• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain

    2022-08-01 06:02:34JunRen任軍JunmingLi李軍明ShengZhang張勝JunLi李駿WenxiaSu蘇文霞DunhuiWang王敦輝QingqiCao曹慶琪andYouweiDu都有為
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張勝王敦

    Jun Ren(任軍), Junming Li(李軍明), Sheng Zhang(張勝), Jun Li(李駿), Wenxia Su(蘇文霞),Dunhui Wang(王敦輝),2,?, Qingqi Cao(曹慶琪), and Youwei Du(都有為)

    1National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nano Technology,Nanjing University,Nanjing 210093,China

    2Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China

    Keywords: voltage control magnetism, magnetoelectric coupling, magnetic anisotropy, ferromagnetic reso

    1. Introduction

    The study of voltage control magnetism has become one of the most popular research areas due to its potential applications in information storage, sensors and some of the new logical spintronic devices.[1–3]Various magnetic parameters,including magnetic anisotropy, coercivity, saturated magnetic moment and Curie temperature, have been regulated in different systems by different mechanisms, such as charge doping,strain effect and exchange coupling.[4–9]Among them,the multiferroic composite heterojunction composed of ferromagnetic (FM) materials and ferroelectric (FE) materials, which combines a piezoelectric effect and piezomagnetic effect and realizes a magnetoelectric coupling (ME) effect through a strain mechanism,is widely regarded as one of the most likely systems to be applied in practice.[10]In recent years,the ferroelectric single crystal Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT),formed by relaxor ferroelectric Pb(Mg1/3Nb2/3)O3(PMN)and ordinary ferroelectric PbTiO3(PT),has been widely used as the piezoelectric substrate in the study of voltage control magnetism based on the strain mechanism due to its large piezoelectric coefficients.[11–16]For example, Liet al.demonstrated a reversible magnetization rotation and manipulated the tunneling magnetoresistance at room temperature in CoFeB/AlOx/CoFeB/PMN-PT.[8]Liuet al.showed nonvolatile resonance frequency tuning in an FeCoB/PMNPT heterojunction.[17]In addition, our research group reported the related work of electric-field control magnetism based on a PMN-PT piezoelectric substrate,such as Co/PMNPT,[18]FePt/PMN-PT,[19]and NiCoMnIn/PMN-PT,[20]which achieved some meaningful results. However,due to the strain asymmetry of the piezoelectric substrate itself, most studies based on PMN-PT can only study the influence of a single tensile(or compressive)strain on the magnetic properties. There are very few studies which can simultaneously explore the different effects of tensile and compressive stresses on the magnetic properties in a multiferroic FM/FE composite heterojunction.

    Ferromagnetic resonance (FMR), which is known as the collective spin excitation in ferromagnetic materials, has attracted increasing attention due to its wide potential applications in novel voltage tunable RF/microwave magnetic devices,such as filters,resonators,inductors and phase shifters,as well as possible future spintronic devices.[21,22]Besides the study of magnetization change manipulated by voltage,the voltage regulation of FMR became an important field in the research of voltage control magnetism. According to the LLG equation,[23]the saturation magnetization (MS), magnetic anisotropy field(Hk)and spin wave damping coefficient(α) are the most important parameters used to describe the dynamics of FMR.Permalloy(Py)which possesses high permeability,a high Ms,low coercivity,low magnetic anisotropy and lowα,is a good soft magnetic alloy film suitable for microwave devices.[7,24,25]Therefore, in this work, we prepare the Py/PMN-PT ferromagnetic/ferroelectric composite heterojunctions by magnetron sputtering technology using a permalloy target with the composition ratio of Fe19Ni81and a(011)cut PMN-PT single crystal substrate. Since the substrate has both large tensile and compressive strains, the effects of different strains on the magnetic anisotropy are investigated. In addition,the(011)cut PMN-PT has the characteristics of nonvolatile strain with an applied asymmetric voltage,which provides the possibility of studying the voltage control of FMR.Thus, we demonstrate the effect of non-volatile strain on the ferromagnetic resonance excursion. Our results provide new possibilities for voltage adjustable RF/microwave magnetic devices and spintronic devices.

    2. Experiment

    A (011) cut PMN-PT single crystal (10 mm×5 mm×0.5 mm in size)was used as the substrate,and an Fe19Ni81film with a thickness of 25 nm was deposited on it by sputtering using an alloy target with the composition ratio of Fe19Ni81.The background vacuum of the chamber was less than 1×10-5Pa.During the deposition,the substrate was kept at room temperature and the argon pressure was 0.3 Pa. The DC sputtering power was 16 W. To apply a voltage to the PMN-PT, a layer of Au was deposited on the back of the substrate as the bottom electrode and the Fe19Ni81film was directly used as the top electrode.

    The surface morphology and film thickness of the samples were measured using a scanning probe microscope(AFM). The magnetic properties of the samples were measured using a vibrating sample magnetometer(VSM),and the strain curves of the PMN-PT substrate were measured by the resistance strain gauge on an electrical measuring platform.During the magnetic measurements, a Keithley 2410 voltage source meter was used to apply a voltage to the PMN-PT substrate. FMR spectra measurements were performed using a coplanar waveguide and electromagnet. The electromagnet provides an in-plane magnetic fieldH, which is perpendicular to the microwave fieldh.

    3. Result and discussion

    Figure 1(a) shows a schematic diagram of the Fe19Ni81/PMN-PT/Au sample, in which the electric field is applied along the thickness [011] direction of the PMN-PT.The AFM surface morphology of Fe19Ni81film is shown in Fig. 1(b). It is observed that the surface of the film sample is very smooth, in which the average roughness is less than 0.1 nm and the root mean square roughness is less than 0.3 nm.The good surface quality of the film provides a good base for us to investigate the magnetoelectric(ME)coupling effect.

    Fig.1. (a)A schematic diagram of a typical Fe19Ni81/PMN-PT/Au sample.(b)An AFM image of the sample with an area of 2 μm×2 μm.

    Fig.2.(a)The in-plane strain curve along the[100]direction with symmetric bipolar voltages. The inset shows a schematic diagram of the stress measurement for PMN-PT. (b) Nonvolatile strain curves with different asymmetric bipolar voltages.

    Figure 2 shows a typical schematic diagram of the strain measurement of the PMN-PT substrate.An electric field along the thickness of the substrate is applied and the strain gauge is attached to the surface of an electrode to detect the strain. Figures 2(a)and 2(b)show the relationship between the measured strain and the applied symmetric bipolar and asymmetric bipolar voltages in the direction of [100], respectively. It is clear that the strain–voltage (S–V) curve shows a typical butterfly shape for bipolar strain along the[100]direction in Fig.2(a),which is consistent with earlier reports.[26]Two considerable nonlinear tensile strains are observed along the [100] directions near±70 V, which correspond to the coercive field of the PMN-PT substrate.It is noted that the tensile strain around the coercive field is up to+3000 ppm. When we continue to apply the voltage beyond the coercive field, the strain gradually decreases and then increases in the opposite direction.Two compressive strains reaching up to-2000 ppm are observed around the voltage of±250 V. After slowly removing the electric field, the strains gradually decrease and recover to zero, showing volatile behavior (shown as the A state in Fig.2(b)).When an asymmetric bipolar voltage is applied(i.e.the applied positive voltage is larger than the coercive field and the negative voltage is smaller than the coercive field),in contrast to the situation of the bipolar symmetrical electric field,the substrate strain does not return to the initial zero state and shows a nonvolatile residual strain when the voltage is reduced to zero. More importantly,by applying different negative voltages,different residual strain states can be obtained.As shown in Fig.2(b),three different residual strain states of B,C,and D reaching up to+3000 ppm,+2000 ppm,and+1200 ppm are observed in the S–V curves,corresponding to the asymmetric negative voltages of-70 V,-60 V, and-40 V,respectively.Therefore,by precisely regulating the magnitude of the asymmetric negative voltage, stable and different residual strains can be obtained in the PMN-PT substrate.

    Since both compressive and tensile strains can be simultaneously obtained with the PMN-PT substrate, two distinct deformations can be induced in the sample. Figure 3(a) illustrates the deformation of the sample at different voltages.When a voltage of-70 V is applied to the sample,according to the S–V curve,the sample is equivalent to being stretched in the direction of[100]and compressed in the direction of[01-1], as shown by the dotted line in Fig. 3(a). When a voltage of+100 V is applied,in contrast to the situation at-70 V,the sample is equivalent to being compressed in the direction of[100]and elongated in the direction of[01-1]. Figure 2 shows the S–V curves for both symmetric and asymmetric bipolar voltages of the PMN-PT substrate in the direction of [100].These two different residual strain states are due to different ferroelectric polarization in the PMN-PT substrate. Electricfield-induced ferroelectric polarization switching between the in-plane direction and the out-of-plane directions is clearly demonstrated in Figs. 3(b) and 3(c). There are eight equivalent directions of spontaneous polarization in the rhombohedral PMN-PT single crystal. For the[011]tangential PMN-PT substrate, there are four spontaneous polarization directions pointing out of the plane,and the remaining four spontaneous polarization directions in the plane.When a symmetric bipolar voltage is applied, the out-of-plane ferroelectric polarization may experience a polarization reversal of 109°and 180°. The direction of the ferroelectric polarization still points out of the plane(such as state A shown in Fig.2(b)),which fails to create residual strain in the plane.As the applied voltage continues to increase,the substrate will produce large in-plane anisotropic biaxial strain. This is caused by the linear piezoelectric effect of the PMN-PT substrate.[27]When an asymmetric voltage is applied to the substrate, the ferroelectric polarization undergoes reversals of 71°and 109°,resulting in the dynamic reversal of the ferroelectric polarization from out-of-plane to in-plane.[17]Thus, a residual strain is obtained in the plane,which corresponds to state B in Fig.2(b).

    Fig.3. (a)A schematic diagram of deformation of samples at different voltages. Schematics of domain structures about the (011) PMN-PT under various applied voltages: (b) the residual strain state A with a positive poling state of polarization pointing out of the plane,and(c)the residual strain state B(after applying a negative voltage of-60 V and then switching it off).

    To explore the effect of different compressive and tensile strains on the magnetic properties of the sample, the roomtemperature magnetic hysteresis loops for the Fe19Ni81film under different voltages were measured. Figure 4 shows the in-plane magnetic hysteresis loops(M–H)of the sample under different voltages along the[01-1]direction. It is obvious that theMSof the FeNi film is about 840 emu/cm3,which is comparable to the value in the literature.[28]The coercivity of the sample is less than 5 Oe and the initial magnetic susceptibility is very high, indicating typical soft magnetic behavior of the Fe19Ni81film.When a voltage of+100 V is applied to the substrate, not only does the remanent magnetization (Mr) of the sample increase but the magnetic anisotropy also changes considerably, indicating that the magnetization process becomes easier for the[01-1]direction. In contrast, when a voltage of-70 V is applied,the remanence decreases markedly and the magnetization curve becomes a slant loop. The inset of Fig.4 is an enlarged view of the remanence curve, which allows us to see the variation of theMrunder different voltages more clearly. TheMrof the sample increases to 825 emu/cm3under the voltage of +100 V, which is almost the same as theMS. In contrast, theMrof the sample decreases sharply to 450 emu/cm3when a voltage of-70 V is applied. The relative change inMr(Mr(+100 V)-Mr(-70 V))/Mr(-70 V))reaches 83%. It is worth noting that the saturated magnetization of the sample remains unchanged, despite application of the positive and negative voltages,suggesting that different tensile and compressive strains of the substrate have no effect on the intrinsic magnetic interaction of the permalloy. In the study of voltage control of an FM/FE composite heterojunction, it is generally believed that there are two main mechanisms: the strain mechanism, and the polarization charge mechanism. As we know,the electrostatic shielding length of the metal is within 1 nm, while the thickness of the Fe19Ni81film in this work is about 25 nm. Therefore, the influence of the polarization charge at the interface can be ignored for the film. Here,we believe that the voltage regulation effect of our Fe19Ni81/PMN-PT heterojunction is mainly attributed to the strain caused by the piezoelectric effect of the PMN-PT substrate. Figure 3(a)illustrates the deformation of the sample at different voltages. Due to the influence of strain anisotropy,the sample becomes more easily magnetized in the direction of tensile strain while, in the direction of compression strain,the magnetization of the sample becomes difficult. This is in good agreement with our experimental results. Therefore,the variation ofMris mainly attributed to the change in magnetic anisotropy caused by the strain anisotropy.

    Fig.4. In-plane magnetic hysteresis loops for Fe19Ni81/PMN-PT under different voltages along the [01-1] direction at room-temperature. The inset shows an enlarged view of the Mr curve.

    It is known that the magnetic anisotropy of the sample has a great influence on the microwave performance. Therefore, it is meaningful to study the voltage control FMR of the Fe19Ni81/PMN-PT device. If we want to use the voltageinduced volatile strain to manipulate FMR,the voltage needs to be applied to the device all the time, which is disadvantageous to the FMR measurement. Due to the non-volatile properties of the PMN-PT substrate,the non-volatile behavior of voltage control FMR in the Fe19Ni81film can be investigated in this work. During the measurement, the sample is placed face down on a coplanar waveguide and the measured microwave frequencies are in the range of 6 GHz–10 GHz.An electromagnet provides an in-plane magnetic fieldH,which is perpendicular to the microwave fieldh. The FMR measurement is performed in field-sweeping mode,in which the external bias magnetic field is parallel to the sample surface along the[01-1]direction. Figure 5 shows the normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies.It is obvious that,with the increasing voltage,the resonance field shifts to the direction of the high fields and the maximum shift of the FMR field(from 1000 Oe to 1070 Oe) is observed with the applied voltage of-70 V at the frequency of 10 GHz.

    According to Kittel’s formula,[29,30]the resonance frequency of in-plane ferromagnetic resonance can be described as follows:

    wherefis the FMR frequency,γis the gyromagnetic ratio(the value is about 2.8 MHz/Oe),Hris the FMR field andMsis the saturation magnetization. Here,Heffis the effective field induced by the voltage,which could be positive or negative and can be described as:

    Here,λsis the magnetostriction constant of FeNi, andσEis the voltage-induced biaxial stress (compressive along [01-1]and tensile along [100] with the applied voltage of-70 V).According to Eq. (1) and the resonance field data measured at different frequencies,the fitting results are shown in Fig.6,in which the experimental data and theoretical calculation fit well in the frequency range of 6 GHz–10 GHz.

    Fig. 5. The normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies when the magnetic field is parallel to the [01-1] direction: (a) f =7 GHz, (b) f =8 GHz, (c)f =9 GHz,and(d) f =10 GHz.

    Fig.6.The resonance frequency as a function of the field for Fe19Ni81/PMNPT.The points are experimental data and the solid lines are fitted to Kittel’s formula.

    In the Fe19Ni81/PMN-PT heterojunction, after treatment at-40 V and-70 V,nonvolatile compressive strains are then generated along [01-1]. As shown in theM–Hcurves of the Fe19Ni81sample with different strain states, the anisotropy field will be enhanced under the strain. According to Eq.(2),the compressive strain along[01-1]will induce a negativeHeff.As a result,the FMR field shows adjustability and shifts to the higher fields,which can be understood using Eq.(1). Furthermore, it is worth noting that the Fe19Ni81film retains strong absorption over a small linewidth of approximatively 40 Oe,even at the high frequency of 10 GHz,indicating a small magnetic loss of the film. This excellent figure of merit is conducive to the practical application of low-loss magnetic tunable microwave devices,such as filters.

    4. Conclusion

    The study of voltage control magnetism in Fe19Ni81/PMN-PT composite heterojunctions is demonstrated in this article. By applying a voltage, the PMN-PT substrate can generate volatile or nonvolatile strains which can transfer to the Fe19Ni81film. The magnetic behavior of the Fe19Ni81film is manipulated through the reverse magnetoelectric coupling effect dominated by the strain mechanism. When a positive voltage is applied to the PMN-PT substrate,the magnetization process becomes easier along the [01-1] direction and theMrincreases. When a small negative voltage not exceeding the coercivity is applied,the rectangular degree of the hysteresis loop along the direction of [01-1] becomes lower,and theMrdecreases significantly. This is attributed to the different in-plane anisotropic biaxial strains caused by different voltages. Moreover, we successfully achieve the regulation of the FMR field of Fe19Ni81films by the nonvolatile strain effect of[011]cut PMN-PT substrate and the resonance field shifts to the direction of the high field with the treatment of the voltage. These research results have potential applications in the development of novel voltage tunable RF/microwave magnetic devices.

    猜你喜歡
    張勝王敦
    探析跟蹤審計在工程造價審計中的應(yīng)用
    CJ-1型齒輪箱箱體強度分析
    扁桃體切除術(shù)后常規(guī)行術(shù)腔縫合對預防術(shù)后出血的療效評價
    小羲之帳中保命
    今日文摘(2018年9期)2018-05-19 04:59:50
    放低姿態(tài)的智慧
    放低姿態(tài)的智慧
    Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field?
    內(nèi)心善良,自然陽光
    琴童(2017年3期)2017-04-05 18:14:27
    村長家的狗
    《在詩意中行走》
    文學自由談(2016年1期)2016-03-16 19:39:17
    日本av手机在线免费观看| 日日干狠狠操夜夜爽| 免费观看的影片在线观看| 国产视频内射| 久久这里有精品视频免费| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人久久爱视频| 天堂影院成人在线观看| 国产午夜精品论理片| 少妇高潮的动态图| 一个人看的www免费观看视频| 国产高清不卡午夜福利| 国产亚洲精品久久久久久毛片| 久久久久免费精品人妻一区二区| 亚洲av成人精品一区久久| 亚洲久久久久久中文字幕| 91精品国产九色| 99热这里只有精品一区| 国内久久婷婷六月综合欲色啪| 非洲黑人性xxxx精品又粗又长| 亚洲七黄色美女视频| 亚洲av免费在线观看| 国产三级中文精品| 永久网站在线| 国内少妇人妻偷人精品xxx网站| 我的老师免费观看完整版| 国产一区二区在线观看日韩| 国产精品人妻久久久影院| 一夜夜www| 99久久无色码亚洲精品果冻| 最新中文字幕久久久久| 亚洲熟妇中文字幕五十中出| 国产男人的电影天堂91| 久久这里只有精品中国| 看非洲黑人一级黄片| 久久精品国产清高在天天线| 美女黄网站色视频| 深夜a级毛片| 少妇人妻一区二区三区视频| av免费观看日本| 免费看a级黄色片| 亚洲精品日韩在线中文字幕 | 午夜a级毛片| 日本五十路高清| 国产三级在线视频| 欧美日韩综合久久久久久| 欧美激情国产日韩精品一区| 亚洲国产精品合色在线| 国产精品国产高清国产av| 国产成人精品久久久久久| 18禁黄网站禁片免费观看直播| 亚洲av男天堂| 一个人免费在线观看电影| 亚洲婷婷狠狠爱综合网| 午夜福利视频1000在线观看| 亚洲欧美清纯卡通| 国产淫片久久久久久久久| 99热这里只有是精品在线观看| 99riav亚洲国产免费| а√天堂www在线а√下载| 免费人成视频x8x8入口观看| 男插女下体视频免费在线播放| 亚洲欧美清纯卡通| 亚洲人与动物交配视频| 国产精品蜜桃在线观看 | 黄色一级大片看看| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐gif免费好疼| av在线观看视频网站免费| 看非洲黑人一级黄片| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 国产黄色视频一区二区在线观看 | 精品人妻偷拍中文字幕| 午夜亚洲福利在线播放| 老女人水多毛片| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 在线免费十八禁| 精品国内亚洲2022精品成人| 久久精品人妻少妇| 狠狠狠狠99中文字幕| 女人被狂操c到高潮| 日韩成人伦理影院| 色噜噜av男人的天堂激情| 丝袜美腿在线中文| av在线老鸭窝| 三级国产精品欧美在线观看| 久久精品综合一区二区三区| 婷婷色av中文字幕| 老熟妇乱子伦视频在线观看| 日韩制服骚丝袜av| 亚洲七黄色美女视频| 国产精品一区www在线观看| 日本黄色片子视频| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区| 亚洲av一区综合| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 99热网站在线观看| 久99久视频精品免费| 成人午夜精彩视频在线观看| av免费观看日本| 亚洲精品影视一区二区三区av| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 日韩成人av中文字幕在线观看| 国产v大片淫在线免费观看| 黄色一级大片看看| 国产亚洲91精品色在线| 欧美3d第一页| 中文亚洲av片在线观看爽| 爱豆传媒免费全集在线观看| 中文字幕精品亚洲无线码一区| 久久亚洲国产成人精品v| 久久国产乱子免费精品| 一本久久中文字幕| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 综合色丁香网| 久久久久久久亚洲中文字幕| 国产av在哪里看| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| 乱人视频在线观看| 国产v大片淫在线免费观看| av福利片在线观看| 九色成人免费人妻av| 久久精品夜色国产| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 成人av在线播放网站| 免费av观看视频| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 久久99精品国语久久久| 最后的刺客免费高清国语| 国内精品久久久久精免费| 国产乱人视频| 色播亚洲综合网| 真实男女啪啪啪动态图| 国产亚洲5aaaaa淫片| 综合色丁香网| 精品久久久噜噜| 亚洲精品自拍成人| 欧美成人a在线观看| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 日韩中字成人| 国产精品嫩草影院av在线观看| 国产在线男女| 久久这里只有精品中国| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜爱| 免费观看人在逋| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 天堂中文最新版在线下载 | 日韩精品有码人妻一区| 97在线视频观看| 午夜精品在线福利| 人妻久久中文字幕网| 久久亚洲国产成人精品v| 久久这里只有精品中国| 欧美色欧美亚洲另类二区| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 亚洲av不卡在线观看| 欧美三级亚洲精品| 欧美激情在线99| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 18+在线观看网站| 欧美bdsm另类| 亚洲国产色片| h日本视频在线播放| 日韩三级伦理在线观看| 国产v大片淫在线免费观看| 在线天堂最新版资源| 久久久精品欧美日韩精品| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕 | 一进一出抽搐gif免费好疼| 嫩草影院新地址| 最近最新中文字幕大全电影3| 国产极品天堂在线| 性色avwww在线观看| 赤兔流量卡办理| 26uuu在线亚洲综合色| 99在线视频只有这里精品首页| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 秋霞在线观看毛片| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 级片在线观看| 亚洲精品乱码久久久久久按摩| 99久久无色码亚洲精品果冻| 麻豆成人av视频| 日日撸夜夜添| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 能在线免费观看的黄片| av.在线天堂| 国产精品精品国产色婷婷| 长腿黑丝高跟| 一级黄片播放器| .国产精品久久| 激情 狠狠 欧美| 亚洲图色成人| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 亚洲18禁久久av| 国产精品蜜桃在线观看 | 波多野结衣高清作品| 国产亚洲精品久久久久久毛片| 看十八女毛片水多多多| 久久99精品国语久久久| 精品一区二区三区视频在线| 国产精品一区www在线观看| 国产av一区在线观看免费| 国产伦理片在线播放av一区 | 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 村上凉子中文字幕在线| 三级毛片av免费| .国产精品久久| 一级二级三级毛片免费看| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 色视频www国产| 九九在线视频观看精品| 免费人成视频x8x8入口观看| 亚洲在久久综合| 少妇的逼好多水| 国产精品永久免费网站| 免费观看a级毛片全部| 久99久视频精品免费| 小说图片视频综合网站| 亚洲国产精品成人综合色| 亚洲人成网站在线观看播放| АⅤ资源中文在线天堂| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 麻豆乱淫一区二区| 一进一出抽搐gif免费好疼| 一区二区三区免费毛片| 亚洲,欧美,日韩| 精品久久国产蜜桃| 啦啦啦观看免费观看视频高清| avwww免费| 国产中年淑女户外野战色| av.在线天堂| 丝袜美腿在线中文| 国产成人freesex在线| 精品久久国产蜜桃| 国产综合懂色| 丰满的人妻完整版| 免费黄网站久久成人精品| 免费看a级黄色片| av女优亚洲男人天堂| 变态另类成人亚洲欧美熟女| 亚洲av一区综合| a级一级毛片免费在线观看| 99热网站在线观看| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 热99re8久久精品国产| 不卡一级毛片| 国内精品宾馆在线| 熟女电影av网| 97热精品久久久久久| 精品少妇黑人巨大在线播放 | 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| av天堂中文字幕网| 精品久久久久久久末码| 波野结衣二区三区在线| av卡一久久| 熟妇人妻久久中文字幕3abv| 青春草亚洲视频在线观看| 免费观看精品视频网站| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 国产成人91sexporn| 久久草成人影院| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说 | 九九在线视频观看精品| 免费人成视频x8x8入口观看| 99久久精品一区二区三区| 久久久久久九九精品二区国产| 国产av在哪里看| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 少妇裸体淫交视频免费看高清| 亚洲不卡免费看| 午夜福利高清视频| 久久综合国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 97在线视频观看| 日本黄色片子视频| 高清午夜精品一区二区三区 | 亚洲精品456在线播放app| 女同久久另类99精品国产91| 欧美精品国产亚洲| 亚洲在线观看片| 99久久中文字幕三级久久日本| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类| 中文字幕av成人在线电影| 欧美色视频一区免费| 美女脱内裤让男人舔精品视频 | 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 午夜免费男女啪啪视频观看| 亚洲无线在线观看| kizo精华| 亚洲av一区综合| 中国美白少妇内射xxxbb| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 亚洲欧洲日产国产| 久久久久久久久中文| 亚洲国产欧美人成| 在线国产一区二区在线| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 欧美日韩在线观看h| 性插视频无遮挡在线免费观看| 国产91av在线免费观看| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| 成人特级黄色片久久久久久久| 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| 永久网站在线| 九九热线精品视视频播放| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 一区二区三区高清视频在线| 高清日韩中文字幕在线| 麻豆乱淫一区二区| 国产亚洲精品久久久久久毛片| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 只有这里有精品99| 日韩亚洲欧美综合| 黄色配什么色好看| 国产精品日韩av在线免费观看| 男女啪啪激烈高潮av片| 综合色丁香网| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 亚洲国产精品成人久久小说 | 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 三级经典国产精品| 免费人成视频x8x8入口观看| 人人妻人人澡人人爽人人夜夜 | 丰满的人妻完整版| 国产在线精品亚洲第一网站| 有码 亚洲区| 国产伦精品一区二区三区四那| 色综合站精品国产| 久久久久免费精品人妻一区二区| av在线播放精品| 天天一区二区日本电影三级| 天天躁日日操中文字幕| 国产老妇女一区| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看 | 免费观看精品视频网站| 久久久久久大精品| 特级一级黄色大片| 欧美zozozo另类| 婷婷亚洲欧美| 久久久久九九精品影院| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区 | 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站| 热99re8久久精品国产| 久久99精品国语久久久| 亚洲av电影不卡..在线观看| 久久精品国产清高在天天线| 青春草视频在线免费观看| 国产一区二区激情短视频| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 久久亚洲国产成人精品v| 一个人免费在线观看电影| 黄色配什么色好看| 国产成人影院久久av| 国内精品美女久久久久久| 国产精品一区www在线观看| 波多野结衣高清无吗| 国产69精品久久久久777片| 成人三级黄色视频| 亚洲久久久久久中文字幕| 亚洲av.av天堂| 精品久久久噜噜| 久久久久久国产a免费观看| 国产午夜精品一二区理论片| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 成人av在线播放网站| 久久久午夜欧美精品| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 久久人人爽人人爽人人片va| 久久久欧美国产精品| 天美传媒精品一区二区| 欧美日韩综合久久久久久| 男人和女人高潮做爰伦理| 久久热精品热| 99久国产av精品| 日韩欧美一区二区三区在线观看| 大又大粗又爽又黄少妇毛片口| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 六月丁香七月| 国内精品美女久久久久久| 美女 人体艺术 gogo| 在线a可以看的网站| 九九热线精品视视频播放| 欧美激情国产日韩精品一区| 中国美女看黄片| 午夜福利在线观看免费完整高清在 | 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 男的添女的下面高潮视频| 99热全是精品| 久久亚洲精品不卡| 中文字幕久久专区| 我要搜黄色片| 美女脱内裤让男人舔精品视频 | 大香蕉久久网| 少妇裸体淫交视频免费看高清| 91精品一卡2卡3卡4卡| 天堂av国产一区二区熟女人妻| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 高清午夜精品一区二区三区 | 免费观看精品视频网站| 婷婷六月久久综合丁香| 女的被弄到高潮叫床怎么办| 波多野结衣高清无吗| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 欧美日本视频| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 麻豆乱淫一区二区| 一进一出抽搐gif免费好疼| 毛片女人毛片| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 免费无遮挡裸体视频| 青青草视频在线视频观看| 18+在线观看网站| 乱人视频在线观看| 国产探花极品一区二区| 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 国产精品1区2区在线观看.| 嫩草影院入口| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 亚洲av免费在线观看| 亚洲国产日韩欧美精品在线观看| 国模一区二区三区四区视频| 精品人妻偷拍中文字幕| 校园春色视频在线观看| 国产av不卡久久| 亚洲性久久影院| 亚洲婷婷狠狠爱综合网| 国产三级中文精品| 日本在线视频免费播放| 一级毛片电影观看 | 欧美日韩综合久久久久久| 最近2019中文字幕mv第一页| 色噜噜av男人的天堂激情| 国产色婷婷99| 一区二区三区四区激情视频 | 性欧美人与动物交配| 国产精品一及| 亚洲国产日韩欧美精品在线观看| 午夜老司机福利剧场| 久久欧美精品欧美久久欧美| 国产av一区在线观看免费| 亚洲无线在线观看| 波野结衣二区三区在线| 精品无人区乱码1区二区| 久久婷婷人人爽人人干人人爱| 亚洲av中文字字幕乱码综合| 欧美成人a在线观看| 大型黄色视频在线免费观看| 久久精品国产亚洲av天美| 欧美一区二区国产精品久久精品| 成年版毛片免费区| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| 午夜视频国产福利| 久久午夜福利片| 男人舔奶头视频| 尤物成人国产欧美一区二区三区| 嫩草影院精品99| 美女脱内裤让男人舔精品视频 | 成人毛片60女人毛片免费| 国产精品蜜桃在线观看 | 高清毛片免费看| 久久久精品94久久精品| h日本视频在线播放| 亚洲人与动物交配视频| 日韩欧美一区二区三区在线观看| 免费av观看视频| 性色avwww在线观看| 久久99蜜桃精品久久| 日本一本二区三区精品| 最近中文字幕高清免费大全6| 国产免费一级a男人的天堂| 嘟嘟电影网在线观看| АⅤ资源中文在线天堂| 欧美日韩国产亚洲二区| 女人被狂操c到高潮| 免费不卡的大黄色大毛片视频在线观看 | 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 欧美一级a爱片免费观看看| 亚洲七黄色美女视频| 91久久精品电影网| 欧美高清性xxxxhd video| 九九热线精品视视频播放| 国产老妇女一区| 欧美3d第一页| 一边亲一边摸免费视频| 九草在线视频观看| 久久九九热精品免费| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 欧美在线一区亚洲| 大型黄色视频在线免费观看| 国产在视频线在精品| 少妇裸体淫交视频免费看高清| 身体一侧抽搐| 中文字幕制服av| 麻豆国产97在线/欧美| av福利片在线观看| 国产69精品久久久久777片| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 免费av毛片视频| 中国美白少妇内射xxxbb| 久久午夜亚洲精品久久| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 99久久精品国产国产毛片| 久久精品国产自在天天线| 看黄色毛片网站| 免费观看的影片在线观看| 欧美bdsm另类| 91精品一卡2卡3卡4卡| 一本一本综合久久| avwww免费| 亚洲国产日韩欧美精品在线观看| 一本一本综合久久| 搡女人真爽免费视频火全软件| 国产精品人妻久久久久久| 国产亚洲精品久久久com| 国产不卡一卡二| 亚洲欧美成人精品一区二区| 男人和女人高潮做爰伦理| 国产精品av视频在线免费观看| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 久久精品国产清高在天天线| 日韩,欧美,国产一区二区三区 | 国产精品人妻久久久久久| 久久九九热精品免费| 国产高清激情床上av| 麻豆成人av视频| 熟女人妻精品中文字幕| 丰满人妻一区二区三区视频av| 天天一区二区日本电影三级| 非洲黑人性xxxx精品又粗又长| 亚洲国产欧洲综合997久久,| 免费av不卡在线播放|