Research Progress on Relationship between Ca2+ and Calcium-Binding Proteins and Salt Tolerance in Plants
Li Cheng’,Du Chunyan2,Cui Xianfen3,Li Yancan',Li Jingjuan1,Song Jie4,Cui Bing',Gao Jianwei(1. Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;2. Agriculture and Rural Bureau of Daiyue District, Taian City, Taian 271OOO,China;3. Tianzhuang Reservoir Comprehensive Service Center, Yiyuan County, Yiyuan 2561Oo, China ;4. College of Life Sciences, Shandong Normal University, Jinan 25oooo, China)
AbstractSoil salinization severely impacts crop productivity. As a pivotal secondary messenger in plant cells, Ca2+ plays a central role in mediating responses to salt stress. Calcium-binding proteins in plants perceive extracellular signals by binding Ca2+ . These proteins belong to an extensive gene superfamily including four subfamilies which were calcium-dependent protein kinases (CDPKs)and their related kinases(CRKs), calmodulins (CaMs),calmodulin-like proteins(CMLs),and calcineurin B-like proteins(CBLs)paired with their interacting protein kinases ((CIPKs). Calcium-binding proteins play important roles in plants response to salt stress adaptation. This review synthesized current advances in understanding Ca2+ signaling and calciumbinding proteins in plant salt tolerance,and mainly discussed the regulatory effects of Ca2+ on salt-stressed crops and the function of calcium-binding proteins to crop salt resistance.Finally,the research and application prospects of calcium-binding proteins were prospected.
Keywords Ca2+ ; Calcium-binding protein; Salt stress; Salt tolerant mechanism
鹽脅迫對植物生長有重大危害,顯著影響作物產(chǎn)量。目前已知,全球二分之一的灌溉土地和五分之一的耕地受到鹽漬化威脅[1]。由于氣候變化、海水對沿海低洼地的侵蝕以及不合理灌溉等原因,土壤鹽漬化面積日益增加,土壤鹽漬化問題越來越嚴(yán)重[2]。我國鹽堿地約有1億公頃,其中大約有三分之一鹽堿地具備開發(fā)利用潛力。合理利用鹽堿地資源有助于實現(xiàn)我國耕地資源擴(kuò)容和提質(zhì)增效
鹽漬化土壤中的鈉離子( Na+ )濃度過高會抑制植物對水和營養(yǎng)成分的吸收,并且造成滲透脅迫和離子脅迫,導(dǎo)致包括氧化脅迫在內(nèi)的一系列次級脅迫的產(chǎn)生[3-4]。鹽脅迫還會對植物糖分的積累及糖酵解等糖信號產(chǎn)生影響,除此之外植物光合作用也受到鹽脅迫的調(diào)控[5-6]??傊}脅迫通過影響光合作用和糖分積累,抑制細(xì)胞的分裂伸長,導(dǎo)致植物生理生化水平紊亂,從而阻礙植物的正常生長發(fā)育[2]
鈣離子( Ca2+ )在植物細(xì)胞信號傳遞中扮演重要角色,尤其在應(yīng)對環(huán)境壓力時起到關(guān)鍵作用。植物受到外界脅迫時細(xì)胞質(zhì)中的游離 Ca2+ 濃度會短暫增加, Ca2+ 與鈣結(jié)合蛋白結(jié)合解碼 Ca2+ 信號并引起細(xì)胞生化和生理過程發(fā)生改變以應(yīng)對各種逆境脅迫[7-8]。如在鹽脅迫下, Ca2+ 通過介導(dǎo)植物耐受 Na+ 脅迫的重要防御通路(SOS途徑),利用根部細(xì)胞將 Na+ 排出體外,維持細(xì)胞的離子穩(wěn)態(tài),保護(hù)植株免受離子毒害[9]。本文通過綜述Ca2+ 及鈣結(jié)合蛋白在植物耐鹽中的研究進(jìn)展,主要探討 Ca2+ 對鹽脅迫作物的調(diào)節(jié)作用,以及鈣結(jié)合蛋白在作物耐鹽機(jī)制中的功能,最后對鈣結(jié)合蛋白的研究及應(yīng)用前景進(jìn)行展望,以期為耐鹽作物培育提供理論參考。
(204 Ca2+ 在植物耐鹽中的作用
植物在應(yīng)對各類逆境時出現(xiàn)了多種多樣的生存機(jī)制。鹽脅迫抑制種子發(fā)芽,阻礙植物的生長[10]。面對鹽脅迫,植物胞質(zhì)內(nèi)的 Ca2+ 濃度會迅速提高,形成鈣信號進(jìn)行傳遞。植物細(xì)胞質(zhì)中Ca2+ 含量是鈣信號形成的基礎(chǔ),細(xì)胞質(zhì)中 Ca2+ 濃度一般在 100~200nmol?L-1 。除此之外,液泡、線粒體和內(nèi)質(zhì)網(wǎng)內(nèi)的 Ca2+ 濃度遠(yuǎn)遠(yuǎn)高于細(xì)胞質(zhì)中的,被稱為鈣庫[11]。當(dāng)植物受到逆境脅迫時,鈣庫內(nèi)儲存的 Ca2+ 會通過鈣離子通道迅速進(jìn)人細(xì)胞質(zhì)中形成鈣信號,細(xì)胞質(zhì)內(nèi) Ca2+ 的濃度將會達(dá)到1~10μmol?L-1 水平[12-13]。鈣信號完成調(diào)控使命后,鈣離子泵將細(xì)胞質(zhì)中的 Ca2+ 排到細(xì)胞外部,Ca2+ 反向轉(zhuǎn)運蛋白( Ca2+ /cation antiporter, CAXs)調(diào)控 Ca2+ 進(jìn)入液泡[14]。
在鹽脅迫下,植物因受到土壤高滲透勢的影響,會出現(xiàn)細(xì)胞內(nèi)水分流失現(xiàn)象。在滲透脅迫中,Ca2+ 通過結(jié)合質(zhì)膜鈣滲透通道OSCA1(reducedhyperosmolality-induced increase channel)發(fā)揮重要作用。滲透脅迫下,擬南芥Atosca1突變體細(xì)胞內(nèi)鈣信號無法正常傳遞[15]。水稻中已發(fā)現(xiàn)11個OSCA1的同源基因,其中OsOSCA1.4定位于質(zhì)膜上,在滲透脅迫下可以促進(jìn)細(xì)胞質(zhì) Ca2+ (20濃度增加[16]。雙孔通道(TPC1)可以加速 Ca2+ 的傳遞,擬南芥Attpc1突變體遠(yuǎn)距離傳遞鈣信號的速度顯著降低[17]。在植物體內(nèi),鹽脅迫下鈣信號波的振幅和波峰振蕩模式顯著受鹽響應(yīng)影響,由此表明 Ca2+ 在植物對鹽脅迫的響應(yīng)中扮演重要角色。
Ca2+ 對植物耐鹽反應(yīng)的調(diào)控很大程度上依賴于脫落酸(ABA)響應(yīng)順式元件,包括ABREs及其耦合元件[18]。G-box啟動子元件是 ABA 響應(yīng)元件(ABREs)的核心基序,可被ABA應(yīng)答的bZIP類轉(zhuǎn)錄因子(如AREB/ABFs)特異性識別并結(jié)合,進(jìn)而激活下游脅迫響應(yīng)基因的表達(dá)[9]。ABFs主要由ABA調(diào)控,在鹽脅迫和氧化脅迫過程中發(fā)揮功能;ABF2/ABRE1和ABF4/ABRE2則在ABA的調(diào)控下介導(dǎo)干旱、鹽和氧化應(yīng)激反應(yīng)[20]。ABA信號通路在調(diào)控過程中一般被分為三個環(huán)節(jié),包括受體復(fù)合物的形成、蛋白激酶的介質(zhì)信息傳遞以及轉(zhuǎn)錄因子介導(dǎo)的靶蛋白合成與翻譯后修飾。ABA受體復(fù)合物由ABA結(jié)合調(diào)控組分RCAR/PYR1/PYLs、ABA受體和共受體PP2C組成,后者依賴ABA的催化活性被RCARs抑制,從而激活 ABA 信號[21]。 Ca2+ 信號與ABA信號的結(jié)合可能發(fā)生在三步調(diào)控過程中的任何一個節(jié)點[21]。研究發(fā)現(xiàn),ABA受體在膜上的累積由Ca2+ 通過鈣受體(calcium receptor,CAR)蛋白的功能控制[22-23]。此外,鈣依賴蛋白激酶(CDPKs)和CBL-CIPKs(CBL,類鈣調(diào)磷酸酶B蛋白)通過解碼 Ca2+ 信號,在ABA依賴和非依賴的脅迫響應(yīng)中形成多層次調(diào)控網(wǎng)絡(luò)[24]。這兩類蛋白激酶的成員都與ABA共受體ABI2發(fā)生物理作用,并磷酸化ABA信號通路的靶蛋白[25]。CDPKs和CBLs-CIPKs表達(dá)的改變影響ABA敏感性,進(jìn)而影響ABA應(yīng)答[25] O
2鈣結(jié)合蛋白對植物耐鹽調(diào)控的研究進(jìn)展
在鹽漬化土壤中,植物細(xì)胞內(nèi)部或外部的大量 Na+ 會觸發(fā)胞質(zhì)內(nèi) Ca2+ 濃度的迅速升高[26]細(xì)胞內(nèi) Ca2+ 濃度的瞬態(tài)變化引發(fā)鈣信號,被下游鈣結(jié)合蛋白識別和解碼,從而使得下游信號途徑被激活,包括蛋白磷酸化和基因表達(dá)等[27-28]。植物鈣結(jié)合蛋白分為4類,包括鈣依賴性蛋白激酶(calcium-dependent protein kinases,CDPKs)和相關(guān)蛋白激酶(CDPK-relatedkinase,CRKs)、鈣調(diào)蛋白(calmodulinproteins,CaMs)、類鈣調(diào)蛋白(calmodulin-likeproteins,CMLs)類鈣調(diào)磷酸酶B蛋白(calcineurinB-like protein,CBLs)和CBL相互作用蛋白激酶(CBL interacting protein ki-nase,CIPK)[29-30]。與CaMs、CMLs 和 CBL 相比,CDPKs可將 Ca2+ 信號直接轉(zhuǎn)導(dǎo)成磷酸化級聯(lián),這賦予CDPKs具有 Ca2+ 感受器和響應(yīng)器的雙重功能。CaMs、CMLs和CBL與 Ca2+ 結(jié)合后,需要與下游的靶蛋白相互作用解碼鈣信號傳遞的信息[31]。目前,擬南芥中已鑒定出34個CDPKs、7個CaMs、50個CMLs和10個 CBL[32-33] 0
2.1 CaMs和CMLs對植物耐鹽的調(diào)控作用
CaMs是一個典型的鈣結(jié)合蛋白,含有4個Ca2+ 結(jié)合蛋白的短EF-hand結(jié)構(gòu),存在于所有真核生物分支中并參與多種基本反應(yīng),如轉(zhuǎn)錄和酶活性的調(diào)節(jié)等[34]。擬南芥AtCaM1和AtCaM4通過與S-亞硝基谷胱甘肽還原酶(GSNOR)結(jié)合,降低GSNOR活性,促進(jìn)一氧化氮(NO)積累,從而提高植物耐鹽性[35]。擬南芥中特異性CaM亞型GmCaM4過表達(dá)上調(diào)AtMYB2調(diào)控基因的轉(zhuǎn)錄表達(dá),促進(jìn)脯氨酸積累,增強(qiáng)擬南芥耐鹽性[36]。大麥鈣調(diào)蛋白1(HvCaM1)則通過大麥高親和性鉀離子轉(zhuǎn)運蛋白1;1(HvHKT1;1)和大麥鈣調(diào)蛋白結(jié)合轉(zhuǎn)錄激活因子4(HvCAMTA4)負(fù)調(diào)控大麥耐鹽性[37] 。
CMLs是一種高度保守的類鈣調(diào)蛋白,是當(dāng)前廣泛研究的一種典型的鈣結(jié)合蛋白,在植物的各生長階段均具有重要作用,對作物應(yīng)對各類脅迫反應(yīng)至關(guān)重要。目前,已經(jīng)對擬南芥、水稻等的CMLs基因家族進(jìn)行了鑒定,并進(jìn)行相關(guān)功能研究(表1);CMLs在植物中普遍存在,對CMLs的基因分析指出,絕大多數(shù)CMLs不含內(nèi)含子,暗示其起源于原核生物,并在進(jìn)入真核生物時代后具有高度保守性[38]。盡管大多數(shù)CMLs不含內(nèi)含子,但少數(shù)CMLs基因有內(nèi)含子存在,證明這些內(nèi)含子是近期進(jìn)化的產(chǎn)物。這意味著CMLs基因家族的成員都保持高度保守性,有可能自同一“祖先”進(jìn)化而來。
CMLs與同一物種內(nèi)的CaMs至少具有 16% 的序列相似性;除此之外,與CaMs相比,CMLs結(jié)構(gòu)的N末端和C末端兩個相似的球形末端結(jié)構(gòu)域之間具有更長的連接區(qū)域,使其更具靈活性,并可能影響其與下游靶標(biāo)的相互作用,增加其結(jié)構(gòu)與功能的多樣性[39]。CMLs 在其 EF-hand 結(jié)構(gòu)域中含有保守的 Ca2+ 結(jié)合序列。序列比對顯示,第4個EF-hand 中存在保守的 D-x-D-x-D 基序,其第14位、16位和18位氨基酸是保守的;除了第4個EF-hand 外,CMLs 中的其他 EF-hand都不包含保守的 D-x-D 基序[40]
研究表明,AtCML6、AtCML17、AtCML28、AtC-ML37.AtCML40…AtCML44…AtCML50 在鹽脅迫下顯著上調(diào)表達(dá),AtCML8、AtCML13、AtCML18、AtC-ML25在鹽脅迫下表達(dá)模式則被抑制[27]CML20、CML37通過調(diào)控ABA信號通路提高植物的耐鹽能力[41-42],CML36通過調(diào)節(jié) Ca2+ -ATPaseACA8活性,參與植物應(yīng)對干旱和鹽脅迫的過程[43]。水稻通過過表達(dá)OsCML16 顯著增強(qiáng)其植株的耐鹽性[44]。Magnan等[45]研究發(fā)現(xiàn),AtCML9在ABA和鹽脅迫處理下表達(dá)量顯著上調(diào),并在擬南芥的鹽脅迫響應(yīng)中發(fā)揮重要作用。在大豆中,過量表達(dá)GmCaM4可以增強(qiáng)其對病原體和鹽脅迫的抗性[46]。AtCML24參與調(diào)控ABA、鹽脅迫和長日照誘導(dǎo)的開花過程,并發(fā)揮重要作用[47]。在寒冷、干旱和鹽脅迫下番茄SICML26表達(dá)顯著上調(diào)[48]。鹽脅迫下,4 種甘野菊的CsCML14、CsC-ML50、CsCML65、CsCML79表達(dá)均有顯著上調(diào)[49]鹽處理下,大白菜CML41和CML43的表達(dá)量均顯著上調(diào)[50]。鹽誘導(dǎo)條件下,茶樹中CsCML16、CsCML18、CsCML42的表達(dá)量均顯著上調(diào)[51] 。
2.2 CBL-CIPK對植物耐鹽的調(diào)控作用
CBLs代表另一個含有EF-hand結(jié)構(gòu)的鈣結(jié)合蛋白,CBLs與CaMs保守基序的相似度很低,這兩個鈣離子結(jié)合蛋白家族似乎在進(jìn)化早期就發(fā)生了分化[34]。盡管CBLs蛋白也包含4個EF-hand 基序,但它的第一個EF-hand上的 Ca2+ 結(jié)合區(qū)域并不是由12個氨基酸而是由14個氨基酸組成,且可以正常與 Ca2+ 結(jié)合[52]。CBL互作蛋白激酶(CIPKs)是一類絲氨酸/蘇氨酸蛋白激酶,其N端具有催化功能的激酶結(jié)構(gòu)域,C端則包含通過NAF/FISL基序結(jié)合CBL蛋白的調(diào)節(jié)結(jié)構(gòu)域,兩者通過形成CBL-CIPK復(fù)合體協(xié)同傳遞鈣離子信號,從而調(diào)控植物對鹽脅迫等環(huán)境逆境的適應(yīng)性響應(yīng)[53] O
CBL和CIPK可以形成復(fù)合物,對植物的耐鹽過程至關(guān)重要。擬南芥中CBL-CIPK復(fù)合體通過兩條不同的途徑調(diào)控植物的耐鹽反應(yīng)。一條是CBL4-CIPK24-SOSI 通路,是CBL-CIPK調(diào)控網(wǎng)絡(luò)中的一條經(jīng)典途徑,又稱作SOS途徑,主要是通過SOS途徑將根部細(xì)胞內(nèi)的 Na+ 排出體外,從而增強(qiáng)植物的耐鹽性[54-55];另一條是CBL10-CIPK24-NHX1通路,將細(xì)胞質(zhì)中的 Na+ 區(qū)域化到液泡中,維持胞質(zhì)中的低 Na+ 濃度,減少鹽脅迫造成的損傷[56] 。
2.3 CDPKs和CRKs對植物耐鹽的調(diào)控作用
鈣調(diào)蛋白CDPKs包含4個保守結(jié)構(gòu)域,即N端可變域、激酶催化域、自抑制連接域和C端調(diào)控域[57],包含了EF-hand鈣結(jié)合基序的傳感活性和蛋白激酶結(jié)構(gòu)域的響應(yīng)活性的蛋白[58]。相比之下,CRKs具有與CDPKs相似的蛋白質(zhì)結(jié)構(gòu),但是C端調(diào)控域的EF-hand發(fā)生了退化,不能直接受 Ca2+ 的調(diào)控[59]。研究發(fā)現(xiàn),當(dāng) Ca2+ 和CaM相結(jié)合時可調(diào)控CRKs的激酶活性[60]。除此之外,CRKs 可以通過自磷酸化調(diào)節(jié)激酶活性[61]。目前已知,AtCRK1可以通過 Ca2+ 依賴的方式結(jié)合鈣調(diào)蛋白(CaM)發(fā)揮激酶活性,同樣,在自磷酸化和底物磷酸化情況下發(fā)現(xiàn)其不依賴于 Ca2+ 同樣可以發(fā)揮激酶活性[62]。CRKs僅存在于植物中,而CDPKs在植物和某些原核生物中均有存在,這表明了CRKs的植物特異性[63] 。
CDPKs和CRKs在作物應(yīng)對鹽脅迫時扮演關(guān)鍵角色。擬南芥CDPKs通過調(diào)控ABF(ABA-re-sponsive element binding factors)轉(zhuǎn)錄因子介導(dǎo)的ABA應(yīng)答基因表達(dá)和調(diào)控ABA介導(dǎo)的陰離子通道(SLAC1,SLAH3),調(diào)節(jié)氣孔關(guān)閉來參與鹽脅迫響應(yīng)[24,64]。比如,AtCPK4 和 AtCPK11是植物激素 ABA信號傳導(dǎo)途徑中的正向調(diào)控因子,參與種子萌發(fā)、幼苗生長、氣孔調(diào)節(jié)以及抗鹽逆境反應(yīng)等[65],AtCPK12被認(rèn)為是ABA信號通路的負(fù)調(diào)控因子[66],而 AtCPK6在應(yīng)對干旱和鹽脅迫的響應(yīng)中至關(guān)重要[6]。鹽脅迫下,細(xì)胞內(nèi)活性氧(ROS)增加會破壞植物細(xì)胞膜,除此之外,還導(dǎo)致細(xì)胞內(nèi)離子穩(wěn)態(tài)發(fā)生紊亂[68-69],CDPKs通過調(diào)控ROS 清除途徑來調(diào)節(jié)作物對鹽脅迫的適應(yīng)能力,例如,擬南芥中過氧化氫酶AtCAT3被AtCPK8磷酸化激活[70],水稻中抗壞血酸過氧化物酶Os-APX2/OsAPX8和還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶OsRbohI活性受Os-CPK12調(diào)控[71]。AtCPK5可以通過磷酸化 NAD-PH氧化酶RbohD導(dǎo)致細(xì)胞外 H2O2 產(chǎn)生,對加速信號傳播和防御氧化脅迫至關(guān)重要[72]。AtCPK27和AtCPK12在清除ROS過程中發(fā)揮作用,調(diào)節(jié)離子穩(wěn)態(tài)進(jìn)而提高植株耐鹽性[73-74]。過量表達(dá)AtCPK1和AtCPK6增強(qiáng)作物耐鹽性,可能是通過調(diào)節(jié) ROS 和脯氨酸的產(chǎn)生實現(xiàn)的[75-76]。相反,CPK21和CPK23對滲透脅迫的耐受力更強(qiáng)[77-79]。AtCRK1與AtCBK3相互作用并磷酸化是鹽敏感性的調(diào)節(jié)因子,在鹽脅迫下維持細(xì)胞氧化還原穩(wěn)態(tài)和滲透平衡[80]。此外,液泡鉀離子(2 (K+ )通道TPK1被AtCPK3磷酸化,在鹽脅迫下調(diào)節(jié)胞質(zhì) Na+/K+ 平衡[81]。過表達(dá)玉米Zm-CPK11可以提高植株體內(nèi) Na+ 和 K+ 的穩(wěn)定性,使植株的耐鹽性增強(qiáng)[82]。cpk12 和cpk27突變體可以通過根系外排 Na+ ,減少鹽脅迫對作物的傷害[73-74]
3 展望
近年來,由于人類活動和全球氣候變化,世界范圍內(nèi)的土壤鹽漬化嚴(yán)重程度仍在擴(kuò)大。鹽脅迫抑制種子發(fā)芽、阻礙植物的正常生長發(fā)育,對植物造成負(fù)面影響。在植物對抗鹽脅迫過程中, Ca2+ 作為植物的第二信使,通過與鈣結(jié)合蛋白相結(jié)合,調(diào)控下游蛋白的表達(dá),從而在抗鹽過程中發(fā)揮關(guān)鍵作用。不同鈣結(jié)合蛋白在作物響應(yīng)鹽脅迫中表現(xiàn)為正調(diào)控或負(fù)調(diào)控特性,呈現(xiàn)復(fù)雜調(diào)控模式。然而,前人研究主要側(cè)重于驗證鈣結(jié)合蛋白的耐鹽功能和轉(zhuǎn)錄調(diào)節(jié),缺乏對其耐鹽脅迫調(diào)控機(jī)理的研究,以及 Ca2+ 信號路徑的上下游調(diào)節(jié)機(jī)理仍未徹底揭示。后續(xù)仍需進(jìn)一步深入挖掘鈣結(jié)合蛋白響應(yīng)鹽脅迫的家族成員,探明其在響應(yīng)鹽脅迫過程中的自我調(diào)節(jié)機(jī)制,以及與上下游調(diào)控元件的互作關(guān)系。相信隨著細(xì)胞生物學(xué)、生理學(xué)和現(xiàn)代分子遺傳學(xué)技術(shù)的不斷發(fā)展,植物中鈣結(jié)合蛋白調(diào)控鹽脅迫的分子機(jī)理將會陸續(xù)被探明,從而為作物抗鹽性評價和抗鹽作物培育提供理論依據(jù)和技術(shù)支持。
參考文獻(xiàn):
[1]LiJG,PuLJ,HanMF,et al.Soil salinization research in China:advances and prospects[J]. Journal of Geographical Sciences,2014,24:943-960.
[2] 郭昭陽,殷宇航,劉鈺,等.玉米ZmIMPα基因的生物信息 學(xué)分析及其在鹽脅迫下的表達(dá)模式分析[J].山東農(nóng)業(yè)科 學(xué),2025,57(2):1-10.
[3] Gong Z Z. Plant abiotic stress:new insights into the factors that activateandmodulateplantresponses[J]. Journalof Integrative Plant Biology,2021,63(3):429-430.
[4] Zhu J K. Salt and drought stress signal transduction in plants [J].Annual Review ofPlant Biology,2002,53:247-273.
[5] Chen Y M,Hoehenwarter W. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis[J].Plant Physiology,2O15,169 (4):3021-3033.
[6] ShumilinaJ,Kusnetsova A,Tsarev A,etal.Glycation ofplant proteins:regulatory roles and interplay with sugar signalling [J].Int.J.Mol.Sci.,2019,20(9):2366.
[7] Dodd A N,Kudla J,Sanders D. The language of calcium signaling[J]. Annu.Rev.Plant Biol.,2010,61(1) :593-620. Nat.Plants,2020,6(7) :750-759.
[9]Julkowska M M,Testerink C. Tuning plant signaling and growth to survive salt[J]. Trends in Plant Science,2015,20(9): 586-594.
[10]Yang Y Q,Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. The New Phytologist, 2018,217(2) :523-539.
[11]Bose J,Pottosin I I,Shabala S S,et al. Calcium efflux systems in stress signaling and adaptation in plants[J]. Front. Plant Sci.,2011,2:85.
[12]Manishankar P,Wang N L,Koster P,et al. Caleium signaling during salt stress and in the regulation of ion homeostasis[J]. J.Exp.Bot.,2018,69(17) :4215-4226.
[13]Vincent TR,Avramova M,Canham J,et al. Interplay of plasma membrane and vacuolar ion channels,together with BAK1,elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding[J]. The Plant Cell,2017,29(6) :1460-1479.
[14]van Zelm E,Zhang Y X,Testerink C. Salt tolerance mechanisms of plants[J].Annu.Rev.Plant.Biol.,202O,71(1): 403-433.
[15]Yuan F,Yang H M,Xue Y,et al. OSCA1 mediates osmoticstress-evoked Ca 2+ increases vitalforosmosensing in Arabidopsis[J]. Nature,2014,514:367-371.
[16] Zhai YJ,Wen Z H,Han Y,et al. Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis oscal mutant[J]. Cell Calcium,2020,91:102261.
[17]Hedrich R,Mueller T D,Becker D,et al. Structure and function of TPC1 vacuole SV channel gains shape[J]. Mol. Plant, 2018,11(6) :764-775.
[18]Kaplan B,Davydov O,Knight H,et al. Rapid transcriptome changes induced bycytosolic Ca 2+ transients reveal ABRE-related sequences as Ca2+ -responsive cis elements in Arabidopsis [J]. The Plant Cell,2006,18(10) :2733-2748.
[19] Yoshida T,F(xiàn)ujita Y,Maruyama K,et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J].Plant,Cell amp; Environment,2015,38(1) :35-49.
[20]Li L L,Li L X,Cui S H,et al. PDC1 is activated by ABF4 and inhibits seed germination by promoting ROS accumulation in Arabidopsis[J]. Environ. Exp. Bot.,2023,206:105188.
[21]Nishimura N,Sarkeshik A,Nito K,et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2Cinteracting proteins in Arabidopsis[J]. Plant.J.,2010,61 : 290-299. and regulate abscisic acid sensitivity in Arabidopsis[J].The Plant Cell,2014,26(12) :4802-4820.
[23]Diaz M,Sanchez-Barrena M J,Gonzalez-Rubio JM,et al. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling[J].Proceedings of the National Academy of Sciences,2016,113(3):E396-E405.
[24]Edel K H,Kudla J. Integration of calcium and ABA signaling [J]. Current Opinion in Plant Biology,2016,33 :83-91.
[25]Leran S,Edel K H,Pervent M,et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2,a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015,8(375) :ra43.
[26] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology,2000,124(3) :941-948.
[27]McCormack E,Tsai Y C,Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs[J]. Trends in Plant Science, 2005,10(8) :383-389.
[28]Aldon D,Mbengue M,Mazars C,et al. Calcium signaling in plant biotic interactions[J]. Int.J. Mol. Sci.,2018,19(3): 665.
[29]Batistic O,Kudla J. Analysis of calcium signaling pathways in plants[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2012,1820(8) :1283-1293.
[30]Schulz P,Herde M,Romeis T. Calcium-dependent protein kinases:hubs in plant stress signaling and development[J].Plant Physiol.,2013,163(2) :523-530.
[31]Harper JF,Breton G,Harmon A. Decoding Ca2+ signals through plant protein kinases[J].Annu.Rev. Plant Biol., 2004,55:263-288.
[32] Zhu X Y,Dunand C,Snedden W,et al. CaM and CML emergence in the green lineage[J]. Trends in Plant Science,2015, 20(8) :483-489.
[33] Shi S J,Li S G,Asim M,et al. The Arabidopsis calcium-dependent protein kinases (CDPKs)and their roles in plant growth regulation and abiotic stress responses[J]. Int. J. Mol. Sci., 2018,19(7) :1900.
[34]Edel K H,Kudla J. Increasing complexity and versatility:how the calcium signaling toolkit was shaped during plant land colonization[J]. Cell Calcium,2015,57(3) :231-246.
[35]Zhou S,Jia L X,Chu HY,et al. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S -Nitrosoglutathione reductase via direct binding[J].PLoS Genetics,2016,12(9) :e1006255.
[36]Yoo JH,Park C Y,Kim JC,et al. Direct interaction of a divergent CaM isoform and the transcription factor,MYB2,en
[37] Shen Q F,F(xiàn)u L B,Su TT,et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4[J]. Plant Physiol.,2020,183(4) :1650-1662.
[38] Mohanta T K,Kumar P,Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulinlike proteins in plants[J]. BMC Plant Biology,2017,17:38.
[39] McCormack E,Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytol.,2003,159(3) : 585-598.
[40]Mohanta T K,Yadav D,Khan A L,et al. Molecular players of EF-hand containing calcium signaling event in plants[J]. Int. J. Mol. Sci.,2019,20(6) :1476.
[41]Scholz S S,Reichelt M,Vadassery J,et al. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis[J]. Plant Signaling amp; Behavior,2015,10(6) : e1011951.
[42]Wu X M,Qiao Z,Liu HP,et al. CML20,an Arabidopsis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance[J]. Front.Plant Sci.,2017, 8:824.
[43]Astegno A,Bonza M C,Vallone R,et al. Arabidopsis calmodulin-like protein CML36 is a calcium ( Ca2+ )sensor that interacts with the plasma membrane Ca2+ -ATPase isoform ACA8 and stimulates its activity[J]. J. Biol. Chem.,2017,292(36) : 15049-15061.
[44]鄭鈺瑩.OsCaM1-OsCAMTA1-OsCML16模塊調(diào)控水稻耐鹽 性的作用機(jī)制[D].武漢:華中農(nóng)業(yè)大學(xué),2023.
[45]Magnan F,Ranty B,Charpenteau M,et al. Mutations in AtCML9,a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal,2008,56(4) :575-589.
[46]Rao S S,El-Habbak M H,Havens W M,et al. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress[J].Mol. Plant Pathol.,2014,15(2): 145-160.
[47]Delk N A,Johnson K A,Chowdhury NI,et al. CML24,regulated in expression by diverse stimuli,encodes a potential Ca 2+ (20 sensor that functions in responses to abscisic acid,daylength, and ion stress[J]. Plant Physiol.,2005,139(1) :240-253.
[48]Munir S,Khan MR G,Song JW,et al. Genome-wide identification,characterization and expression analysis of calmodulinlike(CML) proteins in tomato (Solanum lycopersicum)[J]. Plant Physiology and Biochemistry,2016,102:167-179.
[49]Fu M M,Wu C,Li X,et al. Genome-wide identification and expression analysis of CsCaM/CML gene family in response to low-temperature and salt stresses in Chrysanthemum seticuspe
[J].Plants,2022,11(13) :1760.
[50] Qiu N W,Liu Q,Li JJ,et al. Physiological and transeriptomic responses of Chinese cabbage (Brassica rapa L. ssp. Pekinensis)to salt stress[J]. Int.J. Mol. Sci.,2017,18(9) :1953.
[51] Ma Q P,Zhou Q Q,Chen C M,et al. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis)[J]. Sci. Rep.,2019,9(1)) :8211.
[52] Nagae M,Nozawa A,Koizumi N,et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. J. Biol. Chem.,2003,278(43) :42240-42246.
[53]Batistic O,Kudla J. Integrationand channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta.,2004,219(6):915-924.
[54]Halfter U,Ishitani M,Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3[J]. Proc.Natl. Acad. Sci. U. S.A., 2000,97(7) :3735-3740.
[55]Liu JP,Ishitani M,Halfter U,et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc. Natl. Acad. Sci.,2000,97(7) :3730-3734.
[56]Song J,Wang B S. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model[J]. Annals of Botany,2015,115(3) :541-553.
[57]Yip Delormel T,Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana[J]. New Phytologist,2019,224(2) :585-604.
[58]Liese A,Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK)[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013,1833(7) :1582-1589.
[59]Rig6 G,Ayaydin F,Tietz O,et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis[J]. The Plant Cell,2013,25(5) :1592-1608.
[60] Popesecu S C,Popescu G V,Bachan S,et al. Diffrential bindingof calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays[J]. Proceedings of the National Academy of Sciences,2007,104(11): 4730-4735.
[61]Bender K W,Blackburn R K,Monaghan J,et al. Autophosphorylation-based calcium ( Ca2+ ) sensitivity priming and Ca2+/ calmodulin inhibition of Arabidopsis thaliana Ca2+ -dependent protein kinase 28(CPK28)[J]. J. Biol. Chem.,2017,292 (10) :3988-4002.
[62] Wang Y,Liang SP,Xie Q G,et al. Characterization of a calmodulin-regulated Ca 2+ -dependent-protein-kinase-related protein kinase,AtCRK1, from Arabidopsis[J]. Biochem.J.,2004,383 (Pt 1) :73-81.
[63]Hrabak E M,Chan C WM,Gribskov M,et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol.,2003,132(2) :666-680.
[64] Zhang H F,Liu D Y,Yang B,et al. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors [J]. J. Exp.Bot.,2020,71(1) :188-203.
[65] Zhu S Y,Yu X C,Wang X J,et al. Two calcium-dependent protein kinases,CPK4 and CPK11,regulate abscisic acid signal transduction in Arabidopsis[J]. The Plant Cell,2007,19(10) : 3019-3036.
[66]Zhao R,Sun HL,Mei C,et al. The Arabidopsis Ca2+ -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth[J]. New Phytol.,2011,192(1) :61-73.
[67]Xu J,Tian Y S,PengRH,et al. AtCPK6,a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta,2010,231(6): 1251- 1260.
[68]AbdElgawad H,Zinta G,Hegab M M,et al.High salinity induces diferent oxidative stress and antioxidant responses in maize seedlings organs[J]. Front. Plant Sci.,2016,7:276.
[69]王浩宇,劉威,鄭墨鈺,等.外源 Ca(NO3)2 對鹽脅迫下大苞 萱草氮代謝及相關(guān)基因表達(dá)的影響[J].山東農(nóng)業(yè)科學(xué), 2022,54(9) :113-118.
[70] Zou JJ,Li X D,Ratnasekera D,et al. Arabidopsis CALCIUMDEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress[J]. The Plant Cell, 2015,27(5) : 1445-1460.
[71] Asano T,Hayashi N, Kobayashi M,et al. Arice calcium-dependent protein kinase OsCPK12 oppositely modulates saltstress tolerance and blast disease resistance[J].Plant. J., 2012,69(1) :26-36.
[72]Dubiella U,Seybold H,Durian G,et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proc. Natl. Acad. Sci. U. S. A.,2013,110(21) :8744-8749.
[73] Zhao R,Sun H M,Zhao N,et al. The Arabidopsis Ca 2+ -dependent protein kinase CPK27 is required for plant response to saltstress[J]. Gene,2015,563(2) :203-214.
[74] Zhang HL,Zhang Y N,Deng C,et al. The Arabidopsis Ca 2+ -dependent protein kinase CPK12 is involved in plant response to salt stress[J]. Int. J. Mol. Sci.,2018,19(12) :4062.
[75]Tao X C,Lu Y T. Loss of AtCRKl gene function in Arabidopsis thaliana decreases tolerance to salt[J]. J. Plant Biol.,2013, 56:306-314.
「76]Huang K.Peng L.Liu Y Y.et al. Arabidopsis calcium-denend
ent protein kinase AtCPK1 plays a positive role in salt/drought stress response[J].Biochem.Biophys.Res.Commun.,2018, 498(1) :92-98.
[77]Ma S Y,Wu W H. AtCPK23 functions in Arabidopsis responses todrought and salt stresses[J].Plant Mol.Biol.,2OO7,65 (4):511-518.
[78]FranzS,EhlertB,LieseA,etal.Calcium-dependentproteinkinase CPK21 functions in abiotic stress response in Arabidopsis thaliana[J].Mol.Plant,2011,4(1):83-96.
[79]Geige D,Scherzer S,Mumm P,etal.Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities[J].Proceedings of the National Academy of Sciences,2010,107(17):8023-8028.
[80]Baba AI,Rigó G,Ayaydin F,etal. Functional analysis of the Arabidopsis thaliana CDPK-related kinase family : at CRKl regulates responses to continuous light[J]. Int.J. Mol.Sci., 2018,19(5) :1282.
[81]Latz A,Mehlmer N,Zapf S,et al. Salt stress triggers phosphorylationoftheArabidopsisvacuolar K+ channel TPK1 bycalcium-dependent protein kinases(CDPKs)[J].Mol.Plant, 2013,6(4):1274-1289.
[82]BorkiewiczL,Polkowska-KowalczykL,CieslaJ,etal.Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II[J].Physiologia Plantarum,2020,168(1) :38-57.