 with the maximum drag reduction of 5%occurred when StAwas approximately 0.16,approximately 2/3 of the natural shedding frequency.The static pressure on the rear wallbecame less than the pressure for the natural flow when StAwas larger than 0.22,while the drag increased at the same time.The largest increase in drag was approximately 18%,occurred when the actuation frequency was close to the natural shedding frequency StA=0.24.

    The drag coefficient and the static pressure coefficients on the rear wall for a fixed actuation frequency StAof 0.16 and differentactuation amplitudes(Cμ)less than 0.2%are shown in Fig.4,the results by Pastoor et al.[8]for a similar flow are also shown for comparisons.Drag was increased when Cμwas less than 0.04%,particularly at Cμ=0.01%where the drag increased for nearly 8%. The mechanism causing the drag to increase at small Cμwas not known and needs further investigations.Drag was reduced when Cμwas more than 0.06%,the drag reduction was more than those found by Pastoor et al.[8].

    When the wake was forced using anti-phase actuation(the velocities of the two actuators varied 180°out of phase,φ=π),the drag force became larger than that for the natural flow for any actuation frequency examined here,as shown in Fig.5.The largest drag increase was approximately 25%,occurred at StA≈0.22,where the static pressure on the rear wall decreased for 30%-40%.

    The visualization of the baseline(the un-actuated)flow and the flow with in-phase actuation(φ=0)at a frequency of StAof 0.16 are shown in Fig.6(a)and 6(b),respectively.There was a separation region emerged downstream of the D-shaped body in the baseline flow.Typical von-Karman vortices with alternating rotating directions formed downstream ofthe bluffbody and grew in size asthey evolved downstream.The in-phase actuation produced a symmetric pair of countering rotating structures downstream of trailing edge of the bluff body.The vortex pair then traveled downstream with a similar velocity.The alternating flow structures found in the natural flow were not visible in the wake under in-phase actuation.The symmetric arrangement of the vortex street suppressed the growth of the vortices.The wake in the flow under in-phase actuation was smaller in the vertical direction than the natural flow and this caused the drag reduction in this flow.When the forcing frequency was larger than 2/3 of the natural shedding frequency,the symmetric arrangement of the vortex street became unstable due to the close distance between neighboring vortices,the wake soon transitioned to the asymmetric von-Karman vortex street.

    The wake behind a D-shaped body with a Reynolds number of 47000 was forced using a pair of zero-net-mass-flux jets directed at a 45°to the free-stream in the upper and lower corners on the trailing surface ofa D-shaped body.Different actuation frequencies(StA=0-0.35)and amplitudes(Cμ=0%-0.2%)were examined. Drag reduction was found when the actions of the actuators were in-phase at a momentum ratio Cμof 0.1%and StAless than 0.22.A maximum 5%drag reduction was found when StAwas 0.16.Smoke wire visualizations revealed that the drag reduction was caused by the suppression of the vortex shedding by the paired counterrotating structures generated by the in-phase actuation.When the actuation frequency was increased to StA=0.22,the drag became more than that of the natural flow.The results also showed that when the actuators were anti-phase,the drag increased for all the actuation frequencies.

    This work was supported by the National Basic Research Program(2014CB744100),State Key Laboratory of Aerodynamics(SKLA20130102),and Dalian University of Technology(DUT14LK07).

    Fig.3.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.4.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with StA=0.16 and different actuation strength(Cμ).The drag(◆)and the averaged static pressure(◇)on the rear wall by Pastoor et al.[8]were also shown for comparisons.

    Fig.5.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for anti-phase actuation(φ=π)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.6.Smoke-wire visualizations of(a)the un-actuated flowand(b)the flowunder actuation of Cμ=0.1%,StA=0.16 andφ=0 behind a D-shaped bluff body for a Reynolds number of 47000.

    [1]H.Choi,W.P.Jeon,J.Kim,Control of flow over a bluff body,Annu.Rev.Fluid Mech.40(2008)113-139.

    [2]L.N.Cattafesta,M.Sheplak,Actuators for active flow control,Annu.Rev.Fluid Mech.43(2011)247-272.

    [3]M.Amitay,A.Glezer,Aerodynamic flow control using synthetic jet actuators,in:P.Koumoutsakos,I.Mezic(Eds.),Control of Fluid Flow,Springer,Berlin,2006,pp.45-73.

    [4]L.H.Feng,J.J.Wang,Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point,J.Fluid Mech.662(2010)232-259.

    [5]P.F.Zhang,J.J.Wang,L.H.Feng,Review of zero-net-mass-flux jet and its application in separation flow control,Sci.China Ser.E 51(2008)1315-1344.

    [6]R.P.Bigger,H.Higuchi,J.W.Hall,Open-loop control of disk wakes,AIAA J.47(2009)1186-1194.

    [7]B.Vukasinovic,D.Brzozowski,A.Glezer,F(xiàn)luidic control of separation over a hemispherical turret,AIAA J.47(2009)2212-2222.

    [8]M.Pastoor,L.Henning,B.R.Noack,K.Rudibert,T.Gilead,F(xiàn)eedback shear layer control for bluff body drag reduction,J.Fluid Mech.608(2008)161-196.

    [9]P.W.Bearman,Investigation ofthe flowbehind a two-dimensionalmodelwith a blunt trailing edge and fitted with splitter plates,J.Fluid Mech.21(1965)241-256.

    [10]H.Park,D.Lee,W.Jeon,S.Hahn,J.Kim,J.Kim,J.Choi,Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device,J.Fluid Mech.563(2006)389-414.

    ?Corresponding author.

    E-mail address:gaonan@dlut.edu.cn(N.Gao).

    Open-loop flow control

    Synthetic jet

    *This article belongs to the Fluid Mechanics

    老司机午夜十八禁免费视频| 中国国产av一级| 国产成人一区二区三区免费视频网站| 亚洲精品乱久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久午夜乱码| svipshipincom国产片| 黄色怎么调成土黄色| 91精品伊人久久大香线蕉| 99久久99久久久精品蜜桃| 一本大道久久a久久精品| 一区二区三区激情视频| 久久国产精品男人的天堂亚洲| 亚洲久久久国产精品| 欧美激情高清一区二区三区| 国产一区二区三区av在线| 少妇的丰满在线观看| www.精华液| 99国产精品99久久久久| 久久影院123| 欧美精品av麻豆av| 天天躁日日躁夜夜躁夜夜| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 国产91精品成人一区二区三区 | 1024香蕉在线观看| 51午夜福利影视在线观看| 亚洲美女黄色视频免费看| 亚洲熟女精品中文字幕| 男女高潮啪啪啪动态图| 热99国产精品久久久久久7| 亚洲精品国产区一区二| 两个人免费观看高清视频| 久久久国产精品麻豆| 亚洲av国产av综合av卡| 欧美另类亚洲清纯唯美| 美国免费a级毛片| 欧美成人午夜精品| 久久国产精品男人的天堂亚洲| 久久久久精品人妻al黑| 久久久久久久久久久久大奶| 777米奇影视久久| 我的亚洲天堂| 麻豆乱淫一区二区| 国产精品麻豆人妻色哟哟久久| 女人久久www免费人成看片| 国产精品 国内视频| 欧美xxⅹ黑人| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 一级,二级,三级黄色视频| 美女高潮到喷水免费观看| 国产91精品成人一区二区三区 | 国产老妇伦熟女老妇高清| 又紧又爽又黄一区二区| av天堂久久9| 制服人妻中文乱码| 法律面前人人平等表现在哪些方面 | 日本91视频免费播放| 在线观看一区二区三区激情| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区三区| 免费av中文字幕在线| 搡老乐熟女国产| 女人爽到高潮嗷嗷叫在线视频| 精品国产超薄肉色丝袜足j| 无遮挡黄片免费观看| 亚洲男人天堂网一区| 国产一区二区三区在线臀色熟女 | 男女边摸边吃奶| 色精品久久人妻99蜜桃| 亚洲成国产人片在线观看| 婷婷丁香在线五月| 日日爽夜夜爽网站| 欧美 日韩 精品 国产| av欧美777| 91成年电影在线观看| 中国美女看黄片| 少妇人妻久久综合中文| 久久久久久亚洲精品国产蜜桃av| 午夜久久久在线观看| 免费久久久久久久精品成人欧美视频| e午夜精品久久久久久久| 可以免费在线观看a视频的电影网站| 久久这里只有精品19| 伦理电影免费视频| 最近最新中文字幕大全免费视频| 久久精品成人免费网站| 国产av一区二区精品久久| 男女免费视频国产| 精品一区二区三区四区五区乱码| 我要看黄色一级片免费的| 在线十欧美十亚洲十日本专区| 纯流量卡能插随身wifi吗| 好男人电影高清在线观看| 女人被躁到高潮嗷嗷叫费观| 国产亚洲av片在线观看秒播厂| 精品一区二区三区av网在线观看 | 午夜成年电影在线免费观看| 精品一区二区三区av网在线观看 | 桃花免费在线播放| 欧美性长视频在线观看| 久久久精品区二区三区| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索| 亚洲色图综合在线观看| 精品一区二区三区av网在线观看 | 一区二区av电影网| 亚洲国产欧美一区二区综合| 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 大香蕉久久成人网| 99久久精品国产亚洲精品| 亚洲精品国产一区二区精华液| 亚洲免费av在线视频| 国产av国产精品国产| 亚洲va日本ⅴa欧美va伊人久久 | 老司机在亚洲福利影院| 久久精品国产亚洲av香蕉五月 | 一级片'在线观看视频| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 1024视频免费在线观看| 人人妻人人澡人人看| 欧美另类亚洲清纯唯美| 精品一区在线观看国产| 久久久久网色| 欧美+亚洲+日韩+国产| 亚洲国产日韩一区二区| 精品一区二区三区四区五区乱码| 欧美日韩av久久| 久久狼人影院| 99香蕉大伊视频| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 中文欧美无线码| 窝窝影院91人妻| 国产精品国产三级国产专区5o| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 成人影院久久| 老熟女久久久| 亚洲黑人精品在线| 老司机午夜福利在线观看视频 | 国产精品 欧美亚洲| 亚洲精华国产精华精| 亚洲人成电影观看| 亚洲人成电影免费在线| 久久久国产一区二区| 欧美精品av麻豆av| 日日爽夜夜爽网站| 欧美激情久久久久久爽电影 | 亚洲 国产 在线| 精品亚洲成国产av| 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频精品一区| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| av有码第一页| 欧美精品一区二区免费开放| 天堂8中文在线网| 美国免费a级毛片| 蜜桃国产av成人99| 国产一卡二卡三卡精品| 青草久久国产| 一级毛片女人18水好多| 欧美亚洲日本最大视频资源| 欧美在线黄色| 美女大奶头黄色视频| 99热国产这里只有精品6| 成人影院久久| 亚洲国产精品成人久久小说| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 午夜成年电影在线免费观看| 999精品在线视频| 一区福利在线观看| 国产一区二区三区在线臀色熟女 | 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀| 国产成人影院久久av| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡 | 欧美97在线视频| 成年美女黄网站色视频大全免费| 夫妻午夜视频| 一二三四在线观看免费中文在| kizo精华| 中文字幕人妻熟女乱码| av在线播放精品| 久久久久久久国产电影| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 亚洲成av片中文字幕在线观看| 人成视频在线观看免费观看| 国产片内射在线| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 一区在线观看完整版| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美在线精品| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲成国产人片在线观看| 啦啦啦中文免费视频观看日本| 亚洲熟女毛片儿| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| 国产成人a∨麻豆精品| 日韩欧美国产一区二区入口| 国产一区二区激情短视频 | 伊人久久大香线蕉亚洲五| 午夜福利在线免费观看网站| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 国产精品二区激情视频| 99精品久久久久人妻精品| 大片免费播放器 马上看| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看 | videosex国产| 欧美黄色淫秽网站| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 欧美亚洲 丝袜 人妻 在线| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 一本一本久久a久久精品综合妖精| 一级,二级,三级黄色视频| 日韩中文字幕视频在线看片| 久热爱精品视频在线9| 国产精品二区激情视频| 日本wwww免费看| 精品久久久精品久久久| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 青青草视频在线视频观看| 蜜桃国产av成人99| 十八禁网站网址无遮挡| 日本vs欧美在线观看视频| 欧美人与性动交α欧美软件| 亚洲成人国产一区在线观看| 午夜精品久久久久久毛片777| 国产一区二区 视频在线| 悠悠久久av| 黄色视频,在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久网色| 91精品三级在线观看| 久久香蕉激情| 99久久99久久久精品蜜桃| av在线老鸭窝| 国产黄色免费在线视频| 91精品伊人久久大香线蕉| 日韩欧美国产一区二区入口| 国产成人精品无人区| 午夜成年电影在线免费观看| 午夜视频精品福利| 国产精品二区激情视频| 美女高潮到喷水免费观看| 久久国产精品男人的天堂亚洲| 国产91精品成人一区二区三区 | 午夜福利在线免费观看网站| 亚洲精品美女久久av网站| 欧美成狂野欧美在线观看| 高清欧美精品videossex| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 免费在线观看影片大全网站| av超薄肉色丝袜交足视频| 我的亚洲天堂| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 国产野战对白在线观看| 久久精品久久久久久噜噜老黄| 欧美日韩精品网址| 久久中文字幕一级| 91精品伊人久久大香线蕉| 91麻豆精品激情在线观看国产 | 国产在线观看jvid| 99久久精品国产亚洲精品| 久久国产精品影院| 满18在线观看网站| 真人做人爱边吃奶动态| 国产在线视频一区二区| 男女国产视频网站| 成年动漫av网址| 免费观看a级毛片全部| 丝袜脚勾引网站| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看 | 91精品三级在线观看| 午夜久久久在线观看| av线在线观看网站| 精品国产乱码久久久久久小说| 国产视频一区二区在线看| 美女脱内裤让男人舔精品视频| 亚洲色图综合在线观看| 亚洲久久久国产精品| √禁漫天堂资源中文www| 精品亚洲成a人片在线观看| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 久久久国产欧美日韩av| 亚洲av男天堂| 老熟女久久久| 国产极品粉嫩免费观看在线| 亚洲国产成人一精品久久久| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 欧美精品一区二区大全| 免费日韩欧美在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜91福利影院| 亚洲国产日韩一区二区| 精品一区二区三区av网在线观看 | 女性生殖器流出的白浆| 窝窝影院91人妻| 人妻一区二区av| 亚洲精品国产一区二区精华液| av在线app专区| 成年人黄色毛片网站| 日韩 亚洲 欧美在线| 人妻久久中文字幕网| 飞空精品影院首页| 91国产中文字幕| 少妇 在线观看| 性色av乱码一区二区三区2| 中文字幕av电影在线播放| 91精品三级在线观看| 国产精品一区二区在线不卡| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 飞空精品影院首页| 日韩有码中文字幕| 三上悠亚av全集在线观看| 欧美精品一区二区免费开放| 亚洲精品在线美女| 亚洲精品自拍成人| 狂野欧美激情性bbbbbb| 久久久久国内视频| 久热爱精品视频在线9| 久久久久久久久久久久大奶| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区在线观看99| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 欧美黄色淫秽网站| 男人添女人高潮全过程视频| 在线av久久热| 极品少妇高潮喷水抽搐| 69av精品久久久久久 | 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 少妇人妻久久综合中文| 国产亚洲av片在线观看秒播厂| 老司机午夜十八禁免费视频| av在线app专区| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡| 大码成人一级视频| 日韩电影二区| 丰满人妻熟妇乱又伦精品不卡| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 美女中出高潮动态图| 久久久久视频综合| 在线观看免费视频网站a站| 成人国产av品久久久| 宅男免费午夜| 亚洲精品国产色婷婷电影| av欧美777| 国产精品欧美亚洲77777| 精品视频人人做人人爽| 一级片'在线观看视频| 久久国产精品男人的天堂亚洲| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆| 亚洲伊人色综图| 国产精品秋霞免费鲁丝片| 国产高清视频在线播放一区 | 男人添女人高潮全过程视频| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| av一本久久久久| 国产xxxxx性猛交| 夜夜夜夜夜久久久久| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 精品人妻一区二区三区麻豆| 日本wwww免费看| 国产亚洲精品第一综合不卡| 欧美一级毛片孕妇| 国产成人欧美| 性少妇av在线| 久久久国产欧美日韩av| 日本猛色少妇xxxxx猛交久久| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 久久久久久久久免费视频了| 亚洲国产欧美网| 欧美午夜高清在线| 精品久久久久久电影网| 淫妇啪啪啪对白视频 | 狠狠婷婷综合久久久久久88av| 久久热在线av| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 一二三四社区在线视频社区8| 一本—道久久a久久精品蜜桃钙片| av电影中文网址| 黄片小视频在线播放| 久久久精品94久久精品| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 成人手机av| 97精品久久久久久久久久精品| 欧美在线一区亚洲| 热re99久久国产66热| 99国产精品免费福利视频| 久久久久视频综合| 国产亚洲精品第一综合不卡| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 亚洲一区中文字幕在线| 中文字幕人妻丝袜制服| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 久久ye,这里只有精品| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 久热这里只有精品99| av网站在线播放免费| 国产精品久久久av美女十八| 日韩大片免费观看网站| 丁香六月天网| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 久久久国产成人免费| 亚洲熟女毛片儿| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 最黄视频免费看| 亚洲熟女毛片儿| 纵有疾风起免费观看全集完整版| 色老头精品视频在线观看| 久久人妻福利社区极品人妻图片| 99久久综合免费| 亚洲精品国产精品久久久不卡| 制服人妻中文乱码| 国产av一区二区精品久久| 99热网站在线观看| 亚洲熟女毛片儿| 亚洲人成电影观看| 国产老妇伦熟女老妇高清| 亚洲av日韩精品久久久久久密| 一区二区三区四区激情视频| 老熟妇仑乱视频hdxx| 久久久久久久久久久久大奶| av国产精品久久久久影院| 一区福利在线观看| 欧美日韩一级在线毛片| 超碰97精品在线观看| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 亚洲精品一二三| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 淫妇啪啪啪对白视频 | 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区久久| www.av在线官网国产| 午夜免费鲁丝| 99精品欧美一区二区三区四区| 国产激情久久老熟女| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 自线自在国产av| av网站在线播放免费| 国产精品二区激情视频| 一区二区三区乱码不卡18| 久久精品国产亚洲av高清一级| 黄色视频在线播放观看不卡| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网 | 精品少妇黑人巨大在线播放| 搡老熟女国产l中国老女人| 电影成人av| 在线亚洲精品国产二区图片欧美| 一本—道久久a久久精品蜜桃钙片| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 国产精品一二三区在线看| 最新的欧美精品一区二区| 免费在线观看影片大全网站| 国产成人一区二区三区免费视频网站| 男人舔女人的私密视频| 极品人妻少妇av视频| 欧美黑人精品巨大| 久久久久久久久免费视频了| 香蕉丝袜av| 午夜两性在线视频| 十分钟在线观看高清视频www| 亚洲第一青青草原| netflix在线观看网站| 亚洲精品日韩在线中文字幕| 亚洲精品国产av蜜桃| av又黄又爽大尺度在线免费看| 亚洲国产精品999| netflix在线观看网站| 国产黄色免费在线视频| 涩涩av久久男人的天堂| 欧美精品av麻豆av| 丝袜美腿诱惑在线| 国产亚洲一区二区精品| 十分钟在线观看高清视频www| 午夜福利乱码中文字幕| 国精品久久久久久国模美| 国产免费福利视频在线观看| 妹子高潮喷水视频| 桃花免费在线播放| avwww免费| 免费一级毛片在线播放高清视频 | 亚洲第一欧美日韩一区二区三区 | 日本精品一区二区三区蜜桃| 亚洲精品国产av成人精品| 亚洲一码二码三码区别大吗| 国产一级毛片在线| 首页视频小说图片口味搜索| 欧美黑人欧美精品刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久99久久久精品蜜桃| 日韩人妻精品一区2区三区| 嫩草影视91久久| 搡老乐熟女国产| 欧美激情高清一区二区三区| 欧美亚洲日本最大视频资源| 精品久久久久久电影网| av视频免费观看在线观看| 男男h啪啪无遮挡| 男女边摸边吃奶| 国产精品影院久久| 国产人伦9x9x在线观看| 精品国产一区二区三区久久久樱花| 下体分泌物呈黄色| 欧美日韩福利视频一区二区| 美女中出高潮动态图| 男男h啪啪无遮挡| 18在线观看网站| 一个人免费看片子| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| 好男人电影高清在线观看| 欧美精品av麻豆av| 性高湖久久久久久久久免费观看| 老司机深夜福利视频在线观看 | av又黄又爽大尺度在线免费看| 国产男女内射视频| 欧美日韩亚洲高清精品| 极品人妻少妇av视频| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频 | 精品久久久精品久久久| 老鸭窝网址在线观看| 少妇粗大呻吟视频| 亚洲国产欧美在线一区| 国产一卡二卡三卡精品| 久久久久久久精品精品| 五月开心婷婷网| 大片免费播放器 马上看| 90打野战视频偷拍视频| 一区二区三区乱码不卡18| 国产伦人伦偷精品视频| a 毛片基地| 视频在线观看一区二区三区| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 后天国语完整版免费观看| 午夜视频精品福利| 精品久久久久久电影网| 精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 国产男女超爽视频在线观看| 欧美激情久久久久久爽电影 |