• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    2014-07-19 11:17:08CuiHuZhoyiZengChunyngKongYutingCuiLinZhngLingcngCi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Cui-e Hu,Zho-yi Zeng?,Chun-yng Kong,Yu-ting Cui,Lin Zhng,Ling-cng Ci

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    Cui-e Hua,b,Zhao-yi Zenga,b?,Chun-yang Konga,Yu-ting Cuia,Lin Zhangb,Ling-cang Caib

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    We report a f i rst-principles calculation to investigate the structural instability of rutile TiO2. The high pressure structural parameters are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point,which indicates the structural instability.From the high pressure elastic constants,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state, thermal expansion coefficient,bulk modulus,and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pressure and temperature range.

    TiO2,Phonon dispersion,Thermodynamics,Density functional theory

    I.INTRODUCTION

    Titanium dioxide(TiO2)has been widely used due to its versatile physical and chemical properties,such as in photoactive devices and biomaterials,high efficiency solar cells,super-hard materials,pigment,catalyst support,and photocatalyst[1-4].TiO2crystallizes in several di ff erent forms:the rutile(space group P42/mn), anatase(I4/amd),brookite(Pbca),columbite(Pbcn), baddeleyite(P21/c),and cotunnite(Pnma)structures. The phase transitions of TiO2under pressure are of particular interest in Earth science,as these phases are an accessible analog of minerals in the Earth’s mantle. Its physical properties have been vigorously pursued [5-15].Montanari and Harrison[5]reported the infl uence of gradient corrections in density functional calculations,and they compared the local-density approximation(LDA)and two the generalized gradient approximation(GGA)results,including equilibrium structure, bulk modulus,and Γ-point phonons of bulk rutile TiO2. Recently,Mei et al.investigated the lattice dynamics and thermodynamics of six TiO2polymorphs[16]. Mikami et al.studied the atomic and electronic structures of anatase and rutile phases of TiO2[17].The pressure-induced phase transitions of TiO2were investigated by Wu et al.[7].The calculated electronic properties show that all fi ve polymorphs of TiO2they considered are semiconductors,and the lower conduction band is dominated by the 3d states of Ti that are sensitive to the coordination number of titanium.

    Rutile TiO2is the most common natural form of TiO2,and it is expected to undergo a sequence of phase transformations with increasing pressure.Rutile derives its name from the Latin rutilus,red,in reference to the deep red color observed in some specimens viewed by transmitted light.Rutile has the highest refractive indices of any known mineral and exhibits high dispersion.Its very high refractive index makes it an ideal white pigment and opacif i er.Furthermore,rutile is a strong absorber of ultraviolet(UV)light,and is therefore used in solar cell technology.The rutile TiO2has been extensively studied from different aspects[5, 17-19].

    The thermal equation of state(EOS)is a measurement of relationship between pressure,volume and temperature(P-V-T),which is a fundamental equation in many areas of basic and applied condensed-matter research.The pressure responses of the structural parameters and the phase transition induced by hydrostatic pressure in materials have been investigated extensively in the last decade[20],except the investigations on high pressure and high temperature.And we provide a systematic study of the thermal EOS of rutile TiO2.In this work,we focus on the structure instability and thermodynamics of rutile TiO2under high pressure and high temperature through plane-wave pseudopotential density functional theory(DFT)method.The high pressure structures,elastic constants,phonon dispersions and thermodynamics of TiO2are presented and analyzed.

    II.THEORETICAL METHOD

    The high pressure structures,elastic constants and lattice dynamics calculations are implemented through the Cambridge Serial Total Energy Package(CASTEP) scheme[21].The exchange and correlation potentials were treated within GGA of Perdew-Burke-Ernzerhof (PBE)[22].The calculations were conducted with 18×18×18 Γ-centered k meshs.The plane-wave energy cutof fwas 700 eV and the self-consistence convergence of the energy was set to 10-6eV/atom.For the elastic constants,they are calculated as the second derivatives of the internal energy with respect to the strain tensor. These elastic constants can be determined by computing the stress generated by applying a small strain to an optimized unit cell.In practice,the maximum strain amplitude is set from-0.003 to 0.003 and all forces on atoms are converged to less than 0.006 eV/?A.For the phonon dispersion calculations,the dynamical matrices are computed at 66 wave(q)vectors in the irreducible wedge of Brillouin zone.

    To obtain thermodynamic properties,we calculate the Helmholtz free energy F as follows

    where Estatic(V)is the energy of a static lattice at zero temperature T and volume V,Felec(V,T)is the thermal free energy arising from electronic excitations, and Fphon(V,T)is the phonon contribution.Both Estatic(V)and Felec(V,T)can be obtained from static fi rst-principles calculations directly.The phonon vibrational contribution Fphon(V,T)has been calculated in the quasi-harmonic approximation(QHA)

    where ?=(2π)3/V is the volume of the Brillouin zone, kBis the Boltzmann constant,~is the Plank constant divided by 2π,and ωqsis the phonon frequencies.

    III.RESULTS AND DISCUSSION

    A.Static structural properties

    For rutile TiO2,there are three independent structural parameters,i.e.the lattice paramerters a,c,and the cell-internal dimensionless parameter u,which denotes the position of the second atom along the c-axis. The calculated equilibrium lattice parameters are as follows:a=4.653?A,c=2.975?A,and u=0.305.Our results agree with the available experimental data[23,24]and other theoretical results[7,9,16,25,26].In comparison with the experimental data[23](a=4.587?A,c=2.954?A, and u=0.305),the present lattice parameters are overestimated slightly(about 1%).

    FIG.1 Static lattice parameters of TiO2under high pressure,together with the experimental data.

    The static equation of state of rutile TiO2are obtained by fitting the energy-volume(E-V)data to the fourth-order f i nite strain EOS[27].In Fig.1,we present the dependence of calculated normalized lattice parameters,including V/V0,a/a0,and c/c0(V0,a0,and c0are the zero pressure equilibrium lattice parameters)on pressure at zero temperature.It is seen that as pressure increases,the relative lattice parameters decrease linearly.Our results agree with the experimental data below 15 GPa[28-30].From Fig.1,we can also f i nd that the a-axis is much easier to compress than c-axis, which may be due to metal-metal repulsion parallel to c across the sharing doctahedral edge.As a consequence, the axial ratio c/a becomes larger under compression. For the internal parameter u,it shows a slight dependence on the pressure.By fitting the u-P data to a second-order polynomial,we have the following relations u=0.305-1.164×10-4P+1.867×10-6P2.As the pressure increases to 25 GPa,u only decreases 0.57%.

    We calculate the phonon dispersions of rutile TiO2at different pressures.As there are 6 atoms in a primitive cell,there should be 15 optical modes and 3 acoustic modes.Figure 2 shows the obtained high pressure phonon dispersion curves of rutile TiO2along several high symmetry directions in the Brillouin zone.From Fig.2,one can see that the phonon frequencies at zero pressure agree with the inelastic neutron scattering data [31].As pressure increases,most of the phonon frequencies increase,except the values around Γ point. As pressure increases,the softening of dispersions becomes more and more obvious.Under ultra compression(~20 GPa),the frequencies around Γ point soften to imaginary frequencies,indicating a structural instability.Actually,under this pressure,the rutile phase is mechanically instable.

    B.Elastic properties

    Elastic moduli are the material constants that connect stress with strain and are therefore crucial to engineer applications.They also determine the long wavelength vibrational modes,or sound waves,in a solid. We calculate the elastic constants of TiO2under highpressure(Table I).The theoretical polycrystalline elastic modulus can be determined from the independent elastic constants.

    FIG.2 The phonon dispersion curves of rutile TiO2under different pressure of 0,5,10,15,20,and 25 GPa,together with the experimental data at zero pressure(solid spheres)[31].

    TABLEI Calculated high pressure elastic constants Cij(in GPa).The CS=C11-C12-2P(in GPa)is the mechanical instability criterion.

    TABLE II Aggregate elastic moduli B,G,Y,the Poisson’s ratio σ,and sound velocities VP,VS,and VBof rutile TiO2.

    The average isotropic shear modulus G and bulk modulus B of polycrystalline(Table II)can be calculated according to Voigt-Reuss-Hill approximations [32].Then the isotropically averaged aggregate velocities can be obtained as follows

    where ρ is the density,VP,VS,and VBare the compressional,shear,and bulk sound velocities,respectively (Table II).The VPand VBincrease monotonously with the increasing pressure.But for the VS,the abnormal variation locates between 15 and 20 GPa,which results in the variation of shear modulus.

    The polycrystalline Young’s modulus Y and the Pois-son’s ratio σ are then calculated from B and Gas follows

    FIG.3 The normalized volume V/V0(V0is the volume at 300 K)versus temperature at 0 GPa,together with the previous theoretical results[20]and experimental data[35,36].

    From Tables I and II,we can f i nd all the elastic constants Cijand bulk modules B increase as pressure rises.But the shear modulus G and Young’s modulus Y decrease with the increasing pressure up to 15 GPa. When the pressure is larger than 20 GPa,the two moduli increase with the increasing pressure.The calculated σ is also shown in Table II.At zero pressure,σ is 3.36. As the pressure rise,σ increases to 0.41 at 15 GPa.The value at 20 GPa nearly equals to that at 15 GPa.But when the pressure increases to 25 GPa,σ is larger than the liquid value of 0.5,which is physically implausible since TiO2is a solid.

    Under isotropic pressure,the mechanical stability is judged by the following condition[33]

    Though these criterions are suited for rutile TiO2in the whole applied pressure range,the CS(C11-C12-2P), can be divided into two opposite variations with the pressure rising.At the pressure range from 0 GPa to 15 GPa,the CSdecreases monotonously with the increasing pressure.If we extrapolate the CSto high pressure,when P=17.7 GPa,CS=0,indicating that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.From the high pressure elastic constants,we can judge that the phase transition of TiO2from rutile structure to the other structure should occur around 17.7 GPa.Actually,at room temperature, according to the X-ray experiments,rutile is stable up to 12 GPa,where a direct transition to baddeleyite-type phase takes place[34].

    FIG.4 The normalized volume V/V0versus pressure at different temperatures,together with the experimental data [28-30].

    C.Thermodynamics

    Then we focus on the thermodynamic properties of rutile TiO2under high pressure and temperature. The accurate thermodynamic properties as functions of pressure and temperature can directly provide the valuable information for understanding the phase diagram and dynamical response of materials under extreme conditions.The inclusion of temperature makes P-V-T EOS more important than P-V EOS.The normalized volume V/V0(V0is the volume at 300 K)at zero pressure is shown in Fig.3.The volume increases with the increasing temperature.Considering the temperature contribution to the free energy at 300 K,it increases the equilibrium volume by 0.27%with respect to the static value.When the temperature reaches up to 2000 K(near the melting point),the volume expands 6%compared with the static value.The present results agree well with the previous theoretical results[20]and experimental data[35,36](see Fig.3).The volumes of rutile TiO2under high pressure and high temperature are shown in Fig.4.One notes the 300 K isotherm is almost the same as the one at 0 K(shown in Fig.1)and this is due to the small free energy contribution from the lattice vibrations at 300 K.Our isotherms agree well with the experimental data[28-30]with increasing pressure.When the temperature goes from 300 K to 1800 K,the contribution of vibrational free energy becomes larger and larger.

    The volume thermal expansion coefficient is determined from the equilibrium volume variation with respect to the temperature at each pressure.

    FIG.5 Thermal expansion coefficient αVversus temperature at 0 GPa,together with the previous theoretical results [20],and experimental data[35,36].

    FIG.6 Thermal expansion coefficient αVversus pressure at different temperatures.

    FIG.7 Entropy S versus temperature at 0 GPa,together with the theoretical results[16]and experimental data[37].

    FIG.8 Entropy S versus pressure at different temperatures.

    In Fig.5,we plot the thermal expansion coefficient as a function of temperature at 0 GPa.At zero pressure, the predicted temperature dependence of the thermal expansion coefficient appears to be signif i cantly based on the QHA.Our results agree with the previous theoretical results[20]and experimental data[35,36].At 300 K,the calculated αVis 1.88×10-5K-1.At high temperature(above 1400 K),our results seem much better than that from Francisco et al.[20].The thermal expansion coefficients as functions of pressure at different temperatures are shown in Fig.6.As pressure rises, the thermal expansion is suppressed quickly.That is to say the pressure can suppress part of anharmonicity by strengthening the bondings among atoms and lowering the vibration of atoms.Thus under pressure,the validity of quasi-harmonic approximation can be extended to much higher temperature.

    The investigation on the entropy S of crystals is an old topic of condensed matter physics,which can provide essential insight into the vibrational properties.As shown in Fig.7,the calculated S of rutile TiO2are in general agreement with the theoretical results[16]and the experimental data[37].The entropies are somewhat underestimated.However,the largest difference between our results and the experimental data is less than 7%.Figure 8 shows the predicted entropy S under pressure.The entropies decrease slightly with the increasing pressure.

    IV.CONCLUSION

    In summary,we employe f i rst-principles calculations to investigate the structural instability and thermodynamics of rutile TiO2.The high pressure structural parameters of TiO2are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point.When the pressure is raised to 20 GPa,the frequencies around Γ point in transverse acoustical branches become imaginary,indicating the structural instability.From the high pressure elastic constants obtained,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state,thermal expansion coefficient,bulk modulus and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pres-sure and temperature range.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.11247316, No.11247317,and No.11304408),the Science and Technology Research Project of Chongqing Education Committee(No.KJ120613 and No.KJ130607),and the Natural Science Foundation of Chongqing City (No.cstc2012jjA50019 and No.cstc2013jcyjA0733).

    [1]V.Swamy,B.C.Muddle,and Q.Dai,Appl.Phys.Lett. 89,163118(2006).

    [2]R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,and Y. Taga,Science 293,269(2001).

    [3]Y.Gai,J.Li,S.S.Li,J.B.Xia,and S.H.Wei,Phys. Rev.Lett.102,036402(2009).

    [4]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [5]B.Montanari and N.M.Harrison,Chem.Phys.Lett. 364,528(2002).

    [6]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [7]X.Wu,E.Holbig,and G.Steinle-Neumann,J.Phys.: Condens.Matter 22,295501(2010).

    [8]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [9]B.Montanari and N.M.Harrison,J.Phys.:Condens. Matter 16,273(2004).

    [10]M.Giarola,A.Sanson,F.Monti,and G.Mariotto, Phys.Rev.B 81,174305(2010).

    [11]E.Shojaee,M.Abbasnejad,M.Saeedian,and M.R. Mohammadizadeh,Phys.Rev.B 83,174302(2011).

    [12]M.Mattesini,J.S.D.Almeida,L.Dubrovinsky,N. Dubrovinskaia,B.Johansson,and R.Ahuja,Phys.Rev. B 70,115101(2004).

    [13]H.Sato,S.Endo,M.Sugiyama,T.Kikegawa,and O. Shimomura,Science 251,786(1991).

    [14]T.Mashimo,K.Nagayama,and A.Sawaoka,J.Appl. Phys.54,5043(1983).

    [15]R.Miloua,Z.Kebbab,N.Benramdane,M.Khadraoui, and F.Chiker,Comp.Mater.Sci.50,2142(2011).

    [16]Z.G.Mei,Y.Wang,S.L.Shang,and Z.K.Liu,Inorg. Chem.50,6996(2011).

    [17]M.Mikami,S.Nakamura,O.Kitao,H.Arakawa,and X.Gonze,Jpn.J.Appl.Phys.39,L847(2000).

    [18]R.Sikora,J.Phys.Chem.Solids 66,1069(2005).

    [19]P.D.Mitev,K.Hermansson,B.Montanari,and K. Refson,Phys.Rev.B 81,134303(2010).

    [20]E.Francisco,M.Bermejo,V.G.Baonza,L.Gerward, and J.M.Recio,Phys.Rev.B 67,064110(2003).

    [21]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [22]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [23]J.K.Burdett,T.Hughbanks,G.J.Miller,J.W. Richardson,and J.V.Smith,J.Am.Chem.Soc.109, 3639(1987).

    [24]Y.Kudoh and H.Takeda,Physica B+C 139,333 (1986).

    [25]J.X.Yu,M.Fu,G.F.Ji,and X.R.Chen,Chin.Phys. B 18,0269(2009).

    [26]R.Shirley,M.Kraft,and O.R.Inderwildi,Phys.Rev. B 81,075111(2010).

    [27]F.Birch,J.Geophys.Res.91,4949(1986).

    [28]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [29]L.Gerward and J.S.Olsen,J.Appl.Crystallogr.30, 259(1997).

    [30]L.Ming,and M.H.Manghnani,J.Geophys.Res.84, 4777(1979).

    [31]J.G.Traylor,H.G.Smith,R.M.Nicklow,and M.K. Wilkinson,Phys.Rev.B 3,3457(1971).

    [32]R.Hill,Proc.Phys.Soc.London 65,350(1952).

    [33]G.V.Si′nko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [34]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [35]S.K.Saxena,N.Chatterjee,Y.Fei,and G.Shen,Thermodynamic Data on Oxides and Silicates:An Assessed Data Set Based on Thermochemistry and High-Pressure Phase Equilibrium,Berlin:Springer-Verlag,(1993).

    [36]Y.S.Touloukian,R.K.Kirby,R.E.Taylor,and T. Y.R.Lee,Thermophysical Properties of Matter,New York:IFI/Plenum,13,(1977).

    [37]M.W.Chase,NIST-JANAF Thermochemical Tables, Washington,DC:American Institute of Physics,2 (1998).

    ceived on August 15,2013;Accepted on November 11,2013)

    ?Author to whom correspondence should be addressed.E-mail:zhaoyizeng@126.com

    九色亚洲精品在线播放| 久久狼人影院| 黄色女人牲交| 国产成人精品在线电影| 成人手机av| 国产97色在线日韩免费| 久久精品国产综合久久久| 老司机深夜福利视频在线观看| 欧美日韩亚洲高清精品| 老汉色av国产亚洲站长工具| 久久久久久久久久久久大奶| 97超级碰碰碰精品色视频在线观看| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久| 国产在线观看jvid| 久久人妻福利社区极品人妻图片| av福利片在线| 两个人看的免费小视频| 色老头精品视频在线观看| 亚洲伊人色综图| 十八禁网站免费在线| av超薄肉色丝袜交足视频| 欧美黄色淫秽网站| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 亚洲人成电影观看| 91老司机精品| 欧美日韩亚洲高清精品| 色综合站精品国产| tocl精华| 精品国内亚洲2022精品成人| 午夜精品国产一区二区电影| 91成年电影在线观看| 免费在线观看黄色视频的| 亚洲在线自拍视频| 在线观看www视频免费| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| bbb黄色大片| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| avwww免费| 欧美激情高清一区二区三区| 美女 人体艺术 gogo| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 午夜精品在线福利| 怎么达到女性高潮| 亚洲成人久久性| 日本精品一区二区三区蜜桃| 国产欧美日韩综合在线一区二区| 色播在线永久视频| 亚洲精品一区av在线观看| 久久久精品欧美日韩精品| 国产成人av教育| 中文字幕av电影在线播放| 99久久久亚洲精品蜜臀av| 亚洲久久久国产精品| 成年人黄色毛片网站| 9色porny在线观看| 亚洲精品成人av观看孕妇| av视频免费观看在线观看| 亚洲国产精品一区二区三区在线| 精品午夜福利视频在线观看一区| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| svipshipincom国产片| 9热在线视频观看99| 午夜福利欧美成人| cao死你这个sao货| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 黄片小视频在线播放| 国产黄色免费在线视频| 精品国内亚洲2022精品成人| 午夜影院日韩av| 国产av精品麻豆| 日本vs欧美在线观看视频| 亚洲午夜理论影院| 精品久久久久久,| 国产有黄有色有爽视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美 日韩 在线 免费| 国产黄a三级三级三级人| 一级作爱视频免费观看| 日韩免费高清中文字幕av| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 怎么达到女性高潮| 波多野结衣高清无吗| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av| 日本 av在线| 1024视频免费在线观看| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 高清在线国产一区| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 免费不卡黄色视频| 欧美性长视频在线观看| 88av欧美| 两人在一起打扑克的视频| 亚洲专区字幕在线| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 欧美成狂野欧美在线观看| 一级毛片女人18水好多| 午夜免费成人在线视频| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 中文亚洲av片在线观看爽| 深夜精品福利| 99热国产这里只有精品6| 亚洲欧美一区二区三区久久| 午夜福利一区二区在线看| 日韩高清综合在线| 色播在线永久视频| 久久精品aⅴ一区二区三区四区| 高清毛片免费观看视频网站 | netflix在线观看网站| 欧美日本亚洲视频在线播放| 大型av网站在线播放| 国产高清videossex| 亚洲精品在线美女| 久久久国产精品麻豆| 国产麻豆69| 亚洲专区字幕在线| 午夜福利,免费看| 午夜精品久久久久久毛片777| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 热re99久久国产66热| 精品国产乱子伦一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| svipshipincom国产片| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 国产97色在线日韩免费| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 亚洲 欧美 日韩 在线 免费| 午夜免费成人在线视频| 免费少妇av软件| 久久天堂一区二区三区四区| 亚洲av熟女| 国产麻豆69| 中文字幕最新亚洲高清| 好看av亚洲va欧美ⅴa在| 超碰97精品在线观看| 国产真人三级小视频在线观看| 国产黄a三级三级三级人| 久久性视频一级片| 成熟少妇高潮喷水视频| 在线观看免费高清a一片| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜 | 久久热在线av| 一级a爱视频在线免费观看| 啦啦啦免费观看视频1| 国产三级黄色录像| 日韩欧美在线二视频| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全免费视频| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 国产精品偷伦视频观看了| 国产成人精品久久二区二区免费| 亚洲第一av免费看| 一进一出抽搐动态| 国产视频一区二区在线看| 在线天堂中文资源库| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 久久99一区二区三区| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 国产成人影院久久av| 真人做人爱边吃奶动态| 丰满的人妻完整版| 国产亚洲欧美98| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 啪啪无遮挡十八禁网站| 中文字幕高清在线视频| 亚洲成人国产一区在线观看| 欧美成人免费av一区二区三区| 国产一区二区三区视频了| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| 香蕉丝袜av| svipshipincom国产片| 亚洲 国产 在线| 国产成人精品无人区| 精品国产乱子伦一区二区三区| 亚洲国产毛片av蜜桃av| 国产成人av教育| 国产精品1区2区在线观看.| 久久人人97超碰香蕉20202| 日韩视频一区二区在线观看| 老司机福利观看| 精品一区二区三区视频在线观看免费 | 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 1024香蕉在线观看| 国产亚洲欧美精品永久| 黄色 视频免费看| 在线看a的网站| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 首页视频小说图片口味搜索| 91字幕亚洲| 中国美女看黄片| netflix在线观看网站| 18禁国产床啪视频网站| 久久久国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 美国免费a级毛片| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 国产精品综合久久久久久久免费 | 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 亚洲男人的天堂狠狠| www.自偷自拍.com| 久9热在线精品视频| 岛国在线观看网站| 90打野战视频偷拍视频| 久久影院123| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 亚洲三区欧美一区| 国产精品 国内视频| 久久久久久久久中文| 国产精品国产av在线观看| 操美女的视频在线观看| 久久久久久人人人人人| 桃红色精品国产亚洲av| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 中文字幕av电影在线播放| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 视频区欧美日本亚洲| 国产片内射在线| 国产男靠女视频免费网站| 如日韩欧美国产精品一区二区三区| 日韩精品中文字幕看吧| 性色av乱码一区二区三区2| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av高清一级| 麻豆一二三区av精品| 在线永久观看黄色视频| www.精华液| 久久久国产欧美日韩av| 免费不卡黄色视频| 国产深夜福利视频在线观看| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 视频在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| av有码第一页| 国产99久久九九免费精品| 亚洲视频免费观看视频| 日本三级黄在线观看| 亚洲精品成人av观看孕妇| 国产精品九九99| 国产日韩一区二区三区精品不卡| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 欧美日本亚洲视频在线播放| 99香蕉大伊视频| 国产视频一区二区在线看| 国产成人精品无人区| 好看av亚洲va欧美ⅴa在| 欧美激情极品国产一区二区三区| 夜夜躁狠狠躁天天躁| 精品人妻在线不人妻| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 九色亚洲精品在线播放| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 国产精品一区二区免费欧美| 1024香蕉在线观看| av天堂久久9| 精品一品国产午夜福利视频| 女人被狂操c到高潮| 日韩免费av在线播放| 两性夫妻黄色片| 久久国产精品影院| 国产黄色免费在线视频| 女同久久另类99精品国产91| 69av精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 五月开心婷婷网| 淫妇啪啪啪对白视频| 另类亚洲欧美激情| 天堂影院成人在线观看| 亚洲激情在线av| 午夜久久久在线观看| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 身体一侧抽搐| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 青草久久国产| 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 欧美人与性动交α欧美软件| 日本a在线网址| 在线观看舔阴道视频| 国产三级黄色录像| 成人精品一区二区免费| 亚洲av电影在线进入| 一级毛片精品| 久久久国产精品麻豆| 一级毛片精品| 久久久久久大精品| 久久精品国产综合久久久| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费 | 午夜成年电影在线免费观看| 日韩欧美一区视频在线观看| 高清在线国产一区| 亚洲成人国产一区在线观看| 黄片播放在线免费| 国产精品一区二区三区四区久久 | 桃红色精品国产亚洲av| 在线观看www视频免费| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费 | 法律面前人人平等表现在哪些方面| 欧美在线黄色| 熟女少妇亚洲综合色aaa.| 欧美在线黄色| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 欧美人与性动交α欧美精品济南到| 欧美日韩瑟瑟在线播放| 午夜福利,免费看| 精品一区二区三区四区五区乱码| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月| 久久香蕉激情| 免费日韩欧美在线观看| 亚洲激情在线av| 性欧美人与动物交配| 黑人巨大精品欧美一区二区mp4| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 国产乱人伦免费视频| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 自线自在国产av| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| 麻豆国产av国片精品| 黑人巨大精品欧美一区二区mp4| 日本免费a在线| 怎么达到女性高潮| 久久狼人影院| 亚洲欧美激情综合另类| 亚洲熟女毛片儿| 免费观看人在逋| 高潮久久久久久久久久久不卡| av天堂在线播放| 大型av网站在线播放| 免费观看精品视频网站| 亚洲美女黄片视频| 午夜精品在线福利| 激情在线观看视频在线高清| av有码第一页| 伦理电影免费视频| 男女做爰动态图高潮gif福利片 | 精品福利永久在线观看| 精品高清国产在线一区| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 日本免费一区二区三区高清不卡 | 亚洲精品av麻豆狂野| 亚洲av成人av| 午夜日韩欧美国产| 欧美激情高清一区二区三区| 成年版毛片免费区| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 欧美日韩亚洲综合一区二区三区_| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 久久香蕉精品热| 制服诱惑二区| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 日韩欧美一区视频在线观看| 亚洲在线自拍视频| 露出奶头的视频| 国产亚洲精品一区二区www| 精品免费久久久久久久清纯| 在线观看66精品国产| 亚洲五月婷婷丁香| 亚洲 国产 在线| 国产区一区二久久| 一a级毛片在线观看| 黄色丝袜av网址大全| 午夜福利,免费看| 日日夜夜操网爽| 日韩视频一区二区在线观看| 亚洲一区中文字幕在线| 国产精品偷伦视频观看了| 午夜视频精品福利| 97超级碰碰碰精品色视频在线观看| 国产在线观看jvid| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 国产精品电影一区二区三区| 欧美日韩亚洲综合一区二区三区_| 欧美日韩瑟瑟在线播放| 黄片大片在线免费观看| 成人国产一区最新在线观看| www国产在线视频色| 久久精品国产亚洲av香蕉五月| 精品日产1卡2卡| 成人三级黄色视频| 亚洲男人的天堂狠狠| 99热只有精品国产| 免费一级毛片在线播放高清视频 | 国产区一区二久久| 婷婷六月久久综合丁香| 黄色a级毛片大全视频| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 香蕉丝袜av| 国产精品98久久久久久宅男小说| tocl精华| 亚洲成人免费av在线播放| 久久久国产一区二区| 黄片小视频在线播放| 91精品国产国语对白视频| 欧美日韩乱码在线| 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到| 精品人妻1区二区| 久久久国产一区二区| 亚洲第一青青草原| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 可以免费在线观看a视频的电影网站| 80岁老熟妇乱子伦牲交| 国产精品野战在线观看 | 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 久久国产乱子伦精品免费另类| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| av电影中文网址| 69av精品久久久久久| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码| 日本 av在线| 一级毛片女人18水好多| 黄频高清免费视频| 精品国产亚洲在线| 女人精品久久久久毛片| 亚洲激情在线av| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影| 热re99久久精品国产66热6| 日韩一卡2卡3卡4卡2021年| 久久亚洲精品不卡| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 又紧又爽又黄一区二区| 国产极品粉嫩免费观看在线| 美女大奶头视频| 搡老乐熟女国产| av有码第一页| 欧美日韩精品网址| 欧美日韩福利视频一区二区| 国产不卡一卡二| 9色porny在线观看| 久久中文字幕一级| 一区二区三区激情视频| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片 | 老司机亚洲免费影院| 久久久久九九精品影院| 男女午夜视频在线观看| 国产aⅴ精品一区二区三区波| 五月开心婷婷网| 欧美不卡视频在线免费观看 | 在线视频色国产色| 久久久久久久久免费视频了| 91av网站免费观看| 亚洲精品在线美女| 少妇的丰满在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品国产综合久久久| 1024视频免费在线观看| 波多野结衣高清无吗| 成人18禁在线播放| 亚洲av电影在线进入| 久热爱精品视频在线9| 精品熟女少妇八av免费久了| av欧美777| 丁香六月欧美| 69av精品久久久久久| 欧美日韩亚洲高清精品| 亚洲avbb在线观看| 琪琪午夜伦伦电影理论片6080| 老司机在亚洲福利影院| 热99re8久久精品国产| 久久精品aⅴ一区二区三区四区| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 欧美+亚洲+日韩+国产| 免费av中文字幕在线| 亚洲中文av在线| 亚洲色图av天堂| 三级毛片av免费| 在线观看免费视频网站a站| 黄色怎么调成土黄色| 满18在线观看网站| 三上悠亚av全集在线观看| www.精华液| 国产成人精品在线电影| 女同久久另类99精品国产91| e午夜精品久久久久久久| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 久久久水蜜桃国产精品网| 精品卡一卡二卡四卡免费| 香蕉丝袜av| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 欧美成人午夜精品| 国产熟女午夜一区二区三区| www.自偷自拍.com| 精品久久蜜臀av无| 国产欧美日韩一区二区三| 欧美最黄视频在线播放免费 | 极品人妻少妇av视频| 精品久久久久久,| 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| 成熟少妇高潮喷水视频| 在线观看免费视频网站a站| 国产高清videossex| 99热只有精品国产| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 99国产精品一区二区三区| 精品福利永久在线观看| 中文亚洲av片在线观看爽| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| 丰满的人妻完整版| av国产精品久久久久影院| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | tocl精华| 女人高潮潮喷娇喘18禁视频| 成人三级做爰电影| 亚洲,欧美精品.| 一级毛片高清免费大全| 久久人妻福利社区极品人妻图片| 欧美日韩av久久| 亚洲五月婷婷丁香| 国产野战对白在线观看| 91老司机精品| av网站免费在线观看视频| 国产男靠女视频免费网站| 日韩大尺度精品在线看网址 | 午夜久久久在线观看| 国产精品自产拍在线观看55亚洲| 不卡一级毛片| 国产精品 欧美亚洲| 丝袜美腿诱惑在线| ponron亚洲| 黄色丝袜av网址大全|