Abstract:Flower color is animportant phenotypiccharacteristic of ornamental plants,which isof great significance inenhancing theircommercialvalue.Anthocyaninsarethemainsubstances forthepetal pigmentationofornamentalplants, andtheanthocyaninbiosynthesis ismainlyregulatedbytheinternal structural genesand transcription factorsof plants,in addition totheinfluenceof environment.Inrecent years,withthedevelopmentof research technology,thewidespreadapplicationof transcriptomics,metabolomics,and proteomics hasprovidednewmethodsand means for the studyof anthocyaninsynthesismechanism.Basedontheresearchresultsofanthocyaninbiosynthesisregulationinornamentalplantsathome andabroad,wereviewedthestructureofnthocyanins,biosyntheticpathways,keystructuralgenes,transcriptionfactors and the applicationofomics,and elaborated the regulatory mechanismof genes related to anthocyanin biosynthesis.The aim is toprovidetheoreticalreferenceforthemolecularimprovementofflowercolorandthebreedingof novelvarietiesofonamental plants.
Keywords: ornamental plants; anthocyanin biosynthesis;regulation mechanism;omics
觀賞植物的花色繽紛艷麗,其特殊表型對(duì)整個(gè)植株審美價(jià)值的提升具有重要意義[1]?;ㄉ厥怯绊懟ㄉ纬傻闹匾蛩?,研究發(fā)現(xiàn)植物色素的種類主要有類黃酮、生物堿和類胡蘿卜素[2]。花青素是自然界存在最普遍、分布最廣泛的次生代謝物質(zhì),是植物花色形成過(guò)程中最常見(jiàn)的一類類黃酮物質(zhì)。花青素主要以糖昔基化的形式分布在植物的液泡中,是促使植物花瓣、葉片、種子、果實(shí)呈現(xiàn)不同顏色的主要色素物質(zhì)[3]。此外,花青素還是植物應(yīng)對(duì)環(huán)境脅迫的重要調(diào)控物質(zhì),可以減輕植物細(xì)胞遭受干旱、紫外線、真菌等外界脅迫造成的損傷[4]
前人對(duì)觀賞植物呈色機(jī)理進(jìn)行了深入研究,發(fā)現(xiàn)花色、葉色等形成受環(huán)境因素和自身基因調(diào)控,環(huán)境因素包括pH值、光照、溫度、礦物質(zhì)含量等[5],但是觀賞植物自身基因的調(diào)控作用對(duì)花青素合成的種類及含量影響最直接。伴隨植物著色過(guò)程,一系列相關(guān)的結(jié)構(gòu)基因及轉(zhuǎn)錄因子編碼的關(guān)鍵酶會(huì)調(diào)控花青素的生物合成,隨著科學(xué)技術(shù)的發(fā)展,高通量測(cè)序技術(shù)為觀賞植物花色呈色機(jī)制的組學(xué)研究提供了新的方法。
基于花青素合成相關(guān)的花色調(diào)控技術(shù)已經(jīng)得到了廣泛的研究和應(yīng)用,但是有關(guān)花青素積累與基因表達(dá)之間關(guān)系的研究還不夠深入,特別是組學(xué)技術(shù)在該領(lǐng)域的應(yīng)用還不夠成熟、分析不夠全面。為了揭示觀賞植物花青素呈色機(jī)制,本文綜述了花青素的結(jié)構(gòu)、生物合成途徑以及相關(guān)結(jié)構(gòu)基因和轉(zhuǎn)錄因子的調(diào)控機(jī)理,并結(jié)合組學(xué)技術(shù)在相關(guān)方面的應(yīng)用,解析不同基因表達(dá)與觀賞植物著色之間的關(guān)系,進(jìn)一步揭示黃酮類色素的代謝途徑,為建立花青素的分子調(diào)控網(wǎng)絡(luò)提供參考,對(duì)觀賞植物花色的分子設(shè)計(jì)育種和優(yōu)質(zhì)品種定向選育具有重要參考價(jià)值。
1花青素的結(jié)構(gòu)及生物合成途徑
1.1花青素苷的結(jié)構(gòu)及種類
花青素又稱為花色素,是一類天然的水溶性植物色素物質(zhì),以糖苷基化形式穩(wěn)定存在[7-8]。植物通過(guò)類黃酮途徑產(chǎn)生黃酮、黃酮醇、異黃酮、黃烷酮、花青素等代謝物,花青素生物合成途徑是類黃酮生物合成途徑的一個(gè)重要分支。許多觀賞植物富含花青素,在菊花(Chrysanthemum morifolium)[9]、紫羅蘭(Mauhiola incana)[10]、嘉蘭(Gloriosa superba)[11]、花毛茛(Ranunculus asiaticusL.)[12]大花卷丹(Lili-umleichtliniivar.maximowiczii)[13]矮牽牛(Petuniahybrida)[14等植物中均有相關(guān)報(bào)道。由于不同植物營(yíng)養(yǎng)器官和生殖器官中花青素的含量和組成不同,所以植物產(chǎn)生了橙色、紅色、紫色和藍(lán)色等不同的顏色特征[15-16]?;ㄇ嗨亟?jīng)過(guò)糖基化、?;?、甲基化修飾作用后形成花青素昔,花青素苷的結(jié)構(gòu)較多,進(jìn)而形成豐富的花色類型[17]。植物中常見(jiàn)的花青素有飛燕草色素、矢車菊色素、天竺葵色素、矮牽牛色素、錦葵色素、芍藥色素等,其中矮牽牛色素、錦葵色素由飛燕草色素甲基化衍生而來(lái),芍藥色素由矢車菊色素甲基化衍生而來(lái)[18]。如圖1所示,當(dāng)花青素花色基團(tuán)的位置被不同基團(tuán)取代會(huì)形成不同的花青素,產(chǎn)生相對(duì)應(yīng)的花色,如橙色、紅色、紫色和藍(lán)色等。隨著花青素羥基化程度加深花瓣的顏色偏紫色,隨著甲基化、糖基化加深而紅色增強(qiáng),隨著?;由疃{(lán)色增強(qiáng)[19-20]
在植物的不同部位、不同發(fā)育時(shí)期花青素種類及含量存在差異,同時(shí)因氣候和栽培品種的不同花青素也存在較大差異。在高等植物中,花瓣豐富的色彩可以吸引各種動(dòng)物進(jìn)行傳粉和傳播種子,但也可能在野外被植物用作警告顏色[2I-22]?;ㄇ嗨乜梢杂行н^(guò)濾紫外線,使植物免受輻射損傷,同時(shí)花青素還可以增強(qiáng)植物對(duì)低溫脅迫的抵抗力[23]。植物果實(shí)的成熟需要適當(dāng)?shù)墓獯碳?,紫外光作為植物可以感受的一種環(huán)境信號(hào),影響類黃酮代謝途徑以及花青素的合成水平[24],Kataoka等[25]研究發(fā)現(xiàn)紫外光可以增強(qiáng)桃(Prunuspersica)果皮中花青素的積累。
1.2花青素的生物合成途徑
花青素的生物合成途徑和基因調(diào)控網(wǎng)絡(luò)在許多植物中存在較為相似的模式,被認(rèn)為是高度保守的[26],如圖2所示,花青素苷主要在多個(gè)結(jié)構(gòu)基因和調(diào)控因子的作用下,通過(guò)花青素生物合成途徑合成[27]。前人已從金魚(yú)草(Antirrhinummajus)、矮牽牛、蝴蝶蘭(Phalaenopsis)擬南芥(Arabidopsis thali-ana)卵葉牡丹(Paeoniaqiui)等觀賞植物中克隆分離出與花青素合成相關(guān)的關(guān)鍵基因,并對(duì)其功能進(jìn)行了驗(yàn)證[28-31]。苯丙氨酸作為花青素和其他黃酮類化合物生物合成的初始前體物質(zhì),在苯丙氨酸解氨酶(PAL)、肉桂酸4-羥化酶(C4H)、4-香豆酰輔酶A連接酶(4CL)、查爾酮合酶(CHS)、查爾酮異構(gòu)酶(CHI)催化作用下合成無(wú)色的柚皮素,隨后柚皮素在黃烷酮3-羥化酶 (F3H )、類黃酮 3′ -羥化酶(F3′H) 、類黃酮 3′,5′ -羥化酶 (F3′5′H) 和二氫黃酮醇4-還原酶(DFR)催化作用下合成無(wú)色花青素[32-33],最后不穩(wěn)定的花青素通過(guò)花青素合成酶(ANS)、udp-葡萄糖-類黃酮3-O-葡萄糖基轉(zhuǎn)移酶(UFGT)轉(zhuǎn)化成穩(wěn)定的花青素苷,呈現(xiàn)紅色、粉色、藍(lán)色、紫色等顏色。MYB、bHLH和WD4O等轉(zhuǎn)錄因子通過(guò)對(duì)花青素合成的關(guān)鍵結(jié)構(gòu)基因進(jìn)行轉(zhuǎn)錄調(diào)控,從而影響花色的形成[34-35] 。
PAL:苯丙氨酸解氨酶;C4H:肉桂酸4-羥化酶;4CL:4-香豆酰輔酶 A 連接酶;CHS:查爾酮合酶;CHI:查爾酮異構(gòu)酶; F3H :黃烷酮3-羥化酶;F3′H :類黃酮3'-羥化酶; F3′5′H :類黃酮3',5'-羥化酶;DFR:二氫黃酮醇4-還原酶;ANS:花青素合成酶;UFGT:udp-葡萄糖-類黃酮3-O-葡萄糖基轉(zhuǎn)移酶;GST:谷胱甘肽 s 轉(zhuǎn)移酶。
2花青素生物合成中的主要結(jié)構(gòu)基因
苯丙氨酸解氨酶( PAL) 是花青素生物合成前期的關(guān)鍵酶[36],催化 L -苯丙氨酸脫掉氨轉(zhuǎn)化成反式肉桂酸。許多植物的花青素含量與PAL活性有關(guān)[37]]滇水金鳳(Impatiensuliginosa)的IuPAL1和IuPAL2基因在深紅色花被中的表達(dá)量最高,促進(jìn)花青素的顯著積累[38],戊糖代謝途徑中合成的苯丙酮酸在PAL 的作用下可減少與氨的結(jié)合,朝著花青素合成方向發(fā)展[39]。 PAL 是連接初級(jí)代謝和苯丙氨酸代謝的必需酶[40],植物通過(guò)苯丙素途徑合成多種重要的次生代謝物質(zhì),除了生成花青素外,還生成木質(zhì)素、類黃酮、植保素等物質(zhì)。
查爾酮合酶(CHS)可以將1分子香豆酰CoA和3分子丙二酰CoA縮合成查爾酮,是黃酮類物質(zhì)合成的關(guān)鍵聚合酶[41]。作為合成花青素等重要化合物的前體物質(zhì),查爾酮經(jīng)過(guò)其他酶的催化作用合成不同的中間產(chǎn)物,包括黃酮、黃酮醇、異黃酮、白藜蘆醇、花青素等。Huang等[42]研究發(fā)現(xiàn),馬纓杜鵑(Rhododendrondelavayi)的RdCHS1基因參與類黃酮的合成,在煙草中過(guò)表達(dá)RdCHS1基因,可使煙草的花色由淺粉色轉(zhuǎn)變?yōu)樯罘凵?。CHS屬于一個(gè)多基因家族編碼的酶,在不同物種間CHS的結(jié)構(gòu)具有一定的保守性。CHS基因在不同植物、不同組織器官中存在不同的表達(dá)和調(diào)控機(jī)制[43],所以研究CHS基因的分子特性具有重要意義。
查爾酮異構(gòu)酶(CHI)在植物體內(nèi)一般以單體形式存在,但在不同物種或者不同組織中的相對(duì)分子量有差異。CHI催化查爾酮分子異構(gòu)化形成(2S)-黃烷酮,再通過(guò)其他酶催化進(jìn)一步衍生為黃酮類物質(zhì),包括黃酮、異黃酮、黃酮醇和花青素[44]。已有研究發(fā)現(xiàn)CHI基因可以促進(jìn)類黃酮和花青素的合成,在日本牽牛(Ipomoeanil)中CHI基因編碼的EFP蛋白參與了類黃酮生物合成的早期階段,確保了類黃酮化合物的生成和花色素的沉積[45];在擬南芥突變體中, CHI(tt5) 基因功能的喪失導(dǎo)致類黃酮和花青素含量降低,促使種皮變黃[46]
類黃酮 3′,5′ -羥化酶 屬于細(xì)胞色素P450家族,可以催化二氫黃酮醇B環(huán) 3′,5′ 位置合成羥基化的類黃酮[47]。已有報(bào)道將桔梗(Platyc-odongrandiflorus) PgF3′5′H 基因轉(zhuǎn)化到煙草(Nicoti-anatabacum)中過(guò)表達(dá),煙草植株合成花青素的種類和含量均呈增加趨勢(shì),煙草花色由淺粉色轉(zhuǎn)變?yōu)槠芳t色[48]。前人研究發(fā)現(xiàn)豌豆(Pisumsativum)突變體由于缺乏 F3′5′H 基因,不能合成飛燕草色素和矮牽牛色素而出現(xiàn)粉色花,這兩種色素是野生型豌豆紫色花的主要著色物質(zhì)[49]
二氫黃酮醇4-還原酶(DFR)是花青素合成過(guò)程中的關(guān)鍵節(jié)點(diǎn)調(diào)控酶,可催化二氫山奈酚、二氫楊梅素、二氫槲皮素3種黃酮醇分別合成無(wú)色天竺葵素、無(wú)色飛燕草素、無(wú)色矢車菊素[50-51]。DFR 基因在不同植物、不同組織器官、不同發(fā)育階段的表達(dá)存在特異性,有研究結(jié)果表明,DFR基因在菊花舌狀花初露伸長(zhǎng)、花瓣伸長(zhǎng)時(shí)表達(dá)水平升高,隨著花序的開(kāi)放其表達(dá)水平逐漸降低[52]。Zan等[53]發(fā)現(xiàn)玫瑰(Rosarugosa)RrCCoAOMT1基因沉默時(shí),過(guò)表達(dá)RrDFR1基因可以提高矢車菊素-3,5-雙葡萄糖苷和芍藥素-3,5-葡萄糖苷的含量,使紅色花瓣顏色更濃。
在花青素生物合成途徑末端,無(wú)色花青素在花青素合成酶(ANS)的作用下被催化轉(zhuǎn)變?yōu)橛猩幕ㄇ嗨豙54]。作為花青素合成后期重要的調(diào)節(jié)酶,在擬南芥中發(fā)現(xiàn)ANS的活性位點(diǎn)由金屬離子、共底物和兩分子的底物類似物(二氫槲皮素)共同構(gòu)成[55]ANS基因在觀賞植物花色素的呈色過(guò)程中發(fā)揮重要的調(diào)控作用[56],有研究發(fā)現(xiàn)ANS基因的表達(dá)量與花青素的合成呈現(xiàn)正相關(guān)關(guān)系[57],其功能的缺失會(huì)導(dǎo)致植物器官轉(zhuǎn)變?yōu)闊o(wú)色或白色。Aharoni等[58]發(fā)現(xiàn)抑制草莓(FragariaXananassaDuch.)ANS基因的表達(dá)導(dǎo)致有色花青素?zé)o法合成,使草莓花朵的顏色由粉色轉(zhuǎn)變成了白色。
黃酮醇合成酶(FLS)屬于2-氧酮戊二酸依賴型雙加氧酶(2-ODD)家族,是一種催化二氫黃酮醇轉(zhuǎn)化為黃烷醇的可溶性酶[59]。Luo等[60]研究結(jié)果表明,在類黃酮生物合成通路中FLS和DFR共同競(jìng)爭(zhēng)底物二氫黃醇酮,分別合成無(wú)色黃醇酮和有色花青素。FLS基因在觀賞植物著色過(guò)程中發(fā)揮重要的調(diào)控作用,已有研究結(jié)果證明矮牽牛FLS基因的反義表達(dá)減少了黃酮醇的合成,促進(jìn)花青素的生物合成,使花瓣和花絲由淺粉色變?yōu)榧t色[6];草原龍膽( Eu #stomagrandiflorum)反義表達(dá)FLS基因的植株比未轉(zhuǎn)化植株的花瓣顏色更紅[62]
UDP-葡萄糖-類黃酮3-O-葡萄糖基轉(zhuǎn)移酶(UF-GT)通過(guò)將花青素昔元的C-3位糖基化形成穩(wěn)定的花青素苷,然后花青素昔被轉(zhuǎn)運(yùn)到細(xì)胞液泡中[56,63]。UFGT可以在花青素疏水分子中加入糖殘基,增加花青素的溶解度和穩(wěn)定性,促進(jìn)花青素昔的形成,花青素昔通過(guò)分子間和分子內(nèi)的堆疊效應(yīng)影響花瓣顏色[64]。已有報(bào)道日本牽?;ǎ↖pomoeanil)和圓葉牽?;ǎ↖pomoeapurpurea)突變體的UF-GT基因發(fā)生移碼突變而喪失活性,導(dǎo)致花朵中花青素積累量減少了約 80% ,突變體花色因此變淺[65]
3花青素生物合成相關(guān)轉(zhuǎn)錄因子
花青素生物合成主要通過(guò)轉(zhuǎn)錄因子在轉(zhuǎn)錄水平對(duì)結(jié)構(gòu)基因進(jìn)行調(diào)控完成[26]。迄今為止,已發(fā)現(xiàn)MYB、bHLH、WD4O、鋅指(Zincfinger)、MADS和WRKY等轉(zhuǎn)錄因子可以調(diào)控花青素的生物代謝過(guò)程[66-67]。To等[68]報(bào)道在花青素合成通路中,MYB、bHLH和WD40這3個(gè)主要轉(zhuǎn)錄因子家族特異性調(diào)控結(jié)構(gòu)基因的表達(dá),進(jìn)而影響花色素的合成。
3.1 MYB類轉(zhuǎn)錄因子
MYB轉(zhuǎn)錄因子具有兩個(gè)不同的功能域,一個(gè)高度保守的MYBDNA-binding結(jié)合域和一個(gè)可調(diào)控蛋白質(zhì)活性的C-terminal調(diào)節(jié)域[9],根據(jù)MYB結(jié)構(gòu)域的重復(fù)次數(shù),MYB被分為4大類,即R1、R2R3、R1R2R3和4R-MYB[70]。通過(guò)對(duì)擬南芥[71]和玉米(Zeamays)[72]R2R3-MYB的研究發(fā)現(xiàn)該基因家族的規(guī)模較大,盡管MYB結(jié)構(gòu)域外的氨基酸序列存在差異,但仍有一些保守的基序有助于識(shí)別R2R3型MYB轉(zhuǎn)錄因子DNA結(jié)合域外的功能域。植物中的R2R3-MYB家族成員已被證實(shí)主要參與調(diào)控花青素的生物合成[73]。R2R3-MYB可以作為正調(diào)控因子和負(fù)調(diào)控因子調(diào)控植物不同器官中花青素合成的種類和含量水平[74]
已有研究發(fā)現(xiàn),在園藝植物中過(guò)表達(dá)MYB基因能夠促進(jìn)花青素的積累[75-76],在蘋(píng)果果皮中過(guò)表達(dá)藍(lán)星睡蓮(Nymphaeacolorata)NcMYB25基因,可以顯著增加果皮花青素的含量[7]。過(guò)表達(dá)AN4(R2R3-MYB編碼基因)可以促進(jìn)矮牽牛CHS、F3H和DFR基因的表達(dá),進(jìn)而增強(qiáng)花青素的生物合成[78]。對(duì)牡丹(Paeoniasuffruticosa)轉(zhuǎn)錄因子PsMYB114LPsMYB12L基因進(jìn)行異源表達(dá),發(fā)現(xiàn)這兩個(gè)轉(zhuǎn)錄因子特異性調(diào)控DFR和ANS基因表達(dá),促進(jìn)花青素的沉積[79]。在蝴蝶蘭研究中發(fā)現(xiàn)Pe-MYB2PeMYB11和PeMYB12轉(zhuǎn)錄因子可以激活3個(gè)下游結(jié)構(gòu)基因F3H、DFR和ANS的表達(dá),促進(jìn)花瓣中花青素生物合成,這3個(gè)PeMYB還參與了單個(gè)花不同部位的色素沉著,促進(jìn)萼片和花瓣中紅色斑點(diǎn)及脈紋狀表型的形成[80] 。
MYB類轉(zhuǎn)錄因子可以與結(jié)構(gòu)基因共同作用,抑制花青素的生物合成。已有報(bào)道發(fā)現(xiàn),菊花Cm-MYB4和 CmMYB5 轉(zhuǎn)錄因子基因異源表達(dá)導(dǎo)致花青素含量降低[81], PtrMYB182 轉(zhuǎn)錄因子基因在楊樹(shù)(Populus species)中過(guò)表達(dá)降低了花青素的積累[82]在葡萄(Vitisvinifera)中R2R3-MYB轉(zhuǎn)錄因子基因的表達(dá)水平與色素沉著密切相關(guān)[74],R2R3-MYB轉(zhuǎn)錄因子基因在煙草中異源表達(dá)可以抑制花青素合成,使花瓣幾乎轉(zhuǎn)變?yōu)榘咨玔58.83]。Albert等[84]研究發(fā)現(xiàn),PhMYB27是矮牽?;ㄇ嗨厣锖铣傻囊种埔蜃?,RNAi轉(zhuǎn)錄因子PhMYB27增加了矮牽?;ㄇ嗨胤e累,而過(guò)表達(dá)則降低了其花青素的生物合成。通過(guò)郁金香(TulipagesnerianaL.)TgMYB4轉(zhuǎn)錄因子基因在煙草中過(guò)表達(dá),發(fā)現(xiàn)ANS和DFR基因的轉(zhuǎn)錄水平嚴(yán)重降低,抑制了花青素的合成,減少了花瓣中色素沉積[85]
3.2 bHLH類轉(zhuǎn)錄因子
bHLH轉(zhuǎn)錄因子由氨基酸末端的堿性結(jié)構(gòu)域和羧基末端的 α 螺旋-環(huán)- ?α 螺旋結(jié)構(gòu)域(HLH結(jié)構(gòu)域)組成,每個(gè)結(jié)構(gòu)域是由60個(gè)左右保守氨基酸殘基構(gòu)成的多肽序列。堿性結(jié)構(gòu)域參與bHLH轉(zhuǎn)錄因子與DNA順式元件E-box或G-box結(jié)合,HLH結(jié)構(gòu)域由兩個(gè)含有疏水殘基的 α 螺旋形成二聚體,改變不同信號(hào)通路靶基因的表達(dá)[86]。bHLH作為調(diào)控花青素合成的重要的調(diào)控因子,可以與結(jié)構(gòu)基因的啟動(dòng)子結(jié)合激活對(duì)應(yīng)基因的活性,在花青素生物合成通路中發(fā)揮重要作用[87-88] O
bHLH通過(guò)直接調(diào)控結(jié)構(gòu)基因(DFR、ANS、UF-GT)的表達(dá)水平調(diào)控花青素的生物合成。在石斛(Dendrobium)中通過(guò)轉(zhuǎn)錄組分析鑒定到DhbHLH1轉(zhuǎn)錄因子,DhbHLH1可以與DhMYB2結(jié)合激活花瓣中DhDFR和DhANS基因的啟動(dòng)子,調(diào)控花青素的生物合成[89]。擬南芥中與黃酮類合成相關(guān)的bHLH已被歸為IIIf亞組[90],bHLH轉(zhuǎn)錄因子AtGL3、AtEGL3和AtTT8通過(guò)調(diào)控結(jié)構(gòu)基因,參與了花青素的積累[91]。bHLH在花青素合成途徑中可以發(fā)揮正向調(diào)控的作用,通過(guò)蓮花(Nelumbonucifera)NnTT8基因異源過(guò)表達(dá)分析發(fā)現(xiàn), NnTT8 正向調(diào)控花青素和原花青素(PA)的生物合成,與擬南芥AtTT8具有類似的功能[92]。從矮牽牛中鑒定出AN1和JAF13(bHLH1)轉(zhuǎn)錄因子可以直接激活dfrA基因的表達(dá),促進(jìn)色素在花瓣中積累[93]。前人研究發(fā)現(xiàn),bHLH還可以負(fù)調(diào)控花青素的生物合成,蠟梅(Chimonanthuspraecox)Cp-bHLH1轉(zhuǎn)錄因子通過(guò)抑制類黃酮生物合成途徑后期基因(LBG)的表達(dá)來(lái)抑制花青素的沉積[94]。Zhao等[95]研究發(fā)現(xiàn),LcbHLH92通過(guò)激活JAZ基因來(lái)抑制TT8的表達(dá),導(dǎo)致基因DFR和ANS的表達(dá)活性下降,起到顯著降低花青素積累的作用。
3.3 WD40轉(zhuǎn)錄因子
WD40蛋白也稱為WD重復(fù)蛋白(WD-repeatprotein),由4\~16個(gè)高度保守的WD40特征基序構(gòu)成。每個(gè)保守的特征基序從N末端甘氨酸-組氨酸(G-H)對(duì)開(kāi)始,到C末端天冬氨酸-色氨酸(W-D)對(duì)結(jié)束,也被稱為 Trp-Asp 基序[96-97],每個(gè)基序由4個(gè)反式折疊組成[98]。WD40蛋白在植物體中最重要的功能之一是參與花青素生物合成的調(diào)控[9-100],,通過(guò)WD40結(jié)構(gòu)域與其他轉(zhuǎn)錄因子結(jié)合協(xié)同調(diào)控花瓣中色素沉積,所以WD40轉(zhuǎn)錄因子的發(fā)現(xiàn)進(jìn)一步完善了花青素生物合成機(jī)制理論。
前人研究發(fā)現(xiàn)矮牽牛PhAN11基因編碼的WD40蛋白可以激活PhAN2的轉(zhuǎn)錄,促進(jìn)花青素的合成[I],而擬南芥TTG1轉(zhuǎn)錄因子與矮牽牛AN11高度同源,可以誘導(dǎo)DFR基因的表達(dá),調(diào)控花青素的積累及葉表皮毛的形成,TTG1基因的缺失會(huì)嚴(yán)重影響這些發(fā)育過(guò)程[102-103]。Saito等[63]在紫蘇(Peril-lafrutescens)葉色研究中鑒定到了調(diào)控花青素合成的PFWD蛋白,在擬南芥中過(guò)表達(dá)PFWD基因能夠使花青素的合成增強(qiáng),An等[104]從蘋(píng)果(Malus pum-ila)中克隆到WD40基因MdTTG1,并通過(guò)在擬南芥中異源表達(dá),鑒定出MdTTG1為調(diào)控花青素積累的關(guān)鍵基因。小蒼蘭(Freesiahybrida)WD40基因FhTTG1與花青素和原花青素的合成同步表達(dá),F(xiàn)hT-TG1可能與轉(zhuǎn)錄因子FhbHLH相互作用,正向調(diào)控與花青素、原花青素合成及毛狀體形成相關(guān)的基因,進(jìn)而影響相關(guān)發(fā)育過(guò)程[105] O
3.4轉(zhuǎn)錄因子MBW復(fù)合物的調(diào)控作用
花色調(diào)控因子R2R3-MYB、bHLH與WD40相互作用組成復(fù)合體(MBW)[35,106],可以激活參與花青素、原花青素合成相關(guān)結(jié)構(gòu)基因的活性。MBW復(fù)合體通過(guò)與結(jié)構(gòu)基因的啟動(dòng)子特異性結(jié)合,實(shí)現(xiàn)對(duì)花青素生物合成途徑的調(diào)控作用[107-108],但是這些結(jié)構(gòu)基因的功能在不同物種之間存在差異[106]。在擬南芥中茉莉酸(JAs)誘導(dǎo)JAZ蛋白降解,使JAZ蛋白對(duì)bHLH和MYB的抑制作用解除,MBW復(fù)合體的調(diào)控活性恢復(fù),促進(jìn)了花青素的合成和毛狀體的產(chǎn)生[109]。月季中RcMYB與RcbHLH(RcbHLH42和RcEGL1)、RcTTG1結(jié)合形成兩種MWB復(fù)合體,通過(guò)瞬時(shí)表達(dá)發(fā)現(xiàn)這兩種復(fù)合體以功能冗余的方式正向調(diào)控花青素的合成[110]。Gu等[1]發(fā)現(xiàn)斑點(diǎn)牡丹PsMYB12與bHLH和WD40蛋白相互作用形成復(fù)合體,可以激活色斑中PsCHS基因特異性表達(dá)。苜蓿(Medicagotruncatula)花中MtTT8、MtWD40-1與MYB轉(zhuǎn)錄因子MtPAR相互作用,激活花青素還原酶(ANR)和花青素合成酶的活性,調(diào)節(jié)花青素的生物合成[112]。紫葉茶樹(shù)(Camel-liasinensis)中R2R3-MYB轉(zhuǎn)錄因子CsAN1特異性激活CsGL3(bHLH),結(jié)合WD-repeat 蛋白CsTTG1,形成MYB-bHLH-WDR(MBW)復(fù)合物,促進(jìn)花青素合成途徑后期結(jié)構(gòu)基因(LBG)表達(dá),調(diào)控花青素積累[113]
4組學(xué)研究在觀賞植物中的應(yīng)用
4.1轉(zhuǎn)錄組學(xué)在觀賞植物研究中的應(yīng)用
轉(zhuǎn)錄組學(xué)是生物體在一定發(fā)育階段或特定功能狀態(tài)下,通過(guò)對(duì)基因的結(jié)構(gòu)和功能進(jìn)行研究,揭示該生物生長(zhǎng)發(fā)育特征分子機(jī)制的一種分析技術(shù)。轉(zhuǎn)錄組學(xué)從特定組織或者特定細(xì)胞的整體層面對(duì)基因的表達(dá)情況進(jìn)行分析,從根本上對(duì)轉(zhuǎn)錄出來(lái)的mRNA集合進(jìn)行研究。轉(zhuǎn)錄組測(cè)序(RNA-seq)技術(shù)是通過(guò)對(duì)cDNA序列進(jìn)行測(cè)序得到大量read片段,再經(jīng)過(guò)特殊的運(yùn)算方法,最終獲得基因片段表達(dá)水平[114]的一種高通量測(cè)序技術(shù)?;谙乱淮鷾y(cè)序(NGS)的RNA-seq技術(shù)已被廣泛應(yīng)用于鑒定園藝作物的關(guān)鍵調(diào)控基因[15-7]。李婧[118]利用 Illumina Hi-Seq 技術(shù)對(duì)三色堇(Viola×WittrockianaGams.)花瓣進(jìn)行高通量測(cè)序,與公共數(shù)據(jù)庫(kù)進(jìn)行比對(duì),挖掘出了參與花青素和類胡蘿卜素生物合成的關(guān)鍵基因,并在不同花色品種中對(duì)基因功能進(jìn)行了表達(dá)分析,揭示了三色堇花斑形成的分子機(jī)理。Qu等[119]對(duì)不同花期的綠絨蒿(Meconopsis)開(kāi)展轉(zhuǎn)錄組測(cè)序和生物信息學(xué)分析,鑒定出5個(gè)調(diào)控花色變化的重要差異基因。Shi等[120]基于Illumina Hi-Seq技術(shù)對(duì)黃色和紫紅色牡丹花瓣進(jìn)行了大規(guī)模轉(zhuǎn)錄組分析,共篩選出4個(gè)在紫紅色花色形成過(guò)程中發(fā)揮關(guān)鍵作用的結(jié)構(gòu)基因和轉(zhuǎn)錄因子,為今后更好地解析牡丹花著色機(jī)理提供了關(guān)鍵的基因靶點(diǎn)。
基于IlluminaSolexa平臺(tái)的高通量測(cè)序技術(shù)作為挖掘花色相關(guān)基因和解析花瓣呈色機(jī)制的高效技術(shù)手段,在觀賞植物中得到了廣泛應(yīng)用,如石蒜花(Lycoris radiata)[121]、甘菊(Chrysanthemum lavandul-ifolium)[122]、馬蹄蓮(Zantedeschia aethiopica)[123],木槿(Hibiscussyriacus)[i24]等,這些分析結(jié)果為植物色素沉著的分子機(jī)制研究提供了大量有價(jià)值的基因資源,為次生代謝物合成相關(guān)調(diào)控基因的挖掘提供了重要的途徑。
4.2代謝組學(xué)在觀賞植物中的應(yīng)用
代謝組學(xué)是對(duì)某一生物體、組織或細(xì)胞中的所有低相對(duì)分子量(通常是指相對(duì)分子量 lt;1 000 )代謝產(chǎn)物進(jìn)行定量和定性分析的新興技術(shù)。通過(guò)檢測(cè)分析植物在正常生長(zhǎng)發(fā)育條件下與特殊環(huán)境或者處理下生成的差異次生代謝物,來(lái)揭示其生命活動(dòng)的變化規(guī)律[125]。根據(jù)植物中代謝物的差異變化也可以反映出植物生長(zhǎng)環(huán)境的動(dòng)態(tài)變化。利用樣本圖譜的檢測(cè)、識(shí)別技術(shù),對(duì)代謝過(guò)程中次生代謝物的富集、消耗及分布進(jìn)行研究、驗(yàn)證,找出可能與之相關(guān)的生物標(biāo)志物[126],可以對(duì)生物體的生理狀態(tài)作出一定的判斷。
代謝組學(xué)在園藝植物花色研究方面已被廣泛應(yīng)用,通過(guò)分析差異代謝物的沉積規(guī)律,揭示花青素類物質(zhì)的生物合成途徑和花色呈色機(jī)制[127]。Park等[128]利用代謝組學(xué)分析了白色、紫色和紅色杜鵑(Rhododendronschlippenbachii)表型的變化和代謝物的積累,鑒定出40種差異次生代謝物,發(fā)現(xiàn)紅色花的花青素積累量最高,主要成分是矢車菊素。Shen等[129]利用代謝組學(xué)對(duì)紫葉茶新品種ZX進(jìn)行了研究,發(fā)現(xiàn)紫葉茶中與花青素合成相關(guān)的代謝產(chǎn)物含量保持了較高水平,而在綠葉茶中與葉綠素、類胡蘿卜素合成有關(guān)的代謝產(chǎn)物含量較高,這些發(fā)現(xiàn)有助于解析紫葉茶葉色的形成機(jī)制。Su等[130]采用代謝組學(xué)對(duì)玫瑰品種ChenXi在不同光照條件下花瓣中類黃酮代謝物進(jìn)行了研究,發(fā)現(xiàn)不同處理間有56種類黃酮化合物存在差異,主要富集在異黃酮、類黃酮、黃酮和黃酮醇、苯丙素以及花青素的生物合成途徑中,分析認(rèn)為花青素是引起玫瑰花在光照下轉(zhuǎn)變?yōu)榧t色的主要原因。陳勇等[131]通過(guò)代謝組學(xué)分析發(fā)現(xiàn),洋紫荊花(BauhiniavariegataL.)不同顏色花瓣積累的花青素種類存在差異,紫紅色花瓣積累的主要是錦葵色素衍生物和飛燕草色素衍生物,白色花則以天竺葵色素衍生物為主。此外,通過(guò)代謝組學(xué)研究與植物色澤相關(guān)的次生代謝物還有較多報(bào)道,如Ai等[132]對(duì)建蘭(Cymbidium ensifolium)的研究、Zhao 等[133]對(duì)睡蓮(Nymphaea)的研究、Sawada等[134]對(duì)菊花的研究以及桑賢東等[135]對(duì)大紅花(Hibiscusrosa-sinensis)的研究。
4.3蛋白質(zhì)組學(xué)在觀賞植物中的應(yīng)用
蛋白質(zhì)組學(xué)是從生物體或者細(xì)胞水平研究某一生理過(guò)程的全部蛋白質(zhì),分析這一過(guò)程中蛋白質(zhì)的差異表達(dá)、修飾作用及蛋白質(zhì)之間的互作等規(guī)律,從而揭示某一生命活動(dòng)的生理或者分子機(jī)制的一種分析技術(shù)[136]。目前蛋白質(zhì)組學(xué)主要有雙向分離凝膠電泳技術(shù)、質(zhì)譜分析技術(shù)、同位素標(biāo)記相對(duì)和絕對(duì)定量技術(shù)、蛋白質(zhì)芯片技術(shù)、免疫共沉淀技術(shù)等,其中同位素標(biāo)記技術(shù)(iTRAQ)和串聯(lián)質(zhì)譜標(biāo)記技術(shù)(TMT)操作效率和靈敏度較高,廣泛用于蛋白質(zhì)分析研究[137]。觀賞植物著色相關(guān)基因在植株生長(zhǎng)發(fā)育不同時(shí)間、不同部位表達(dá)情況并不完全相同,所以有必要進(jìn)行多時(shí)期、多部位、多水平的蛋白質(zhì)組學(xué)研究,建立色澤形成的功能蛋白質(zhì)庫(kù)和基因庫(kù),為觀賞植物種質(zhì)資源創(chuàng)制、分子輔助育種提供理論基礎(chǔ)。
蛋白質(zhì)是各種生命活動(dòng)的承擔(dān)者和執(zhí)行者,通過(guò)對(duì)蛋白質(zhì)類物質(zhì)進(jìn)行分析,從生物化學(xué)角度探究觀賞植物表型特征[138],有助于揭示其花色形成機(jī)理。吳欣欣等[139]采用雙向電泳和蛋白質(zhì)質(zhì)譜鑒定技術(shù),對(duì)紅色和白色跳枝梅(PrunusmumeFubanTiaozhi)花蕾的差異表達(dá)蛋白質(zhì)進(jìn)行分析,共鑒定到表達(dá)豐度差異達(dá)到2倍以上的蛋白質(zhì)21個(gè),對(duì)其中12個(gè)關(guān)鍵蛋白質(zhì)編碼基因在分子水平進(jìn)行分析,發(fā)現(xiàn)與信號(hào)轉(zhuǎn)導(dǎo)相關(guān)的生長(zhǎng)素結(jié)合蛋白質(zhì)、與茉莉酸甲酯合成相關(guān)的丙二烯氧化物環(huán)化酶可能是導(dǎo)致梅花顏色差異的關(guān)鍵因子。為了探究紅掌(Anthuriumandraeanum)佛焰苞顏色變化的機(jī)理,高樂(lè)[i40]以紅色野生型及玫瑰紅、白色突變體為研究對(duì)象進(jìn)行蛋白質(zhì)組學(xué)研究,鑒定到21個(gè)參與類黃酮合成、葡萄糖代謝、抗逆性、基因調(diào)節(jié)和信號(hào)轉(zhuǎn)導(dǎo)等生命活動(dòng)過(guò)程的功能蛋白,推測(cè)這些蛋白質(zhì)的差異表達(dá)是花朵呈現(xiàn)不同顏色的主要原因。李林寶[141]在蓮大灑錦色斑區(qū)蛋白質(zhì)組學(xué)研究中鑒定到參與花青素生物合成的差異表達(dá)蛋白質(zhì)(酶)9個(gè),其中有6個(gè)酶在著色區(qū)域呈上調(diào)趨勢(shì),特別是ANS和CHII對(duì)花青素在色斑區(qū)的積累影響顯著[141]。通過(guò)蛋白質(zhì)組學(xué)對(duì)觀賞植物花色呈色機(jī)理進(jìn)行解析,為關(guān)鍵基因挖掘研究提供了理論基礎(chǔ),對(duì)花色分子改良具有重要意義。
4.4多組學(xué)聯(lián)合在觀賞植物中的應(yīng)用
采用轉(zhuǎn)錄組學(xué)、代謝組學(xué)、蛋白質(zhì)組學(xué)等多組學(xué)進(jìn)行聯(lián)合分析,探究不同基因、次生代謝物、蛋白質(zhì)的差異表達(dá)及互作關(guān)系,已成為解析觀賞植物花色素苷合成、花色調(diào)控機(jī)制的方向和熱點(diǎn)。Fan等[142]通過(guò)代謝組學(xué)技術(shù)和高通量測(cè)序技術(shù)對(duì)草原龍膽雙色花發(fā)育過(guò)程中與花青素生物合成途徑的差異表達(dá)代謝物與差異表達(dá)基因進(jìn)行聯(lián)合分析,挖掘了調(diào)控網(wǎng)絡(luò)中關(guān)鍵基因與代謝物的關(guān)聯(lián)性,為揭示草原龍膽雙色花形成中花青素積累的分子機(jī)制奠定了基礎(chǔ)。
為了探究鹿角杜鵑花色變異的分子機(jī)制,Xiao等[143]以淺粉色、紫色花為研究對(duì)象進(jìn)行代謝組學(xué)與轉(zhuǎn)錄組學(xué)聯(lián)合分析,挖掘了與呈色相關(guān)的代謝產(chǎn)物、關(guān)鍵基因和轉(zhuǎn)錄因子,發(fā)現(xiàn)隨著RIF3GT1表達(dá)量的增加和RILAR、RANR表達(dá)量的降低,錦葵色素-3-0-葡萄糖昔和芍藥色素-3-0-葡萄糖苷的表達(dá)量增加,使鹿角杜鵑花呈現(xiàn)紫色,研究還發(fā)現(xiàn)轉(zhuǎn)錄因子RIMYB4、結(jié)構(gòu)基因RILAR與代謝物蘋(píng)果苷-3-O-葡萄糖昔和豌豆昔-3-O-葡萄糖昔之間存在調(diào)控關(guān)系。吳艷梅[144]通過(guò)轉(zhuǎn)錄組學(xué)和蛋白質(zhì)組學(xué)的聯(lián)合分析解析華麗龍膽(Gentianasino-ornata)藍(lán)色花呈色機(jī)制,篩選出1247個(gè)差異表達(dá)基因和825個(gè)差異表達(dá)蛋白質(zhì),鑒定出與花青素生物合成相關(guān)的關(guān)鍵基因 F3′5′H 、5GT、5AT及聚類基因群(包括3GT、UF3GT,DFR,ANS,bHLH, ,推測(cè)這些基因調(diào)控飛燕草素苷的生物合成、修飾、轉(zhuǎn)運(yùn)等過(guò)程,可能是華麗龍膽花冠呈藍(lán)色的關(guān)鍵基因。Deng等[145]綜合運(yùn)用代謝組學(xué)和蛋白質(zhì)組學(xué)技術(shù)對(duì)蓮花花瓣紅白雙色模式進(jìn)行分析,發(fā)現(xiàn)花青素3-0-葡萄糖基轉(zhuǎn)移酶(UF-GT)積累的減少導(dǎo)致花瓣白色部分花青素糖基化失敗,使花瓣不同部位花青素苷差異沉積,形成紅白雙色花。楊娟[146]以紫色和白色燕子花(Iris laevigata)為試驗(yàn)材料,通過(guò)轉(zhuǎn)錄組學(xué)、代謝組學(xué)和蛋白質(zhì)組學(xué)聯(lián)合分析發(fā)現(xiàn),紫色燕子花中花青素種類和含量顯著高于白色花,特別是飛燕草色素大量積累,而轉(zhuǎn)錄因子IIMYB4和IIMYB5競(jìng)爭(zhēng)與IbHLH3結(jié)合,促進(jìn)IANR表達(dá)量增加,使白色花中花青素的生物合成通路受到阻礙進(jìn)而抑制花青素的合成。
5展望
觀賞植物花青素生物合成受結(jié)構(gòu)基因和調(diào)控因子的共同作用,隨著組學(xué)的應(yīng)用,科研人員對(duì)觀賞植物呈色機(jī)制的研究將更加深入。挖掘與花瓣著色相關(guān)的關(guān)鍵基因并對(duì)其功能進(jìn)行驗(yàn)證,采用基因改良技術(shù)使花色研究朝滿足市場(chǎng)需求的方向發(fā)展,將為觀賞植物花色改良和分子輔助育種提供理論參考。
隨著高通量測(cè)序技術(shù)、代謝組學(xué)、蛋白質(zhì)組學(xué)等的發(fā)展和完善,不同組學(xué)聯(lián)合解析在觀賞植物花色形成和基因網(wǎng)絡(luò)調(diào)控方面具有廣闊的應(yīng)用空間?;ㄉ氐姆e累是一個(gè)復(fù)雜的代謝過(guò)程,涉及到的差異基因、代謝物、蛋白質(zhì)相對(duì)較多,目前相關(guān)代謝調(diào)控網(wǎng)絡(luò)研究還不夠完善,因此通過(guò)多組學(xué)聯(lián)合從多維度解析花色素積累的調(diào)控機(jī)制尤為重要。結(jié)合表觀遺傳特征,從不同角度深入挖掘影響差異表型形成的基因資源,為花色調(diào)控提供理論基礎(chǔ)。
觀賞植物的花瓣除了具有全色以外,還具有雙色、斑狀、霧狀、茶色等特殊表型,例如雙色大麗花、斑狀百合、茶色草原龍膽等具有較高的商業(yè)價(jià)值,廣受市場(chǎng)歡迎。觀賞植物這些特異性狀相對(duì)穩(wěn)定,但是其分子遺傳規(guī)律很少被揭示,采用較先進(jìn)的技術(shù)分析手段,揭示背后控制這些性狀的主效基因和轉(zhuǎn)錄因子,可以為觀賞植物種質(zhì)創(chuàng)新和花色改良育種提供理論基礎(chǔ)。
環(huán)境因素影響觀賞植物花青素苷的穩(wěn)定性,基因與環(huán)境的互作可以調(diào)控花色的表型,環(huán)境因子通過(guò)影響花青素合成關(guān)鍵基因的表達(dá)來(lái)調(diào)控花色素的積累。挖掘不同環(huán)境因子的信號(hào)轉(zhuǎn)導(dǎo)方式,分析環(huán)境對(duì)關(guān)鍵基因表達(dá)的影響及其與呈色物質(zhì)積累的關(guān)聯(lián)性,對(duì)觀賞植物栽培過(guò)程中環(huán)境因子的調(diào)控和觀賞植物觀賞價(jià)值的提高具有重要意義。
參考文獻(xiàn):
[1]YESH,HUASJ,MATT,et al.Genetic and multi-omics analyses reveal BnaAO7.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers[J].Journal of Experimental Botany,2022,73(19):6630-6645.
[2]DAVIESK M,SCHWINNKE.Molecular biology and biotechnology of flowerpigments[M].Heidelberg: Springer Berlin Heidelberg,2010.
[3]SAIGO T,WANG T,WATANABE M, et al. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants[J]. Current OpinioninPlantBiology,2020,55:93-99.
[4]喬廷廷,郭玲.花青素來(lái)源、結(jié)構(gòu)特性和生理功能的研究進(jìn) 展[J].中成藥,2019,41(2):388-392.
[5]劉國(guó)元,方威,余春梅,等.花青素調(diào)控植物花色的研究進(jìn)展 [J].安徽農(nóng)業(yè)科學(xué),2021,49(3):1-4,9.
[6]劉志祥,洪亞輝,莫愛(ài)華,等.觀賞植物花色分子遺傳學(xué)及基因 工程研究進(jìn)展[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2002,28 (6) :531-534.
[7]劉紅,魏曉羽,馬輝,等.幾種蘭屬地生種花瓣花色素組成 分析[J].江蘇農(nóng)業(yè)學(xué)報(bào),2022,38(6):1657-1677.
[8] 高飛,柯?tīng)D,金韜,等.光照對(duì)植物合成花色素苷的影響 研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(34):6-10.
[9] LIUXF,TENGRP,XIANGLL,etal.Sucrose-delayingflower color fading associated with delaying anthocyanin accumulation decreasein cut Chrysanthemum[J].PeerJ,2023,11:16520.
[10]NURAINI L,ANDO Y,KAWAI K,et al.Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana[J].Planta,2020,251(3):61.
[11]SUNY,HUPL,JIANGYN,etal.Integratedmetabolomeand transcriptome analysis of petal anthocyanin accumulation mechanism in Gloriosa superba‘Rothschildiana’during different flower development stages[J].International Journal of Molecular Sciences,2023,24(20):15034.
[12]LIUYF.ZHANGIH.YANGXH.etal.Diversitv inflowercol
orations of Ranunculus asiaticus L.revealed by anthocyanin biosynthesis pathway in view of gene composition,gene expression patterns,and color phenotype[J].Environmental Science and Pollution Research International,2019,26(14) :13785-13794.
[13]WANG Z,LIX,CHEN M M,et al.Molecular and metabolic insightsinto anthocyanin biosynthesis for spot formation on Lilium leichtlinii var.maximowicziiflower petals[J]. International Journal of Molecular Sciences,2023,24(3):1844.
[14]MORITAY,SAITOR,BANY,et al.Tandemlyarranged Chalcone synthase a genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida[J]. Plant Journal,2012,70(5) :739-749.
[15] CAMPANELLA JJ, SMALLEY JV, DEMPSEY M E. A phylogenetic examination of the primary anthocyanin production pathway of theplantae[J].Botanical Studies,2014,55(1):10.
[16]YANGY,CUI BH,TAN ZW,et al.RNA sequencing and anthocyaninsynthesis-related genes expresion analyses in whitefruited Vacinium uliginosum[J].BMC Genomics,2018,19(1): 930.
[17]TANAKA Y,BRUGLIERA F.Flower colour and cytochromes P450[C]. London:The Royal Society,2013.
[18]周惠,文錦芬,鄧明華,等.植物花青素生物合成相關(guān)基因研 究進(jìn)展[J].辣椒雜志,2011,9(4):1-7.
[19]GROTEWOLD E.The genetics and biochemistry of floral pigments [J].Annual Review of Plant Biology,2006,57:761-780.
[20]TANAKA Y,OHMIYA A. Seing is believing:engineering anthocyanin and carotenoid biosyntheticpathways[J].Current Opinion in Biotechnology,2008,19(2):190-197.
[21]MATTIOLIR,F(xiàn)RANCIOSOA,MOSCAL,etal. Anthocyanins:a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases[J]. Molecules,2020,25(17) :3809.
[22]LEV-YADUN S,GOULD K S.Role of anthocyanins in plant defence[M].New York:Springer,2008.
[23]ILK N, DING J, IHNATOWICZ A,et al. Natural variation foranthocyanin accumulation under high-light and low-temperature stress is attributable to the enhancer of Ag-42(Hua2)locus incombination with production of anthocyanin pigmentl(papl)and pap2 [J].New Phytologist,2015,206(1):422-435.
[24]HENRY-KIRK RA,PLUNKETTB,HALL M,et al.Solar UV light regulates flavonoid metabolism in apple (Malus × domestica) [J].Plant,Cellamp; Environment,2018,41(3):675-688.
[25]KATAOKA I,BEPPU K. UV iradiance increases development of red skin color and anthocyanins in‘Hakuho’peach[J].HortScience,2004,39(6):1234-1237.
[26]WINKEL-SHIRLEY B.Flavonoid biosynthesis.A colorful model forgenetics,biochemistry,cell biology,and biotechnology[J]. Plant Physiology,2001,126(2) :485-493.
[27]WEIY Z,HUFC,HUGB,et al.Differential expression of anthocyanin biosynthetic genes inrelation to anthocyaninaccumulauon in ine pericarp oI Lucni cninensis SonnL J」. rLos Une,ZU11,0 (4) :19455.
[28]WANG R, MAO C J,MING F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid[J]. Plant Science,2022,324:111423.
[29]KOES R,VERWEIJ W,QUATTROCCHIO F. Flavonoids:a colorful model for theregulationandevolutionof biochemical pathways [J].Trends in Plant Science,2005,10(5):236-242.
[30] CHOPRA S,HOSHINO A, BODDU J,et al. Flavonoid pigments as tools in molecular genetics[M]. New York:Springer,2006.
[31]李琴琴,董山榕,羅建讓,等.卵葉牡丹PqDFR 和PqANS及啟 動(dòng)子克隆與功能分析[J].園藝學(xué)報(bào),2024,51(6):1256-1272.
[32]BOSS P K,DAVIES C,ROBINSON S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berriesand the implicationsfor pathway regulation [J].Plant Physiology,1996,111(4):1059-1066.
[33]FALCONE FERREYRA M L, RIUS S P, CASATI P. Flavonoids : biosynthesis,biological functions,andbiotechnological applications [J].Frontiers in Plant Science,2012,3:222.
[34]MORITAY,SAITOH M ,HOSHINO A,et al.Isolation of cDNAs forR2R3-MYB,bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory[J].Plantamp; Cell Physiology,2006,47 (4) :457-470.
[35]ALLAN AC,HELLENS RP,LAING W A. MYB transcription factors that colour our fruit[J]. Trends in Plant Science,2008,13 (3) :99-102.
[36]NUGROHO L H,VERBERNE M C,VERPOORTE R. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylicacid-producing tobacco plants[J].Plant Physiology and Biochemistry,2002,40(9):755-760.
[37] CHON S U, BOO HO, HEO B G,et al. Anthocyanin content and the activities of polyphenol oxidase,peroxidase and phenylalanine ammonia-lyase in lettuce cultivars[J]. International Journal of Food Sciencesand Nutrition,2012,63(1) :45-48.
[38]李林菊,馮志熙,李新藝,等.滇水金鳳 PAL 基因的克隆與表達(dá) 分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2023,31(11):2272-2283.
[39]WANG HQ,ARAKAWA O,MOTOMURA Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase ( PAL )activity in‘Jonathan’apples[J].Postharvest Biology and Technology,2000,19 (2) :123-128.
[40]HEF,MUL,YANGL,etal.Biosynthesis of anthocyanins and their regulation in colored grapes[J].Molecules,201o,15(12): 9057-9091.
[41]SUNW,MENGXY,LIANGLJ,et al.Molecular and biochemical analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway[J].PLoS One,2015,10(3):0119054.
[42]HUANG J, ZHAO X, ZHANG Y, et al. Chalcone-synthase-encodingRdCHs1 isinvolvedinflavonoid biosynthesisin RhododenwIUn ueiuvuyULJ」. mUICCuICs,zUZ+,z/(O):10∠z
[43]WANGY,DOUY,WANGR,et al.Molecular characterization and functional analysis of Chalcone synthase from Syringa oblata Lindl.in the flavonoid biosynthetic pathway[J].Gene,2O17,635: 16-23.
[44]NABAVI S M, DUNJA S, TOMCZYK M,et al. Flavonoid biosynthetic pathways in plants:versatile targets for metabolic engineering [J].Biotechnology Advances,2020,38:107316.
[45]MORITA Y,TAKAGI K,F(xiàn)UKUCHI-MIZUTANIM,etal.A Chalcone isomerase-like protein enhances flavonoid production and flower pigmentation[J].Plant Journal,2014,78(2):294-304.
[46]RYAN KG,SWINNY EE,WINEFIELD C,et al. Flavonoids and UVphotoprotectionin Arabidopsis mutants[J]. Journal of Biosciences,2001,56(9/10) :745-754.
[47]DAS P K,SHIN D H,CHOI S B,et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis[J].Molecules and Cells,2012,34(1) :93-102.
[48]MAL L,JIA WJ,DUANQ,et al.Heterologous expression of Platycodongrandiflorus PgF3'5'Hmodifies flowercolorpigmentation in tobacco[J].Genes,2023,14(10):1920.
[49]FINNRD,COGGILLP,EBERHARDTRY,et al.The pfam protein families database;towards a more sustainable future[J]. Nucleic Acids Research,2016,44(1):279-285.
[50]LIM SH,YOU MK,KIMDH,et al.RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco alows fine-tuning of flower colorand flux through the flavonoid biosynthetic pathway [J].Plant Physiology and Biochemistry,2016,109:482-490.
[51]NIJ,RUANRJ,WANGLJ,etal.Functional and correlation analyses of dihydroflavonol-4-reductase genes indicate their roles in regulating anthocyanin changes in Ginkgo biloba[J]. Industrial Crops and Products,2020,152:112546.
[52]韓科廳,趙莉,唐杏姣,等.菊花花青素苷合成關(guān)鍵基因表達(dá) 與花色表型的關(guān)系[J].園藝學(xué)報(bào),2012,39(3):516-524.
[53]ZAN WX,WU Q K,DOU SH,et al. Analysis of flower color diversityrevealed the co-regulation of cyanidin andpeonidinin the red petals coloration of Rosa rugosa[J].Plant Physiology and Biochemistry,2024,216:109126.
[54]XIEDY,JACKSON L A,COOPER JD,et al.Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4- reductase from Medicago truncatula[J].Plant Physiology,2004, 134(3) :979-994.
[55]WILMOUTHR C,TURNBULL JJ,WELFORD R W D,et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana[J].Structure,2002,10(1):93-103.
[56]FORKMANN G, MARTENS S.Metabolic enginering and applications of flavonoids[J].Current Opinion inBiotechnology,2001,12 (2) :155-160.
[57]平懷磊,郭雪,余瀟,等.滇牡丹PdANS的克隆、表達(dá)及與 花青素含量的相關(guān)性[J].生物技術(shù)通報(bào),2023,39(3):206- 217
[JO」 AHIANUNI A,DE VUS U II,WEIN M ,et ai.Ine strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].Plant Journal,2001,28 (3) :319-332.
[59]XUF,LILL,ZHANG WW,et al.Isolation,characterization, andfunction analysis of a flavonol synthase gene from Ginkgo biloba[J].Molecular Biology Reports,2012,39(3):2285-2296.
[60]LUOP,NING GG,WANG Z,et al.Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs.red color flower formationin plants[J].Frontiers in Plant Science,2016,6:1257.
[61]HOLTON TA, BRUGLIERA F, TANAKA Y. Cloning and expressionofflavonol synthase from Petunia hybrida[J].Plant Journal, 1993,4(6) :1003-1010.
[62]NIELSEN K,DEROLES S C,MARKHAM K R, et al.Antisense flavonol synthase alters copigmentation and flower color in Lisianthus[J].Molecular Breeding,2002,9(4):217-229.
[63] SAITO K, YAMAZAKI M. Biochemistry and molecular biology of thelate-stage of biosynthesis of anthocyanin:lessons from Perilla frutescens asa model plant[J].New Phytologist,2002,155(1):9- 23.
[64]SPRINGOBK,NAKAJIMAJI,YAMAZAKI M,et al.Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports,2003,20(3):288-303.
[65]MORITA Y, ISHIGURO K, TANAKA Y, et al. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale-and dull-colored flowers in the Japanese and common morning glories[J].Planta,2015,242(3):575-587.
[66]TERRIERN,TORREGROSAL,AGEORGESA,et al.Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiology,2009,149(2):1028-1041.
[67]LLOYD A, BROCKMAN A,AGUIRRE L,et al. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factorand co-option of ananthocyanin MYB for betalainregulation[J].Plantamp; CellPhysiology,2017,58(9):1431- 1441.
[68]TOKY,WANGCK.Molecular breeding of fower color[M]. London:Global Science Books,2006.
[69]MA D W,PETER CONSTABEL C.MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science,2019,24(3):275-289.
[70]BUERC S,IMIN N,DJORDJEVIC M A.Flavonoids:new roles for old molecules[J].Journal of Integrative Plant Biology,2010,52 (1) :98-111.
[71]ROMEROI,F(xiàn)UERTESA,BENITO MJ,etal.More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana [J].PlantJournal,1998,14(3):273-284.
[72]RABINOWICZ PD,BRAUN EL,WOLFE AD,et al.Maize R2R3 Myb genes:sequence analysis revealsamplification in the higher plants[J」. Genetics,199y,153(1) :42/-444.
[73]CAO YL,JIAHM,XING MY,et al. Genome-wide analysis of MYB gene family in Chinese bayberry(Morella rubra)and identification of members regulating flavonoid biosynthesis[J].Frontiers inPlant Science,2021,12:691384.
[74]RICARDO PEREZ-DIAZ J,PEREZ-DIAZ J,MADRID-ESPINOZAJ,et al.New member of the R2R3-MYB transcription factors familyi grapevine suppresses the anthocyanin accumulation in the flowersof transgenic tobacco[J].Plant Molecular Biology,2016, 90(1/2) :63-76.
[75]DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcriptionfactors in Arabidopsis[J]. Trends in Plant Science,2010,15 (10) :573-581.
[76]ZHANGQ,HAO RJ,XU ZD,et al.Isolation and functional characterizationofa R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway[J].Plant Cell,Tissue and Organ Culture,2017,131(3) :417-429.
[77]LIUQ,LI SJ,LITJ,et al.The characterization of R2R3-MYB genesin water lilyNymphaea coloratareveals the involvement of NcMYB25 inregulatinganthocyanin synthesis[J].Plants,2024,13 (21) :2990.
[78]ZHANG B,XU XJ,HUANG RW,et al. CRISPR/Cas9-mediated targeted mutation reveals arole for AN4 rather than DPL in regulatingvenationformationintheCorollatubeofPetuniahybrida [J].Horticulture Research,2021,8(1) :116.
[79]ZHANG XP,XU Z D,YU XY,et al. Identification of two novel R2R3-MYB transcription factors,PsMYB114L and PsMYB12L,related to anthocyanin biosynthesis in Paeonia suffruticosa[J].International Journal of Molecular Sciences,2019,20(5):1055.
[80]HSU C C,CHEN YY,TSAI W C,et al. Three R2R3-MYB transcription factors regulate distinct floral pigmentation paterning in Phalaenopsissp.J].PantPhysiolog,15,68(1)7519.
[81]HONG Y,LI M L,DAI S L. Ectopic expression of multiple Chrysanthemum (Chrysanthemum × morifolium)R2R3-MYB transcriptionfactorgenesregulates anthocyaninaccumulation intobacco [J].Genes,2019,10(10):777.
[82]YOSHIDA K,MA D W,PETER CONSTABEL C. The MYB182 protein down-regulatesproanthocyanidinand anthocyanin biosynthesis in poplar byrepressing both structural andregulatory flavonoid genes[J].Plant Physiology,2015,167(3):693-710.
[83] ANWAR M, WANG G Q, WU JC, et al. Ectopic overexpression of a novel R2R3-MYB,NtMYB2 from Chinese Narcissus represses anthocyanin biosynthesis in tobacco[J].Molecules,2O18,23(4): 781.
[84]ALBERTNW,DAVIESKM,LEWISDH,et al.A conserved network of transcriptional activators and repressors regulatesanthocyanin pigmentation in eudicots[J]. The Plant Cell,2014,26(3)): 962-980.
[85]HU X M,LIANG Z H,SUN T X,et al. The R2R3-MYB transcriptional repressor TgMYB4 negativelyregulatesanthocyaninbional of Molecular Sciences,2024,25(1) :563.
[86]FELLER A,YUAN L,GROTEWOLD E. The BIF domain in plant bHLH proteins isan ACT-like domain[J]. The Plant Cell,2017, 29(8) :1800-1802.
[87]FELLER A,MACHEMER K,BRAUN E L,et al.Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J].Plant Journal,2011,66(1) :94-116.
[88]HICHRII,BARRIEUF,BOGS J,et al.Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany,2011,62(8):2465-2483.
[89]LI C H,QIU J,DING L,et al. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybridspetals[J]. Plant PhysiologyandBiochemistry,2017,112:35-345.
[90]HEIMMA,JAKOBY M ,WERBER M ,et al.The basic helixloop-helix transcription factor family in plants:a genome-wide study of protein structureand functional diversity[J].Molecular Biology and Evolution,2003,20(5) :735-747.
[91]NESI N,DEBEAUJONI, JOND C,et al. The TT8 gene encodes a basichelix-loop-helix domain protein required for expression of DFRand BAN genesin Arabidopsis siliques[J].The Plant Cell, 2000,12(10):1863-1878.
[92]DENGJ,LIJJ,SUMY,et al.A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J].Plant Physiology and Biochemistry,2021,158:518-523.
[93]SPELTC,QUATTROCCHIO F,MOL JN,et al.Anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J].The Plant Cell,2000,12(9):1619-1632.
[94]ZHAO R,SONG XX,YANG N,et al.Expression of the subgroup IIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox(L.) in transgenic model plants inhibits anthocyanin accumulation[J].Plant Cell Reports,2020,39(7):891-907.
[95]ZHAO PC,LIX X,JIAJT,et al.BHLH92 from sheepgrass acts asa negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy[J].Journal of Experimental Botany,2019,70(1) :269-284.
[96]NEER E J,SCHMIDT C J,NAMBUDRIPAD R,et al. The ancient regulatory-protein familyof WD-repeat proteins[J].Nature,1994,371(6495) :297-300.
[97] SMITH TF, GAITATZES C,SAXENA K, et al. The WD repeat : a common architecture for diverse functions[J]. Trends in Biochemical Sciences,1999,24(5) :181-185.
[98]MISHRA AK,PURANIK S,PRASAD M. Structure and regulatory networks of WD4O protein in plants[J].Journal of Plant Biochemistry and Biotechnology,2012,21(1) :32-39.
[99]CAREYCC,STRAHLEJT,SELINGERDA,et al.Mutations in the pale aleurone colorl regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J].ThePlant Cell,2004,16(2):450-464.
[100]YAO PF, ZHAO HX,LUO XP, et al. Fagopyrum tataricum FtWD4O functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco[J].Journal of Plant Growth Regulation, 2017,36(3) :755-765.
[101]DEVETTENN,QUATTROCCHIO F,MOL J,et al.The an11 locus controlling flower pigmentation in Petunia encodesanovel WD-repeat proteinconserved in yeast,plants,and animals[J]. Genesamp; Development,1997,11(11):1422-1434.
[102] WALKER A R, DAVISON P A, BOLOGNESI-WINFIELD A C, et al.The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodesa WD4O repeat protein[J].The Plant Cell,1999,11 (7) :1337-1350.
[103]PAYNEC T,ZHANGF,LLOYD AM. GL3 encodesabHLH protein that regulates trichome development in Arabidopsis through interaction with GLl and TTGl[J]. Genetics,2000,156(3):1349- 1362.
[104]AN X H,TIAN Y,CHEN K Q,et al. The apple WD4O protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J].Journal of PlantPhysiology,2O12,169 (7) :710-717.
[105]SHAN X T,LIYQ,YANG S,et al.A functional homologue of Arabidopsis TTG1 from Fresia interacts withbHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesi(2 a hybrida and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2019,141:60-72.
[106]DAVIES K M, SCHWINN KE. Transcriptional regulation of secondary metabolism[J].Functional Plant Biology,2Oo3,30(9): 913-925.
[107]DAREAP,SCHAFFERRJ,KUILW,et al.Identification of a Cis-regulatory element by transient analysis of co-ordinately regulated genes[J]. Plant Methods,2008,4:17.
[108]HARTMANN U,SAGASSER M,MEHRTENS F,et al. Differential combinatorial interactions of Cis -acting elements recognized by R2R3-MYB BZIPand BHLH factorscontrol light-responsive and tissue-specific activation of phenylpropanoid biosynthesisgenes [J].Plant Molecular Biology,2005,57(2):155-171.
[109]QI TC,SONG SS,RENQC,et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichomeinitiation in Arabidopsis thaliana[J].ThePlantCell,2011, 23(5):1795-1814.
[110]張忍.MYB轉(zhuǎn)錄因子RcMYBI調(diào)控月季花青素生物合成 [D].上海:上海師范大學(xué),2023.
[111]GU Z Y, ZHU J,HAO Q,et al. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony(Paeonia suffruticosa) [J].Plant amp; Cell Physiology,2019,60(3):599-611.
[112]LI P H,CHEN B B, ZHANG G Y,et al. Regulation of anthocyamnand proantnocyanain Diosyntnesis Dy Meaicago tuncatua bHLH transcription factor MtTT8[J].New Phytologist,2016,210 (3) :905-921.
[113]SUN B M, ZHU Z S,CAO P R, et al.Purple foliage coloration in tea(Camelia sinensis L.)arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Scientific Reports,2O16,6:32534.
[114]ANSORGE W J. Next-generation DNA sequencing techniques[J]. New Biotechnology,2009,25(4):195-203.
[115]NAKATSUKA T, SUZUKI T,HARADA K,et al.Floral organand temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers[J].Plant Science,2019,287: 110173.
[116]SASAKI K,MITSUDA N,NASHIMA K,et al. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology[J].BMC Genomics,2017,18(1):683.
[117]ZHAO D Q,JIANG Y, NING C L, et al. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yelow formation in herbaceous peony (Paeonia lactiflora Pall.)[J].BMC Genomics,2014,15(1) :689.
[118]李婧.三色堇(ViolaxWittrockiana Gams.)轉(zhuǎn)錄組測(cè)序及花色 相關(guān)基因的發(fā)掘與表達(dá)驗(yàn)證[D].海口:海南大學(xué),2016.
[119]QUY,OUZ,YANGFS,et al.The study of transcriptome sequencing for flower coloration in different anthesis stages of alpine ornamental herb(Meconopsis‘Lingholm’)[J]. Gene,2019,689: 220-226.
[120]SHI QQ,ZHOUL,WANGY,et al. Transcriptomic analysis of Paeonia delavayi wildpopulation flowerstoidentifydifferentially expressed genes involved in purple-red and yellow petal pigmentation[J].PLoS One,2015,10(8):0135038.
[121]WANGN,SHUXC,ZHANGFJ,et al. Comparative transcriptome analysis identifies key regulatory genes involved in anthocyanin metabolism during flower development in Lycoris radiata[J]. Frontiers in Plant Science,2021,12:761862.
[122]WANGY,HUANGH,MA YP,etal. Construction and de novo characterizationofa transcriptome of Chrysanthemumlavandulifolium:analysis of gene expression patterns in floral bud emergence [J].Plant Cell,Tissue and Organ Culture,2014,116(3):297- 309.
[123]DE SOUZA CANDIDO E,DA ROCHA FERNANDES G,DE ALENCAR SA,et al. Shedding some light over the floral metabolismby arum lily (Zantedeschia aethiopica) spathe de novo transcriptome assembly[J].PLoS One,2014,9(3):90487.
[124]陳家龍,侯蓉苗,朱建軍,等.木槿兩個(gè)花色品種的花瓣轉(zhuǎn)錄組 測(cè)序分析[J].分子植物育種,2022,20(8):2507-2516.
[125]FIEHN O.Metabolomics:the link between genotypes and phenotypes[J]. Plant Molecular Biology,2002,48(1/2):155-171.
[126] POTT D M,DURAN-SORIA S, OSORIO S,et al. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits[J]. CABI Agriculture and Bioscience,2021,2: 1.
[127]武美卿,廖易,陸順教,等.基于廣泛靶向代謝組學(xué)技術(shù)的不 同花色秋石斛中花青素差異分析[J].熱帶作物學(xué)報(bào),2023,44 (11) :2167-2178.
[128]PARKCH,YEOHJ,KIMNS,etal.Metabolomicprofilingof thewhite,violet,andred flowersofRhododendronschlippenbachii maxim[J].Molecules,2018,23(4):827.
[129]SHENJZ,ZOUZW,ZHANGXZ,etal.Metabolicanalyses revealdifferent mechanisms of leaf color change in two purple-leaf teaplant(Camellia sinensis L.) cultivars[J].Horticulture Research,2018,5:7.
[130]SU MY,DAMARISRN,HUZR,etal.Metabolomic analysis on the petal of‘Chen Xi’rose with light-induced color changes [J].Plants,2021,10(10):2065.
[131]陳勇,李嘉杰,鄭丹菁,等.不同花色洋紫荊花瓣花青素和類 黃酮物質(zhì)組成和含量的變化[J].植物科學(xué)學(xué)報(bào),2024,42(1): 96-103.
[132]AIY,ZHENGQD,WANGMJ,etal.Molecularmechanismof different flowercolor formationof Cymbidiumensifolium[J].Plant MolecularBiology,2023,113(4/5):193-204.
[133]ZHAOY,ZHOUWJ,CHENY,etal.Metaboliteanalysisin Nymphaea‘BlueBird’petalsreveal therolesof flavonoidsincolor formation,stressamelioration,and bee orientation[J].Plant Science,2021,312:111025.
[134]SAWADAY,SATOM,OKAMOTOM,etal.Metabolome-based discrimination of Chrysanthemum cultivars for the efficient generationofflowercolorvariationsinmutationbreeding[J].Metabolomics,2019,15(9) :118.
[135]桑賢東,楊曉慧,徐斌,等.基于靶向代謝組學(xué)分析不同花色 大紅花花青素的差異[J].廣東農(nóng)業(yè)科學(xué),2024,51(8):61-70.
[136]曹尚銀,張秋明,朱志勇,等.蘋(píng)果花芽孕育蛋白質(zhì)組學(xué)初步分 析[J].中國(guó)農(nóng)業(yè)科學(xué),2007,40(10):2281-2288.
[137]李倩,毛少利,莫嬌,等.蛋白組學(xué)在植物中的研究[J].廣 西林業(yè)科學(xué),2017,46(4):400-402.
[138]HUMPHERY-SMITHI,CORDWELL SJ,BLACKSTOCKWP. Proteome research:complementarity and limitations with respect to theRNA andDNAworlds[J].Electrophoresis,1997,18(8): 1217-1242.
[139]吳欣欣,倪曉鵬,周泳,等.基于蛋白質(zhì)組學(xué)分析跳枝梅花色 差異[J].北京林業(yè)大學(xué)學(xué)報(bào),2015,37(增刊1):74-81.
[140]高樂(lè).紅掌花色變異相關(guān)蛋白質(zhì)組及基因差異表達(dá)的研究 [D].蘇州:蘇州大學(xué),2019.
[141]李林寶.通過(guò)轉(zhuǎn)錄組和蛋白組揭示蓮‘大灑錦'著色的分子機(jī) 理[D].武漢:華中農(nóng)業(yè)大學(xué),2018.
[142]FANY,SUNL,SONGSL,etal.Integrated metabolomeand transcriptomeanalysisofanthocyaninaccumulationduringthecolor formationof bicolor flowers in Eustoma grandiflorum[J].Scientia Horticulturae,2023,314:111952.
[143]XIAO P,ZHANGH,LIAOQL,etal. Insight into the molecular mechanism of flowercolorregulationin Rhododendronlatoucheae franch:a multi-omics approach[J].Plants,2023,12(16) :2897.
[144]吳艷梅.基于轉(zhuǎn)錄組和蛋白組學(xué)的華麗龍膽藍(lán)色花呈色機(jī)理 研究[D].昆明:昆明理工大學(xué),2020.
[145]DENGJ,SUMY,ZHANGXY,etal.Proteomicandmetabolomicanalyses showingthedifferentiallyaccumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in Lotus (Nelumbo nucifera)[J].Plant Physiology and Biochemistry, 2023,198:107675.
[146]楊娟.基于多組學(xué)分析的燕子花花色變異分子機(jī)理[D].哈 爾濱:東北林業(yè)大學(xué),2023.
(責(zé)任編輯:黃克玲)