中圖分類號(hào):TD712 文獻(xiàn)標(biāo)志碼:A
Abstract:The complex geological conditions of deep outburst-prone coal mines pose severe challenges to the stabilityand efficiency of gas extraction via surface wels.Currently,fixed negative pressure extraction is commonly used to extract gas from goaf areas through surface wells.During the retreat of the working face,the \"thre Zones\"in the goaf area undergo dynamic evolution,resulting inasignificant decline in extraction eficiency inthe later stages of extraction.Taking the l21oo coal mining face of Shoushan No.1 Mine of Henan Pingbao Coal IndustryCo.,Ltd.astheengineeringbackground,aneficient gasextractiontechnologyviasurface wels in goaf areas of deep outburst-prone coal mines was proposed.Regarding the impact of mining-induced strata movement onthe wellstructure,a three-stage directional wellstructure was adopted,optimizing thethre-stage drill sections tomatchthecasing,enhancing thewell'sresistancetostratashear damage,andensuringthestability of surface wells under complex geological conditions.Combining the \"O\"-shaped fracture distribution theory, numerical simulation of gas seepage distribution,and thecalculation of the \"three Zones\"distribution theory, surface wells were arranged 20m away from the high-extraction roadway, with the well end located within a 30m (2號(hào) fracture zone above the roof of the working face,ensuring high efficiency of gas extraction.The gas extraction system of the surface wels achieved stable,efficient,and safe gas extraction through subsidence-resistant overhead pipelines,explosion-proof and backfire prevention measures,and regulationand monitoring of extraction operations.Based on diferent distances of the working face advancing past the surface wels,the negative extraction pressure was dynamically adjusted to maximize extraction efficiency.Field application results showed that after 1O days of surface well extraction, the gas volume fraction increased from 48% to 100% ,with a daily extraction volume exceeding 10 000m3 . The stable extraction stage lasted for 120 days, and the cumulative extraction volume over 260 days exceeded 2.35 million m3 . Surface well extraction did not interfere with the normal operation of the high-extraction roadway.The gas volume fraction at the upper corner of the working face decreased from 0.50% to 0.41% ,a reduction of 18% ,indicating that surface well gas extraction effectively alleviated gas accumulation in the upper corner of the working face.
Key words: gas extraction;surface wells;; goaf areas; three-stage directional well; negative extraction pressure; \"O\"-shaped fracture
0 引言
深部礦井開采過程中,采空區(qū)瓦斯超限風(fēng)險(xiǎn)突出,瓦斯治理是保障安全生產(chǎn)的關(guān)鍵[1-4]。現(xiàn)有采空區(qū)瓦斯抽采技術(shù)主要包括高抽巷、高位定向鉆孔、地面井。其中,高抽巷掘進(jìn)工程成本高,高位定向鉆孔地應(yīng)力高、鉆孔成孔率低,地面井因覆蓋范圍廣、抽采周期長(zhǎng)、不影響井下采掘作業(yè)等優(yōu)勢(shì)被逐漸應(yīng)用[5-7],但深部礦井的復(fù)雜地質(zhì)條件對(duì)地面井的穩(wěn)定性和抽采效率提出嚴(yán)峻挑戰(zhàn)。王爭(zhēng)[8研究發(fā)現(xiàn)地面井二開段容易發(fā)生套管傾斜問題,地面井井身結(jié)構(gòu)的穩(wěn)定性直接影響瓦斯抽采效果。路潔心等通過數(shù)值模擬研究發(fā)現(xiàn)減小地面井直徑并增大壁厚有利于防止地面井發(fā)生剪切破壞,但減小地面井直徑降低了地面井的瓦斯抽采效率。目前地面井普遍采用固定負(fù)壓抽采采空區(qū)瓦斯,然而工作面回采期間,采空區(qū)“三帶”處于動(dòng)態(tài)演化過程,導(dǎo)致抽采后期效率衰減明顯[10-12]
本文以平寶煤業(yè)有限公司首山一礦12100采煤工作面為工程背景,提出一種深部突出礦井采空區(qū)瓦斯地面井高效抽采技術(shù)。采用三開定向井身結(jié)構(gòu),優(yōu)化地面井位置,調(diào)控地面井抽采負(fù)壓,旨在解決深部突出礦井地面井穩(wěn)定性差、抽采效率低的難題,可為同類地質(zhì)條件下的采空區(qū)瓦斯治理提供技術(shù)參考。
1工程背景
首山一礦為煤與瓦斯突出礦井,12100采煤工作面走向長(zhǎng) 1550m ,傾向長(zhǎng) 260m ,回采己 15-17 煤層,厚度為 3.2~5.7m ,平均厚度為 5.3m 。采煤工作面標(biāo)高為 -728.5~-771.6m ,地面標(biāo)高為 +140.3~+200.5m 煤層埋深超 900m 。煤層圍巖多為泥巖、砂質(zhì)泥巖、粉砂巖等,工作面地質(zhì)柱狀圖如圖1所示。
井下地質(zhì)條件復(fù)雜,隨著埋深增加,采煤工作面瓦斯異常涌出愈發(fā)嚴(yán)重。己 15-17 煤層最大瓦斯壓力為 1.5MPa ,實(shí)測(cè)煤層最大原始瓦斯含量為 10.34m3/t 利用高抽巷或高位定向鉆孔抽采采空區(qū)瓦斯存在成本高、成孔難、盲區(qū)多、抽采瓦斯效率低等問題,因此在12100采煤工作面布置地面井抽采采空區(qū)瓦斯。
2地面井高效抽采技術(shù)
2.1井身結(jié)構(gòu)
工作面回采過程中,采動(dòng)引起的上覆巖層垮落變形導(dǎo)致地面井結(jié)構(gòu)發(fā)生破壞。巖層移動(dòng)產(chǎn)生的剪切滑移和離層拉伸是影響地面井井身結(jié)構(gòu)的關(guān)鍵參量[13-15]。增大地面井直徑是保證巖層移動(dòng)后地面井暢通的有效方法[16-17]。因此,地面井采用三開定向井身結(jié)構(gòu),如圖2所示。一開鉆進(jìn)施工采用?425mm 鉆頭穿透松散層后延伸至基巖面以下10~20m( 累計(jì)深度約 135m) ,下人 Φ377mm 表層套管并固井。具體下入深度根據(jù)實(shí)際井位確定,固井水泥返至地面。二開鉆進(jìn)施工采用 煤層頂板以上 4 0" m完鉆,采用懸掛式完井技術(shù)下入" 139.7 m m篩管。地面井井身結(jié)構(gòu)參數(shù)見表1。
2.2地面井空間布局
改善地面井抽采采空區(qū)瓦斯效果的關(guān)鍵在于優(yōu)化地面井空間布局[18-20],包括地面井與高抽巷之間水平距離及地面井終孔位置。
工作面推進(jìn)后,“O”形圈裂隙呈規(guī)律性分布:自高抽巷向外, 0~10m 為裂隙稀疏區(qū), 10~20m 為瓦斯抽采靶區(qū), 20~30m 為裂隙密集區(qū)(瓦斯富集核心區(qū)), 30m 以外為采空區(qū)深部。為保證地面井抽采效果,將地面井布置在距離高抽巷 20m 處,如圖3所示。
煤層開采后,采空區(qū)內(nèi)頂板垮落,形成垮落帶,向上依次為斷裂帶和下沉帶??迓鋷r石破碎,孔隙度高,滲流能力強(qiáng)。斷裂帶內(nèi)發(fā)育離層裂隙,是瓦斯流動(dòng)的主要通道,因此地面井井底應(yīng)保持在斷裂帶內(nèi)[21]。
為精確模擬12100采煤工作面“三帶”分布特征,根據(jù)工作面地質(zhì)賦存情況,利用PFC2D建立二維離散元數(shù)值模型,如圖4所示。模型采用粒徑為0.2~0.3m 的顆粒單元,共包含72354個(gè)顆粒。模型長(zhǎng)度為 200m ,寬度為 80m 。模型兩側(cè)施加 20MPa 水平應(yīng)力,頂面施加 15MPa 垂直應(yīng)力,模型底面為固定約束邊界。
煤層開采后的頂板垮落形態(tài)及應(yīng)力分布特征如圖5所示??煽闯雒簩禹敯宓膿p傷范圍呈梯形分布,煤層上方 15m 范圍內(nèi)為垮落帶,斷裂帶發(fā)育高度為 50m ,在采空區(qū)中部形成了壓實(shí)區(qū),而采煤工作面附近的頂板尚未發(fā)生破壞;垮落帶和斷裂帶內(nèi)應(yīng)力得到顯著釋放,有利于瓦斯抽采,在采煤工作面附近形成高應(yīng)力集中區(qū)域,不利于瓦斯抽采。
進(jìn)一步利用Fluent軟件建立瓦斯?jié)B流數(shù)值模型,將采空區(qū)底板設(shè)置為瓦斯?jié)B出源,并通過二次開發(fā)將圖5中采空區(qū)內(nèi)的孔隙度分布導(dǎo)人瓦斯?jié)B流數(shù)值模型,模擬結(jié)果如圖6所示??煽闯隹迓鋷В簩禹敯迳戏?1 5 m 因高孔隙率形成密集瓦斯?jié)B流網(wǎng)絡(luò)(圖中綠色范圍);斷裂帶(煤層頂板上方 15~65m ))滲流能力隨深度增加呈階梯式衰減,距煤層頂板 30m 以淺區(qū)域滲流通路發(fā)達(dá)(圖中深藍(lán)色范圍)。
垮落帶高度 Hm 和斷裂帶高度 Hl 的計(jì)算表達(dá)式分別為
式中 M 為煤層厚度, m 。
首山一礦己 15-17 煤層平均厚度為 5.3m ,根據(jù)式(1)、式(2)計(jì)算可得垮落帶高度為 9.87~14.27m 斷裂帶高度為 38.27~49.47m 。
結(jié)合“O”形圈理論、瓦斯?jié)B流分布數(shù)值模擬結(jié)果與“三帶”分布計(jì)算結(jié)果,兼顧高滲流性與穩(wěn)定性,最終確定12100采煤工作面地面井終孔位置在距離工作面煤層頂板上方 30m 處。
2.3地面井瓦斯抽采系統(tǒng)
地面井瓦斯抽采系統(tǒng)如圖7所示。由于采動(dòng)導(dǎo)致地面不均勻沉降,所有管路均選用無縫鋼管(金屬波紋管)并采用架空敷設(shè);井口閘閥與單向閥組合控制瓦斯流入,單向閥防止瓦斯逆流引發(fā)危險(xiǎn);防爆防回火裝置實(shí)時(shí)阻斷火焰?zhèn)鞑?,消除爆炸隱患;采用變?yōu)l控制的抽采真空泵作為動(dòng)力核心,在管路內(nèi)形成負(fù)壓驅(qū)動(dòng)瓦斯持續(xù)流動(dòng);流量計(jì)實(shí)時(shí)監(jiān)測(cè)瓦斯流量與濃度,負(fù)壓調(diào)節(jié)閥根據(jù)設(shè)定參數(shù)自動(dòng)調(diào)節(jié)管路壓力,確保抽采效率穩(wěn)定;抽采出的瓦斯接入瓦斯發(fā)電系統(tǒng),實(shí)現(xiàn)瓦斯安全高效轉(zhuǎn)化利用。
2.4地面井瓦斯抽采負(fù)壓調(diào)節(jié)
隨著工作面回采推進(jìn),地面井瓦斯抽采呈現(xiàn)明顯的階段性特征,可分為原始階段、暢流階段、阻流階段和乏流階段,各階段煤層裂隙發(fā)育、瓦斯運(yùn)移通道狀況存在差異,需動(dòng)態(tài)調(diào)整抽采負(fù)壓來精準(zhǔn)匹配各階段滲流特性,如圖8所示。在原始階段,地面井距工作面距離 gt;50m ,煤層未擾動(dòng),滲透率 lt;9.869× 10-17m2 ,采用 -60~-80kPa 的高抽采負(fù)壓突破原始滲流阻力。在暢流階段,工作面推過地面井 0~ 50m ,垮落帶裂隙充分發(fā)育,瓦斯運(yùn)移通道暢通且主要集中在垮落帶,滲透率 gt;4.9345×10-15m2. ,此時(shí)鉆井抽采瓦斯的阻力小,采用 -20~-30kPa 的低抽采負(fù)壓來維持高效抽采。在阻流階段,工作面推過地面井 50~150m ,裂隙部分壓實(shí),瓦斯運(yùn)移通道不暢,滲透率為 9.869×10-17~2.9607×10-15m2 ,地面井抽采瓦斯的阻力逐漸增大,采用 -30~-60kPa 的中等抽采負(fù)壓來抵消流動(dòng)阻力。在乏流階段,工作面推過地面井 gt;150m ,裂隙閉合,瓦斯運(yùn)移通道堵塞,滲透率 lt;4.9345×10-16m2 ,地面井抽采瓦斯的阻力較大,因此采用 -60~-80kPa 的高抽采負(fù)壓強(qiáng)制疏通通道?;诠ぷ髅嫱七^地面井的不同距離,通過“高一低-中-高”變負(fù)壓調(diào)節(jié)控制地面井瓦斯抽采,可保持瓦斯抽采效率的持續(xù)優(yōu)化。
3現(xiàn)場(chǎng)應(yīng)用效果
3.1地面井瓦斯抽采濃度和日抽采量
地面井瓦斯抽采濃度和日抽采量如圖9所示??煽闯鲈谕咚钩椴沙跗冢粘椴闪肯鄬?duì)較小,這是由于此時(shí)上覆巖層尚未充分垮落,地面井未完全進(jìn)入采動(dòng)裂隙“O”形圈范圍內(nèi)。抽采10d后,隨著工作面推進(jìn),地面井進(jìn)入采煤工作面與采空區(qū)形成的“O”形圈裂隙導(dǎo)通區(qū),該區(qū)域作為優(yōu)勢(shì)瓦斯運(yùn)移通道,瓦斯抽采量和抽采濃度顯著增加,瓦斯抽采體積分?jǐn)?shù)由初始的 48% 持續(xù)升高至 100% ,日抽采量突破
10000m3 ,最高日抽采量達(dá) 17846m3 。瓦斯抽采16d后,地面井瓦斯抽采量進(jìn)入穩(wěn)定階段,日抽采量長(zhǎng)期維持在 10 000m3 左右。瓦斯抽采120d后,日抽采量逐漸降低,這是由于工作面持續(xù)推進(jìn)至采空區(qū)壓實(shí)區(qū),儲(chǔ)集空間壓縮效應(yīng)顯現(xiàn)。地面井運(yùn)行260d累計(jì)抽采瓦斯超過235萬 m3 ,實(shí)現(xiàn)了采空區(qū)瓦斯高效抽采。
3.2地面井瓦斯抽采對(duì)高抽巷瓦斯抽采的影響
為考察地面井瓦斯抽采井對(duì)高抽巷的影響,統(tǒng)計(jì)高抽巷瓦斯抽采情況,如圖10所示。地面井抽采15d內(nèi),高抽巷瓦斯抽采體積分?jǐn)?shù)與抽采量均基本保持穩(wěn)定,可見地面井瓦斯抽采初期并未對(duì)高抽巷瓦斯抽采產(chǎn)生十?dāng)_;15d后高抽巷與地面井的瓦斯抽采數(shù)據(jù)均出現(xiàn)明顯上升,二者共同作用,有效提升了采空區(qū)瓦斯整體抽采效果。
3.3工作面上隅角瓦斯?jié)舛?/p>
地面井抽采前后各70d內(nèi)工作面上隅角瓦斯?jié)舛茸兓闆r如圖11所示。可看出地面井未抽采采空區(qū)瓦斯時(shí),工作面上隅角的日平均瓦斯抽采體積分?jǐn)?shù)為 0.39%~0.65% ,70d內(nèi)的平均值為 0.50% ;地面井抽采瓦斯后,工作面上隅角的日平均瓦斯抽采體積分?jǐn)?shù)為 0.32%~0.55%, 70d內(nèi)的平均值為 0.41% 平均瓦斯抽采體積分?jǐn)?shù)降低幅度為 18% ,表明地面井瓦斯抽采有效降低了工作面上隅角瓦斯?jié)舛取?/p>
4結(jié)論
1)地面并采用三開定向井身結(jié)構(gòu),提高了并筒穩(wěn)定性;為保證地面井對(duì)瓦斯的抽采效果,地面井布置在距高抽巷 20m 處,并結(jié)合“O”形圈理論、數(shù)值模擬及“三帶”分布理論計(jì)算,將地面井終孔布置在距回采工作面頂板上方 30m 處;基于工作面推過地面井的不同距離,動(dòng)態(tài)調(diào)節(jié)抽采負(fù)壓,保障了地面井在不同開采階段的高效運(yùn)行。
2)現(xiàn)場(chǎng)應(yīng)用效果表明,隨著工作面推進(jìn),地面井瓦斯抽采濃度和抽采量顯著提升,日抽采量突破10000m3 ,最高達(dá) 17846m3 ,且在運(yùn)行260d內(nèi)累計(jì)抽采瓦斯超235萬 m3 ;地面井抽采未對(duì)高抽巷瓦斯抽采產(chǎn)生干擾;地面井抽采后上隅角平均瓦斯體積分?jǐn)?shù)降低了 18% ,有效保障了工作面生產(chǎn)安全。
參考文獻(xiàn)(References):
[1] 呂有廠.千米深井煤與瓦斯協(xié)調(diào)安全高效開采技術(shù) [J].煤炭科學(xué)技術(shù),2016,44(1):133-137. LYUYouchang.Coordinative safetyand high efficient coal and gas mining technology in underground coal mine with depthof 1000m[J] .Coal Science and Technol0gy,2016,44(1):133-137.
[2] 袁振春,魏思祥.采場(chǎng)動(dòng)壓分布特征及高效瓦斯抽放 技術(shù)研究[J].能源與環(huán)保,2020,42(12):51-54. YUAN Zhenchun,WEI Sixiang. Study on dynamic pressure distribution characteristics and high-efficient gas drainage technology in stope[J]. China Energyand EnvironmentalProtection,2020,42(12):51-54.
[3] 文光才,孫海濤,曹偈,等.深井煤巖瓦斯動(dòng)力災(zāi)害模 擬實(shí)驗(yàn)系統(tǒng)[J].煤炭學(xué)報(bào),2020,45(1):223-231. WEN Guangcai,SUN Haitao,CAO Jie,etal. Simulation experiment system of coal and gas dynamic disasterin deepmineand itsapplication inaccident analysis[J].Journal of China Coal Society,2020, 45(1):223-231.
[4] 唐輝.深井特厚煤層短壁工作面快速回采條件下瓦斯 防治技術(shù)[J].礦業(yè)安全與環(huán)保,2017,44(2):79-83. TANG Hui. Gas control technology for fast winning of short-wall coal face of extra-think seam in deep mine[J]. Mining SaIety amp; Environmental Protecuon, 201/, 44(2): 79-83.
[5]張永斌.高抽巷抽采作用下采空區(qū)瓦斯運(yùn)移規(guī)律研究 [J].當(dāng)代化工研究,2025(2):70-72. ZHANG Yongbin. Research on the gas transport law in goaf under the effect of high drainage tunnel[J].Modern Chemical Research,2025(2):70-72.
[6]林海飛,李樹剛,趙鵬翔,等.我國(guó)煤礦覆巖采動(dòng)裂隙 帶卸壓瓦斯抽采技術(shù)研究進(jìn)展[J].煤炭科學(xué)技術(shù), 2018,46(1):28-35. LIN Haifei,LI Shugang, ZHAO Pengxiang, et al. Research progress on pressure released gas drainage technology of mining cracking Zone in overburden strata of coal minein China[J]. Coal Scienceand Technology,2018, 46(1):28-35.
[7]段志成,陳國(guó)平,康軍,等.高位鉆孔在黃白茨煤礦瓦斯 治理中的應(yīng)用[J].能源與環(huán)保,2024,46(2):40-44,49. DUAN Zhicheng, CHEN Guoping,KANG Jun, et al. Application of high level drilling in gas control in HuangbaiciCoalMine[J]. ChinaEnergyand Environmental Protection,2024, 46(2): 40-44,49.
[8]王爭(zhēng).晉城礦區(qū)采空區(qū)地面井井身結(jié)構(gòu)優(yōu)化分析及工 程應(yīng)用[J].中國(guó)煤層氣,2024,21(6):3-7. WANG Zheng. Optimization analysis and engineering application of wellbore structure for surface wells in goaf areas of Jincheng Mining Area[J]. China Coalbed Methane,2024, 21(6): 3-7.
[9]路潔心,施式亮,羅新榮,等.顧橋礦煤層氣地面井穩(wěn)定性 分析及結(jié)構(gòu)優(yōu)化[J].礦業(yè)工程研究,2022,37(3):31-38. LU Jiexin, SHI Shiliang,LUO Xinrong, et al. Stability analysis and structure optimization of coalbed methane surface well in Guqiao Mine[J]. Mineral Engineering Research,2022,37(3):31-38.
[10]李延河.地面井分區(qū)式瓦斯抽采技術(shù)體系及工程實(shí)踐 [J].煤炭科學(xué)技術(shù),2023,51(3):100-108. LI Yanhe. Surface well partition gasextraction technology system and engineering practice[J]. Coal Science and Technology, 2023,51(3): 100-108.
[11]付軍輝.采動(dòng)區(qū)瓦斯地面井井身結(jié)構(gòu)設(shè)計(jì)及安全防護(hù) 研究[J].煤炭工程,2020,52(5):48-53. FU Junhui. Study on structure design and safety protection of gas surface well in mining area[J]. Coal Engineering,2020,52(5):48-53.
[12]劉愷德,侯晨,姜在炳,等.采動(dòng)區(qū)綜采工作面地面 “L”型鉆井瓦斯抽采技術(shù)[J].采礦與安全工程學(xué)報(bào), 2018,35(6):1284-1292,1300. LIU Kaide,HOU Chen,JIANG Zaibing,et al. Gas extraction technology with L-shaped ground well drilling in mining area[J]. Journal of Mining amp; Safety Engineering,2018,35(6):1284-1292,1300.
[13]張興華,張曉剛.基于摩爾-庫倫準(zhǔn)則以孔代巷上隅角 瓦斯治理研究[J].煤炭技術(shù),2024,43(7):196-200. ZHANG Xinghua, ZHANG Xiaogang. Research on gas control in upper cormer of roadway replace lane with holebased on Mohr-Coulombcriterion[J].Coal Technologv,2024,43(7): 196-200. 在新疆大傾角煤層中的應(yīng)用[J].中國(guó)礦業(yè),2023, 32(增刊2):202-208. WANG Yazhou, TANG Jianping,LI Rifu. Application of surface well gas extraction technology in mining area of steeply dipping coal seam in Xinjiang[J]. China Mining Magazine, 2023,32(S2): 202-208.
[15]唐建平,李日富.采動(dòng)影響下地面井抽采瓦斯運(yùn)移影 響因素?cái)?shù)值模擬研究[J].中國(guó)礦山工程,2023, 52(4):30-36, 61. TANG Jianping,LI Rifu. Numerical simulation of factors affecting gas migration in surface wells under the influence of mining[J]. China Mine Engineering,2023, 52(4):30-36, 61.
[16]張建國(guó),翟成.深埋藏高應(yīng)力順層水力沖孔煤體卸壓規(guī) 律及應(yīng)用[J].工礦自動(dòng)化,2022,48(10):116-122,141. ZHANG Jianguo, ZHAI Cheng. Pressure relief law and application of deep-buried high-stress bedding coal by hydraulic flushing[J]. Journal of Mine Automation, 2022,48(10):116-122,141.
[17]薛彥平.近距離煤層群綜采工作面瓦斯治理優(yōu)選措施 [J].工礦自動(dòng)化,2021,47(2):98-103. XUE Yanping. Optimal measures for gas control on fully mechanized working face of close-distance coal seam group[J]. Industry and Mine Automation, 2021, 47(2): 98-103.
[18]李國(guó)富,付軍輝,李超,等.山西重點(diǎn)煤礦采動(dòng)區(qū)煤層氣地 面抽采技術(shù)及應(yīng)用[J].煤炭科學(xué)技術(shù),2019,47(12): 83-89. LI Guofu,F(xiàn)U Junhui, LI Chao,et al. Surface drainage technology and application of CBM in key mining areas of Shanxi Province[J]. Coal Science and Technology, 2019,47(12): 83-89.
[19]童校長(zhǎng),文虎,徐鶴翔,等.地面井掏煤造穴卸壓增透 技術(shù)及工程應(yīng)用[J].西安科技大學(xué)學(xué)報(bào),2025, 45(1):61-73. TONG Xiaozhang, WEN Hu, XU Hexiang, et al. Technology and engineering application of surface shaft coal mining for pressure relief and permeability enhancement through cavity formation[J]. Journal of Xi'an University of Science and Technology,2025, 45(1):61-73.
[20]李延河,倪小明,賈晉生.礦區(qū)多煤層卸壓立體 抽采模式與工程示范[J].煤炭科學(xué)技術(shù),2024, 52(9):162-172. LI Yanhe, NI Xiaoming, JIA Jinsheng. Extraction mode and engineeringdemonstration of pressurerelief threedimensional of multi-coal seams in Pingdingshan Mining Area[J]. Coal Science and Technology,2024, 52(9): 162-172.
[21]胡千庭,孫海濤.煤礦采動(dòng)區(qū)地面井逐級(jí)優(yōu)化設(shè)計(jì)方 法[J].煤炭學(xué)報(bào),2014,39(9):1907-1913. HU Qianting, SUN Haitao. Graded optimization design method on surface gas drainage borehole[J]. Journal of China Coal Society,2014,39(9):1907-1913.