摘""要:有機肥部分替代化肥是茶園“化肥零增長”的關鍵路徑之一,而生物炭作為新型的農田土壤改良劑,在優(yōu)化土壤微生態(tài)環(huán)境方面也展現出積極的效用。進一步認識有機肥替代化肥與生物炭配施對茶園土壤團聚體穩(wěn)定性及有機碳積累的影響及其協(xié)同效應,可為茶園化肥減施增效與固碳減排提供科學依據。采用濕篩法將7種不同施肥處理,即不施肥(CK),常規(guī)施肥(NPK),化肥+10"t/hm2生物炭(NPK+BC10),50%化肥+50%有機肥(OM50),50%化肥+50%有機肥+10"t/hm2生物炭(OM50+BC10),50%化肥+50%有機肥+20"t/hm2生物炭(OM50+BC20),50%化肥+50%有機肥+"40"t/hm2生物炭(OM50+BC40)進行土壤團聚體物理分級,研究不同處理茶園土壤團聚體分布、結構與穩(wěn)定性及其結合有機碳含量的變化規(guī)律。結果表明:與NPK和CK相比,OM50+BC10、OM50+BC20、OM50+BC40這3種處理的茶園土壤中不同粒徑團聚體有機碳貯量均有不同程度的提高。與NPK和CK處理相比,有機肥替代50%化肥配施不同劑量生物炭均能夠顯著提高土壤粒徑gt;2.000"mm、0.250~2.000"mm粒級團聚體的有機碳含量,提高幅度分別為23.96%~"70.87%、21.87%~49.27%,其中以OM50+BC20和OM50+BC40處理的效果最為顯著;團聚體中的幾何平均直徑(GWD)和平均重量直徑(MWD)均為:CKlt;NPKlt;NPK+BC10lt;OM50lt;OM50+BC10lt;OM50+BC20lt;OM50+BC40,且團聚體含量和有機碳含量均為OM50+BC40處理的提高效果最為顯著。50%有機肥替代50%化肥、不同量生物質炭施用均能顯著增加茶園土壤團聚體和有機碳含量,促進茶園土壤團聚體更具有穩(wěn)定性和優(yōu)良的結構水平,與單施有機肥相比,與生物質炭共同配施則更有利于提升土壤團聚體的穩(wěn)定性并促進有機碳的固存。OM50+BC20與OM50+BC40處理對于提高茶園土壤有機碳和土壤團聚體的穩(wěn)定性有顯著效果。若不考慮成本效應,OM50+BC40處理為適宜施肥方案;反之,則可以選擇OM50+BC20處理。
關鍵詞:茶園;有機肥替代;生物炭;水穩(wěn)性團聚體;土壤有機碳;土壤碳儲量中圖分類號:S571.1;S158.3""""""文獻標志碼:A
Impacts"of"Substituting"Chemical"Fertilizer"with"Organic"Fertilizer"in"Conjunction"with"Biochar"on"Soil"Aggregate"Stability"and"Accumulation"of"Organic"Carbon"in"Tea"Plantations
WANG"Shasha1,"CHEN"Junling1,"ZHANG"Xiaojie1,"LI"Yanchun2,"CHEN"Hua2,"WANG"Yixiang2*
1."Fujian"Agriculture"and"Forestry"University,"Fuzhou,"Fujian"350002,"China;"2."Institute"of"Resources,"Environment"and"Soil"Fertilizer,"Fujian"Academy"of"Agricultural"Sciences"/"Fujian"Provincial"Key"Laboratory"of"Agroecological"Processes"in"Red"Soil"Mountains,"Fuzhou,"Fujian"350003,"China
Abstract:"Partial"replacement"of"chemical"fertilizers"with"organic"fertilizers"is"a"key"path"for"achieving"zero"growth"in"chemical"fertilizers"in"tea"gardens."Biochar,"a"new"agricultural"soil"amendment,"has"positive"effects"in"optimizing"the"soil"microecological"environment."Further"understanding"the"effects"of"organic"fertilizer"substitution"and"biochar"application"on"the"soil"aggregate"stability"and"organic"carbon"accumulation"in"tea"gardens,"also"the"synergistic"effects,"can"provide"scientific"basis"for"reducing"fertilizer"application,"increasing"efficiency,"and"carbon"sequestration"and"emission"reduction"in"tea"gardens."Wet"screening"method"was"used"to"treat"seven"different"fertilizers,"namely"no"fertilization"(CK),"conventional"fertilization"(NPK),"fertilizer"and"biochar"application"(biochar"dosage"10"t/hm2,"NPK+BC10),"50%"fertilizer+50%"organic"fertilizer"(OM50),"50%"fertilizer+50%"organic"fertilizer"(OM50)"combined"with"different"amounts"of"biochar."The"amount"of"biochar"was"10"t/hm2"(OM50+BC10),"20"t/hm2"(OM50+BC20)"and"40"t/hm2"(OM50+BC40)nbsp;for"physical"grading"of"soil"aggregates."The"distribution,"structure"and"stability"and"the"change"of"organic"carbon"content"in"different"treated"tea"plantations"were"studied."Under"the"treatment"of"OM50+BC10,"OM50+BC20"and"OM50+BC40,"the"organic"carbon"reserves"of"aggregates"increased"to"different"degrees"compared"with"the"conventional"fertilization"control"treatment."In"contrast"to"the"NPK"and"CK"treatments,"the"replacement"of"50%"chemical"fertilizer"with"different"doses"of"biochar"could"significantly"improve"the"organic"carbon"content"of"soilgt;2"mm"and"0.25-2.00"mm"granular"aggregates."The"increase"rate"was"ranged"from"23.96%-70.87%"and"21.87%-49.27%,"OM50+BC20"and"OM50+BC40"had"the"most"significant"treatment"effect."Geometric"mean"diameter"(GWD)"and"mean"mass"diameter"(MWD)"in"aggregate"were"in"the"order"CKlt;NPKlt;NPK+BC10lt;OM50lt;OM50+BC10lt;OM50+BC20lt;"OM50+BC40."The"aggregate"content"and"organic"carbon"content"were"the"most"significant"in"OM50+BC40"treatment."50%"organic"fertilizer"replacing"50%"fertilizer,"different"amount"of"biomass"carbon"application"could"significantly"increase"tea"garden"soil"aggregate,"organic"carbon"content,"promote"tea"garden"soil"aggregate"stability"and"structure"level."Organic"fertilizer"and"biomass"carbon"is"more"conducive"to"improving"the"stability"of"soil"aggregate"and"promoting"the"sequestration"of"organic"carbon."OM50+BC20"and"OM50+BC40"treatment"showed"significant"results"in"improving"the"stability"of"soil"organic"carbon"and"soil"aggregates"in"tea"plantations."Without"considering"the"cost"effect,"OM50+BC40"is"a"suitable"fertilization"scheme;"otherwise,"OM50+BC20"can"be"selected.
Keywords:"tea"plantation;"organic"fertilizer"substitution;"biochar;"water-stable"aggregates;"soil"organic"carbon;"soil"carbon"stocks
DOI:"10.3969/j.issn.1000-2561.2025.04.016
茶樹是我國經濟領域中的關鍵作物,我國茶園面積與茶葉產量均在全球茶葉產業(yè)中占據領先地位[1]。近年來,鑒于茶農對茶葉高產的迫切需求,部分地區(qū)的茶園存在長期不施有機肥或者過量單一施用化肥的情況,導致茶園土壤養(yǎng)分失衡現象屢見不鮮[2],繼而引發(fā)嚴重的環(huán)境污染,養(yǎng)分嚴重流失,土壤酸化加劇等一系列問題[3]。楊海濱等[4]通過研究明確指出,在茶園中適量配施有機肥可顯著提升土壤的硝酸還原酶活性,進而促進茶園土壤的反硝化過程,有效減少硝態(tài)氮的淋溶損失。俞慎等[5]的研究表明,茶園土壤肥力和熟化程度的關鍵指標在于土壤有機質含量,而高品質茶葉的產出依賴于土壤中豐富的有機質。在茶園管理中,適度配施有機肥能夠有效增強土壤肥力,促進茶葉產量的提升,并有助于緩解土壤酸化問題[6-8]。孫宇龍等[9]通過長期研究也驗證了這一點,研究發(fā)現,采用25%有機肥替代化肥并結合生物質炭的施肥方式,能夠顯著改善土壤質量。還有多項為期3"a及以上的定位試驗表明,茶園土壤質量、茶葉產量及其品質的提升,在有機肥替代比例為25%~50%時達到最優(yōu)效果[6-8,"10]。因此,在茶園土壤中選取化肥與有機肥配施的措施,對于改善土壤質量和充分提供作物的養(yǎng)分需求更有益。同時能夠緩解當前茶園環(huán)境污染的緊迫形勢,并且顯著提升茶葉的產量與品質[11-13]。
土壤團聚體是土壤結構的最基礎單元[14]。不同粒徑的團粒組合作用于表土層的土壤結構,全方位協(xié)調土壤水分的循環(huán)以及養(yǎng)分的分布[15],團聚體穩(wěn)定與否也反映了土壤是否具有優(yōu)良的適用于農業(yè)生產的土壤結構[16]。土壤有機碳作為團粒結構的一種膠結物質[17],可與土壤中的菌絲、碎散腐殖質等多種物質進行膠結,膠結而成的即為團粒結構,此結構在來自外部的力量擠壓作用下使土壤具有穩(wěn)定性。團聚體固相骨架所具備的高孔隙度特點,為微生物營造了更適宜的棲息環(huán)境[18]。土壤碳的固存和養(yǎng)分的保持等生態(tài)功能與土壤團聚體結構的調控緊密相關[19]。不同粒徑的土壤團聚體在土壤生態(tài)系統(tǒng)中體現了多維度的調控作用。不僅能夠有效地調節(jié)土壤養(yǎng)分的供應與平衡[20],還能顯著改善土壤的結構與組成[21],同時對土壤的水力學性質及生物學特性產生影響[15]。此外,土壤團聚體與土壤有機碳之間存在動態(tài)關系:一方面,土壤團聚體能夠包裹并物理保護土壤有機碳,防止其快速分解;另一方面,土壤有機碳能夠增強土壤團聚體的結構水平并促進其穩(wěn)定性,是團聚體的關鍵驅動力[22-24]。土壤團聚體穩(wěn)定性是表征土壤有機碳是否長期穩(wěn)定的一個關鍵指標,而團聚體結構特征則是衡量土壤有機碳貯存潛力的控制因素[25]。生物炭作為一種新型土壤調理劑能致力于改良土壤的物理結構,其功效體現在能夠促進土壤團聚體的形成,更顯著地提高土壤中的有機碳含量[26]。有機肥替代化肥以及生物炭的施用,均展現出增強土壤質量及提升茶葉產量的潛力,已有文獻表明,生物炭與有機肥配施可以提高黃土高原、亞熱帶地區(qū)土壤團聚體的穩(wěn)定性,提高土壤總有機碳水平[27-28],但對土壤團聚體結合有機碳的影響仍了解不多,尤其是在強酸性條件下土壤團聚體穩(wěn)定性與結合有機碳間的作用關系還有待進一步研究。因此,本研究通過對福建鐵觀音茶園進行田間小區(qū)試驗,研究有機肥替代50%化肥并配施不同比例生物質炭對鐵觀音茶園土壤團聚體穩(wěn)定性及其結合有機碳間的關系,對科學優(yōu)化有機肥替代比例、強化土壤團聚體的穩(wěn)定性與土壤肥力,為實現茶園化肥減施增效提供措施和科學依據。
1.1""試驗區(qū)概況
試驗地位于福建省安溪縣感德鎮(zhèn)槐植村(116°20′24″E,"28°15′30″N),屬亞熱帶季風氣候,年均降雨量為1800"mm,年均氣溫為16.5"℃。土壤為紅壤,其基礎性質:pH"4.05,有機碳含量為14.0"g/kg,全氮含量為1.5"g/kg,全磷含量為0.74"g/kg,有效磷含量為26.5"mg/kg,速效鉀含量為67.5"mg/kg[29]。
1.2""方法
1.2.1""試驗設計""供試茶園為15"a鐵觀音,等高梯臺常規(guī)種植,試驗于2018年8月開始。共設置7個處理:不施肥(CK)、常規(guī)施肥(NPK)、化肥+10"t/hm2生物炭(NPK+BC10)、50%化肥+50%有機肥(OM50)、50%化肥+50%有機肥+10"t/hm2生物炭(OM50+BC10)、50%化肥+50%有機肥+"20"t/hm2生物炭(OM50+BC20)、50%化肥+50%有機肥+40"t/hm2生物炭(OM50+BC40)。所有處理按照每年等氮量(150"kg/hm2)進行施肥,每種處理3個重復,小區(qū)面積均為16"m2"(16"m×"1"m),共21個小區(qū),隨機排列[29]。
1.2.2""樣品采集與測定""于2023年5月春茶采收季后進行土壤樣品采集。每個小區(qū)按“S”形采集5個0~20"cm土層樣品,剔除雜物,其中團聚體樣品置于鋁盒中保持不受外力擾動;剩余樣品裝入自封袋帶回實驗室,自然條件下風干后過篩,用于土壤基本理化性質和有機碳分析。
濕篩法[30]是土壤團聚體分級的一種標準且常用的方法。該方法明確界定了土壤團聚體的4個級別:大團聚體(粒徑大于2.000"mm,macro"aggregates)、小團聚體(粒徑介于0.250~2.000"mm之間,small"aggregates)、微團聚體(粒徑在0.053~0.250"mm范圍內,micro"aggregate)以及粉粘粒(粒徑小于0.053"mm的細微土壤顆粒,powdery"clay"particles)。本研究采用濕篩法進行土壤分級。首先去除土壤樣品中的雜質(石塊、雜草和植物根系)并粗略過10"mm篩,然后稱取100"g土壤樣品,將其均勻平鋪于孔徑為2"mm的篩面上。在室溫條件下加入去離子水將土壤樣品浸潤10"min后,在去離子水中以每分鐘30次的頻率進行振蕩操作2~5"min,保持篩子在水桶中的上下振幅為3"cm。振蕩結束后,沖洗不同粒級篩網上的水穩(wěn)性團聚體至鋁盒中,分離出4個級別不同粒徑的組分。各組分樣品置于55"℃烘箱中烘干,從鋁盒中取出稱重(g)并研磨過100目篩(即0.149"mm)。計算不同粒級的團聚體含量,計算方法如下:
1.2.3""土壤團聚體穩(wěn)定性評價指標""評估團聚體穩(wěn)定性利用平均重量直徑(MWD)與幾何平均直徑(GMD)這2項指標。評估粒徑gt;0.25"mm的團聚體,則采用R0.25指標。團聚體穩(wěn)定性按以下公式進行計算:式中,為團聚體a粒級平均直徑,wa為團聚體a粒級含量(團聚體所占的百分比),ma為團聚體a粒級質量,MI為團聚體的總質量,MIgt;0.25為粒級gt;0.25"mm團聚體所組成的質量,R0.25為粒徑gt;0.25"mm團聚體占的總百分比含量。
土壤有機碳貯量的計算公式:
SOCs=(SOCa×ρb×Ta)×0.1
式中,SOCs為土層0~20"cm有機碳貯量(t/hm2);SOCa為第a層土壤有機碳含量(g/kg);ρb為第a層土壤容重(g/cm3);Ta為第a層土壤厚度(cm),0.1是轉換單位系數。
1.3""數據處理
采用MATLAB和Microsoft"Excel軟件對試驗數據進行整理與分析。運用單因素方差分析法評估不同處理之間的差異顯著性,利用Origin"2024軟件作圖,其中圖表數據均為平均值±標準差。
2.1""不同施肥處理茶園土壤團聚體的組成分布
不同施肥處理下土壤團聚體粒徑在0.250~"2.000"mm粒級的團聚體含量最高,占比為72.02%~"75.39%;土壤團聚體粒徑在0.053~0.250"mm粒級的含量次之,占比為7.38%~12.63%;土壤團聚體粒徑lt;0.053"mm粒級的含量占比最小,僅占4.52%~"8.71%(表1)。各粒級土壤團聚體含量隨著施入生物炭比例的增加而增加,其中不同處理中大團聚體和小團聚體含量均顯著增加;OM50+BC10、OM50+BC20、OM50+BC40處理的各粒級團聚體占比與其他處理有顯著差異(Plt;0.05)。
2.2""不同施肥處理土壤團聚體穩(wěn)定性的變化
從表2可以看出,與CK和NPK處理相比,在茶園土壤采用有機肥替代50%化肥并增施生物炭均能顯著提高團聚體平均重量直徑(MWD)和團聚體幾何平均直徑(GMD),特別是粒徑
gt;0.250"mm的團聚體,其R0.25值從78.66增至86.70,其中OM50+BC40處理的效果最為突出。通過逐步回歸方程分析團聚體穩(wěn)定性與團聚體粒級之間的關系,結果表明,影響團聚體穩(wěn)定性的主要粒級為gt;0.250mm團聚體(表3)。且R0.25與粒徑gt;2.000"mm和粒徑為0.250~2.000"mm的團聚體呈顯著正相關(Plt;0.05),而與粒徑為0.053~"0.250"mm以及粒徑lt;0.053"mm的團聚體呈極顯著負相關(Plt;0.01)。微團聚體和粉粘粒級團聚體對穩(wěn)定性的影響程度大于小團聚體和大團聚體。團聚體GMD與粒徑gt;2.000"mm和粒徑為0.250~"2.000"mm的團聚體呈極顯著正相關(Plt;0.01),但與粒徑為0.053~0.250"mm以及粒徑lt;0.053"mm的團聚體呈極顯著負相關(Plt;0.01)。在所有粒級中,粒徑為0.250~2.000"mm的團聚體對GMD的提升效果最為顯著,而粒徑lt;0.053"mm的團聚體對GMD的降低效果最為明顯。MWD與不同處理以及不同粒級團聚體之間均呈顯著正相關(Plt;0.01)。
2.3""不同施肥處理土壤總有機碳與不同粒級團聚體有機碳含量的變化
由圖1A可知,CK與NPK(常規(guī)施肥)處理間的土壤總有機碳含量差異不顯著;與NPK處理相比,有機肥替代50%化肥配施不同量生物炭均顯著提高了土壤總有機碳含量,OM50+BC10處理的土壤總有機碳含量顯著增加22.89%,OM50+BC20處理顯著增加29.10%,OM50+BC40處理顯著增加37.25%,其中以OM50+BC40處理的提升效果最好。
不同施肥處理均能不同程度地提高各粒級土壤團聚體的有機碳含量(圖1B)。與CK和NPK處理相比,有機肥替代50%化肥配施不同劑量生物炭均能夠顯著提高土壤粒徑gt;2.000"mm粒級團聚體的有機碳含量,提高幅度為23.96%~70.87%,其中以OM50+BC40處理效果最為顯著,可能是因為施用生物炭能夠增加土壤有機碳含量,同時有機碳可以粘合土壤顆粒形成較大團聚體,團聚體的形成也可以保護有機碳免受分解。與CK和NPK處理相比,有機肥替代50%化肥配施生物炭亦能夠顯著提高土壤0.250~2.000"mm粒級團聚體的有機碳含量,提高幅度為21.87%~49.27%,其中以OM5+BC40處理的提高效果最為顯著。與CK和NPK處理相比,有機肥替代50%化肥配施生物炭對0.053~0.250"mm粒級團聚體和粒徑lt;0.053"mm粒級粉粘粒的有機碳含量也有顯著提升,其中以OM50+BC10、OM50+BC20和OM50+"BC40處理效果最為顯著。
2.4""不同施肥處理團聚體結合有機碳貯量的變化
CK與NPK處理在粒徑gt;2.000"mm團聚體中的有機碳貯量最高,在粒徑lt;0.053"mm團聚體的不同小寫字母表示處理間差異顯著(Plt;0.05)。
有機碳貯量次之;與CK相比,OM50+BC10、OM50+BC20、OM50+BC40處理顯著提高粒徑gt;2.000"mm和0.250~2.000"mm粒級團聚體的有機碳貯量,且大團聚體的有機碳貯量明顯高于小團聚體;同一粒級團聚體有機碳貯量隨著有機肥替代化肥及生物炭用量的增加呈增長趨勢(表4)。表明有機肥替代化肥配施生物炭可以顯著增加茶園土壤水穩(wěn)性大團聚體的有機碳貯量。
在所有處理中,粒徑為0.250~2.000"mm的團聚體對有機碳的貢獻率最高,為67.60%~72.10%;粒徑gt;2.000"mm的團聚體有機碳貢獻率位居第二,為10.71%~20.73%;粒徑lt;0.053"mm的團聚體有機碳貢獻率最低,僅為5.54%~8.36%。且粒徑為0.053~0.250"mm的粒級團聚體有機碳貢獻率高于粒徑lt;0.053"mm的團聚體。與NPK處理相比,有機肥替代50%化肥并配施不同劑量的生物炭顯著提升粒徑gt;2"mm團聚體的有機碳貢獻率,增幅為23.05%~55.04%,同時降低粒徑為0.053~0.250"mm和粒徑lt;0.053"mm團聚體的有機碳貢獻率,降幅分別為15.42%~43.98%和4.41%~24.48%。與僅使用有機肥替代50%化肥(OM50)的處理相比,施加不同劑量生物炭顯著提高粒徑gt;2.000"mm團聚體對土壤有機碳的貢獻率,同時顯著降低了粒徑lt;0.053"mm團聚體對土壤有機碳的貢獻率。OM50+BC40處理的提升效果最為顯著,粒徑
gt;2.000"mm的團聚體有機碳貢獻率提高了59.02%,而粒徑為0.053~0.250"mm和粒徑lt;0.053"mm的團聚體有機碳貢獻率分別降低了38.42%和3.91%(表4)。
3.1""有機肥替代化肥配施生物炭對土壤團聚體穩(wěn)定性的影響
土壤結構是調控眾多土壤物理與生物過程、調節(jié)土壤有機碳分解的核心屬性之一[32]。作為土壤結構的基本組成單元的土壤團聚體,其分布特征及其穩(wěn)定性能夠精準地反映在不同管理策略下土壤質量的動態(tài)演變過程,是評估這些管理手段對土壤自然屬性及農業(yè)土壤生產能力提升效果的關鍵量化指標之一[33-34]。土壤團聚體的結構及其組成成分和土壤有機碳含量之間存在緊密的相關性[35-36]。本研究中有機肥能提升土壤肥力與團聚體穩(wěn)定性的結果與以往研究結果相似。張平良等[37]研究發(fā)現,長期施用有機肥可顯著提高西北黃綿土耕層中粒徑gt;0.25"mm的團聚體含量和穩(wěn)定性,且顯著提升土壤和團聚體的有機碳貯量。李婕等[38]則研究表明施用有機肥和秸稈還田等方式均可顯著增加作物產量、輸入土壤有機物和土壤有機碳含量,且在0~10"cm土層中粒徑gt;2"mm粒級土壤團聚體含量的比例顯著增加。劉京等[39]也研究證實土壤較大團聚體的形成在實施秸稈和化肥配施后效果更佳。霍琳等[40]研究表明,增施有機肥和秸稈還田處理下的水穩(wěn)性大團聚體含量均顯著提升。SIX等[24]研究指出,施用有機肥后的有機殘體在促進土壤水穩(wěn)性大團聚體形成方面的效果優(yōu)于秸稈還田。本研究結果表明,采用有機肥替代化肥顯著增加茶園土壤中粒徑gt;2.000"mm及0.250~2.000"mm的粒級團聚體含量,有利于提高團聚體結構水平和穩(wěn)定性,其主要原因可能是有機肥可以增加有機碳源,改善土壤的物理結構,有利于大團聚體的形成。R0.25、幾何平均直徑(GMD)和平均重量直徑(MWD)是衡量土壤團聚體粒級分布情況的評價指標,R0.25的增加往往伴隨著GMD和MWD的提高,進而表明土壤中團聚體的穩(wěn)定性增強。本研究中,隨著配施生物質炭劑量的提高,R0.25、GMD及MWD均呈顯著增長的趨勢,生物炭施用于茶園土壤后,粒徑為0.250~2.000"mm的團聚體占據主導地位[41],這可能與生物質炭的特性有關,其高比表面積和僅有的孔隙結構等能吸附并穩(wěn)定土壤中的有機物質,促使土壤顆粒結合成有機無機復合的大團聚體[42]。這一發(fā)現與王亞瓊等[43]的研究結果相契合,進一步證實了生物炭在促進土壤中較大團聚體(粒徑gt;0.250"mm)形成方面的積極作用。此外,生物質炭本身所含有的可溶性有機碳作為外源輸入也能夠顯著提升土壤的有機碳含量,進而推動微團聚體進一步轉化為大團聚體[44]。然而,并不是所有研究均認為施用生物炭對土壤團聚體的穩(wěn)定性產生正面積極效應。如,BUSSCHER等[45]在土壤中分別添加5、10、20"g/kg生物炭硅質70"d后,土壤團聚體的穩(wěn)定性無顯著影響;ZHANG等[46]的一項為期1.5"a的研究指出,按16"t/hm2生物質炭施用可顯著提高中國黃土高原土壤中的大團聚體(粒徑gt;2.000"mm)含量,而8"t/hm2生物質炭處理則未見顯著效果。產生此類差異可能與土壤特性、生物質炭施用時長和施用量等有關。
本研究結果表明,與單施有機肥(OM50)和單施生物炭(NPK+BC10)相比,有機肥與生物炭配施均不同程度地提高了R0.25、GMD和MWD,表明有機肥與生物炭配施后對土壤團聚體的穩(wěn)定性更能起積極的正向作用[47]。李偉等[48]在小麥-玉米農田的研究中發(fā)現,生物質炭配施氮肥使土壤團聚體穩(wěn)定性、水穩(wěn)性大團聚體含量顯著增加,且兩季作物總產量也顯著增加。鄧偉明等[49]基于大豆盆栽試驗發(fā)現,與不施生物炭相比,生物炭與磷肥配施促進了更大粒徑團聚體的形成,在不同磷水平下添加生物炭均顯著增加粒徑gt;2.000"mm粒級團聚體比例,而降低粒徑為0.250~2.000"mm粒級團聚體比例。本研究也發(fā)現,有機肥與生物炭的協(xié)同配施對土壤結構和保肥性能產生了積極的協(xié)同效應。這種效應體現在它們共同推動了粉粘粒土壤礦物向有機無機復合體的轉變,進而顯著提高了土壤中粒徑gt;0.250"mm粒級團聚體的穩(wěn)定性。生物炭較穩(wěn)定不易分解,大量孔隙吸附秸稈分解產生的養(yǎng)分物質,提供團聚體形成過程中必需膠結物質的物質基礎,從而促進大粒級團聚體的形成。此外,生物炭與有機肥配施為土壤中細菌和真菌提供營養(yǎng)物質,使細菌和真菌生長速率顯著提高,從而使植物根系分泌物增加,土壤中有機膠結物質含量也增加,最終促進形成大粒級的團聚體。
3.2""有機肥替代化肥配施生物炭對土壤團聚體有機碳分布的影響
土壤有機碳是土壤質量評估中的關鍵指標[50],同時也是促進團聚體穩(wěn)定性增強的關鍵有機結合劑[51]。本研究結果表明,有機肥替代化肥和施用生物炭均能增加茶園土壤有機碳含量,且不同施用量的生物炭均能顯著提升茶園土壤中的有機碳水平,且該提升效果與生物炭的添加量呈正相關,這一發(fā)現與前人研究結果相吻合,即有機肥替代化肥施用和生物炭的添加均能顯著增加土壤碳含量[52]。這可能是因為一方面生物炭本身作為碳源能夠增加土壤中的有機碳含量;另一方面,生物炭本身具有穩(wěn)定的芳香結構,施入土壤后難以被微生物分解,而且生物炭的高比表面積和豐富的孔隙結構能吸附土壤中的有機碳,能有效固定土壤中的有機碳,形成物理性保護屏障,進而抑制有機碳的分解,成為土壤碳庫中不可或缺的關鍵組成部分[53]。本研究中,與單施化肥相比,施用有機肥能更好地提高土壤有機碳含量,即施用有機肥能顯著提升粒徑lt;0.053"mm團聚體有機碳含量。本研究還發(fā)現,隨著生物炭配施量的增加,茶園土壤中粒徑gt;0.250"mm的團聚體有機碳含量與儲量穩(wěn)定維持在63.70%~70.60%的高位水平,表明有機碳集中在粒徑為0.250~2.000"mm的團聚體內分布。張曉杰[54]研究也發(fā)現添加2種不同類型生物炭均顯著增加土壤有機碳(SOC)和水溶性有機碳(WSOC)含量,且顆粒有機碳(POC)含量在粒徑gt;0.250"mm的大團聚體中較高,SOC和WSOC含量在粒徑gt;0.250"mm大團聚體和粒徑為0.053~0.250"mm微團聚體中更高,且隨著培養(yǎng)時間的延長顯著增加。這些均說明生物炭的施用對提高土壤粒徑gt;0.250"mm的團聚體的有機碳含量呈積極正向作用。
有機肥替代化肥配施生物炭作為能夠提高土壤有機碳含量、改善土壤優(yōu)良結構和提升土壤肥力水平的農業(yè)措施,應進行大力推廣和應用。本研究表明,有機肥替代50%化肥配施生物質炭后,茶園土壤的有機碳含量顯著增加,這增強了土壤顆粒中有機和無機復合體的膠結作用,進而促進了更多粒徑gt;0.250"mm粒級團聚體的形成,提升了土壤團聚體的結構及其穩(wěn)定性。即大團聚體相較于微團聚體而言,能夠儲存更為豐富的碳、氮元素及顆粒狀有機質和不穩(wěn)定有機質,進而促進土壤的固碳能力[55]。李越等[56]也研究表明,在有機肥配施生物炭處理下各粒級團聚體的有機碳含量顯著增加,與僅施化肥相比,有機肥配施生物炭對提升土壤各粒級團聚體有機碳的效果更佳。本研究也發(fā)現,與單施有機肥或僅施生物質炭處理相比,50%有機肥+50%化肥配施不同量生物質炭使茶園土壤各粒級團聚體有機碳含量顯著增加,且在粒徑gt;0.250"mm的粒級大團聚體有機碳貢獻率均有不同程度地提高。與微團聚體和粉粘粒組分相比,宏觀團聚體能儲存更多的C、N、顆粒有機物和不穩(wěn)定有機物,更有利于提高土壤碳固存。表明與單施化肥或有機肥、生物炭相比,有機肥替代化肥并配施生物炭是土壤固碳的有效方式。
與常規(guī)化肥處理相比,有機肥配施生物炭均能顯著改善茶園土壤團聚體結構和提高其穩(wěn)定性。茶園土壤團聚體的分布以粒徑為0.250~2.000"mm為主,占67.12%~76.39%。有機肥配施生物炭后,茶園土壤團聚體進一步向粒徑為0.250~2.000"mm聚集,土壤團聚體的MWD、GMD、R0.25以OM50+"BC40處理的最高。與常規(guī)化肥處理相比,有機肥與生物炭配施顯著提高了粒徑gt;2.000"mm粒級團聚體的有機碳貢獻率(23.05%~55.04%),降低粒徑為0.053~0.250"mm和粒徑lt;0.053"mm粒級團聚體的有機碳貢獻率。而與單施有機肥或單施生物炭處理相比,有機肥與生物炭配施處理后茶園土壤各粒級團聚體有機碳含量顯著增加,土壤團聚體的R0.25、GMD、MWD以及粒徑gt;0.250"mm粒級團聚體的有機碳貢獻率均不同程度地提高,有機肥與生物炭配施更有利于增加土壤團聚體穩(wěn)定性和有機碳的固存,其中以OM50+BC20與OM50+BC40處理的應用效果較佳。
參考文獻
[1]"陳檢鋒,"楊向德,"馬立鋒,"倪康,"阮建云,"付利波."有機肥替代部分化肥對云南大葉茶產量和品質的影響[J]."中國茶葉,"2022,"44(10):"49-54.CHEN"J"F,"YANG"X"D,"MA"L"F,"NI"K,"RUAN"J"Y,"FU"L"B."Effects"of"partial"organic"substitution"for"chemical"fertilizer"on"the"yield"and"quality"of"Yunnan"large-leaf"tea[J]."China"Tea,"2022,"44(10):"49-54."(in"Chinese)
[2]"王峰,"吳志丹,"陳玉真,"張文錦."提高福建茶園土壤肥力質量的技術途徑[J]."福建農業(yè)學報,"2012,"27(10):"1139-"1145.WANG"F,"WU"Z"D,"CHEN"Y"Z,"ZHANG"W"J."Means"to"improve"soil"fertility"of"tea"plantations"in"Fujian[J]."Fujian"Journal"of"Agricultural"Sciences,"2012,"27(10):"1139-1145."(in"Chinese)
[3]"林生,"莊家強,"陳婷,"張愛加,"周明明,"林文雄."福建安溪不同年限茶樹土壤養(yǎng)分與微生物Biolog功能多樣性的差異分析[J]."中國生態(tài)農業(yè)學報,"2012,"20(11):"1471-1477.LIN"S,"ZHUANG"J"Q,"CHEN"T,"ZHANG"A"J,"ZHOU"M"M,"LIN"W"X."Analysis"of"nutrient"and"microbial"biology"function"diversity"in"tea"soils"with"different"planting"years"in"Fujian"Anxi[J]."Chinese"Journal"of"Eco-Agriculture,"2012,"20(11):"1471-1477."(in"Chinese)
[4]"楊海濱,"李中林,"鄧敏,"盛忠雷,"張瑩,"胡方潔,"鄔秀宏,"徐澤."不同施肥措施對重慶茶園土壤氮轉化酶活性的影響[J]."應用與環(huán)境生物學報,"2020,"26(5):"1107-1114.YANG"H"B,"LI"Z"L,"DENG"M,"SHENG"Z"L,"ZHANG"Y,"HU"F"J,"WU"X"H,"XU"Z."Effects"of"the"combined"application"of"different"fertilizers"and"urea"on"nitrogen"transformation"en zyme"activities"in"tea-garden"soil"from"Chongqing[J]."Chi nese"Journal"of"Applied"and"Environmental"Biology,"2020,"26(5):"1107-1114."(in"Chinese)
[5]"俞慎,"何振立,"陳國潮,"黃昌勇."不同樹齡茶樹根層土壤化學特性及其對微生物區(qū)系和數量的影響[J]."土壤學報,"2003,"40(3):"433-439.YU"S,"HE"Z"L,"CHEN"G"C,"HUANG"C"Y."Soil"chemical"characteristics"and"their"impacts"on"soil"microflora"in"the"root"layer"of"tea"plants"with"different"cultivating"ages[J]."Journal"of"Soil"Science,"2003,"40(3):"433-439."(in"Chinese)
[7]"JI"L"F,"NI"K,"WU"Z"D,"ZHANG"J"W,"YI"X"Y,"YANG"X"D,"LING"N,"YOU"Z"M,"GUO"S"W,"RUAN"J"Y."Effect"of"or ganic"substitution"rates"on"soil"quality"and"fungal"community"composition"in"a"tea"plantation"with"long-term"fertilization[J]."Biology"and"Fertility"of"Soils,"2020,"56:"633-646.
[8]"王子騰,"耿元波,"梁濤,"胡雪荻."減施化肥和配施有機肥對茶園土壤養(yǎng)分及茶葉產量和品質的影響[J]."生態(tài)環(huán)境學報,"2018,"27(12):"2243-2251."WANG"Z"T,"GENG"Y"B,"LIANG"T,"HU"X"D."Effects"of"chemical"fertilizer"reduction"and"chemical"fertilizer"applied"with"organic"fertilizer"on"tea"garden"soil"nutrients"and"tea"yield"and"quality[J]."Ecology"and"Environmental"Sciences,"2018,"27(12):"2243-2251."(in"Chinese)
[9]"孫宇龍,"張永利,"王燁軍,"蘇有健,"羅毅,"廖珺,"廖萬有."機采茶園有機替代技術對土壤肥力和茶葉產量品質的影響[J]."中國農學通報,"2019,"35(21):"43-49.SUN"Y"L,"ZHANG"Y"L,"WANG"Y"J,"SU"Y"J,"LUO"Y,"LIAO"J,"LIAO"W"Y."Effects"of"chemical"fertilizers"replaced"by"organic"manure"on"soil"fertility,"tea"yield"and"quality"in"machine-picked"tea"garden[J]."Chinese"Agricultural"Science"Bulletin,"2019,"35(21):"43-49."(in"Chinese)
[10]"VOGELnbsp;H,"BALAEIR"R,"KRAVCHENKO"A,"OTTEN"W,"POT"V,"SCHLUTER"S,"WELLER"U,"BAVEYE"C."A"holistic"perspective"on"soil"architecture"is"needed"as"a"key"to"soil"functions[J]."European"Journal"of"Soil"Science,"2021,"73(1):"13152.
[11]"阮建云,"馬立鋒,"伊曉云,"石元值,"倪康,"劉美雅,"張群鋒."茶樹養(yǎng)分綜合管理與減肥增效技術研究[J]."茶葉科學,"2020,"40(1):"85-95.RUAN"J"Y,"MA"L"F,"YI"X"Y,"SHI"Y"Z,"NI"K,"LIU"M"Y,"ZHANG"Q"F."Integrated"nutrient"management"in"tea"planta tion"to"reduce"chemical"fertilizer"and"increase"nutrient"use"ef ficiency[J]."Tea"Science,"2020,"40(1):"85-95."(in"Chinese)
[12]"胡雪荻,"耿元波,"梁濤."緩控釋肥在茶園中應用的研究進展[J]."中國土壤與肥料,"2018(1):"1-8.HU"X"D,"GENG"Y"B,"LIANG"T."The"progress"of"controlled-release"fertilizer"applied"in"tea"garden[J]."Soil"and"Fertilizer"in"China,"2018(1):"1-8."(in"Chinese)
[13]"祝金虹."有機肥替代化肥模式對茶葉產量及品質的影響[J]."中國農技推廣,"2020,"36(12):"60-62.ZHU"J"H."Effects"of"organic"fertilizer"instead"of"chemical"fer tilizer"on"tea"yield"and"quality[J]."China"Agricultural"Tech nology"Extension,"2020,"36(12):"60-62."(in"Chinese)
[14]"劉中良,"宇萬太,"周樺,"馬強."不同有機廄肥輸入量對土壤團聚體有機碳組分的影響[J]."土壤學報,"2011,"48(6):"1149-1157.LIU"Z"L,"YU"W"T,"ZHOU"H,"MA"Q."Effect"of"application"rate"of"barnyard"manure"on"organic"carbon"fraction"of"soil"aggregates[J]."Acta"Soil"Science,"2011,"48(6):"1149-1157."(in"Chinese)
[15]"SIX"J,"ELLIOTT"E"T,"PAUSTIAN"K."Soil"macro"aggregate"turnover"and"micro"aggregate"formation:"a"mechanism"for"C"sequestration"under"no"-tillage"agriculture[J]."Soil"Biology"and"Biochemistry,"2000,"32(14):"2099-2103.
[16]"劉鴻宇."泡桐人工林土壤團聚體穩(wěn)定性及其影響因素研究[D]."長沙:"中南林業(yè)科技大學,"2020.LIU"H"Y."Study"on"the"stability"of"soil"aggregates"in"Pau lownia"plantation"and"its"influencing"factors[D]."Changsha:"Central"South"University"of"Forestry"and"Technology,"2020."(in"Chinese)
[17]"PULLEMAN"M"M,"MARINISSEN"J"C"Y."Physical"protec tion"of"mineralizable"C"in"aggregates"from"long-term"pasture"and"arable"soil[J]."Geoderma,"2004,"120(3/4):"273-282.
[18]"徐香茹,"汪景寬."土壤團聚體與有機碳穩(wěn)定機制的研究進展[J]."土壤通報,"2017,"48(6):"1523-1529.XU"X"R,"WANG"J"K."A"review"on"different"stabilized"mechanisms"of"soil"aggregates"and"organic"carbon[J]."Chinese"Journal"of"Soil"Science,"2017,"48(6):"1523-1529."(in"Chinese)
[19]"劉恩科,"趙秉強,"梅旭榮,"HWAT"Bing-So,"李秀英,"李娟."不同施肥處理對土壤水穩(wěn)定性團聚體及有機碳分布的影響[J]."生態(tài)學報,"2010,"30(4):"1035-1041.LIU"E"K,"ZHAO"B"Q,"MEI"X"R,"HWAT"B"S,"LI"X"Y,"LI"J."Distribution"of"water-stable"aggregates"and"organic"carbon"of"arable"soils"affected"by"different"fertilizer"application[J]."Acta"Ecological"Sinica,"2010,"30(4):"1035-1041."(in"Chinese)
[20]"劉中良,"宇萬太,"周樺,"徐永剛,"黃寶同."長期施肥對土壤團聚體分布和養(yǎng)分含量的影響[J]."土壤,"2011,"43(5):"720-728.LIU"Z"L,"YU"W"T,"ZHOU"H,"XU"Y"G,"HUANG"B"T."Effects"of"long-term"fertilization"on"aggregate"size"distribution"and"nutrient"content[J]."Soils,"2011,"43(5):"720-728."(in"Chinese)
[21]"陳恩鳳,"關連珠,"汪景寬,"顏麗,"王鐵宇,"張繼宏,"周禮愷,"陳利軍,"李榮華."土壤特征微團聚體的組成比例與肥力評價[J]."土壤學報,"2001,"38(1):"49-53.CHEN"E"F,"GUAN"L"Z,"WANG"J"K,"YAN"L,"WANG"T"Y,"ZHANG"J"H,"ZHOU"L"K,"CHEN"L"J,"LI"R"H."Compositional"proportion"of"soil"characteristic"micro"aggregates"and"soil"fer tility"evaluation[J]."Acta"Pedologica"Sinica,"2001,"38(1):"49-53."(in"Chinese)
[22]"TISDALL"J"M,"OADES"J"M."Organic"matter"and"wa ter-stable"aggregates"in"soils[J]."Journal"of"Soil"Science,"1982,"33(2):"141-163.
[23]"SOLLINS"P,"HOMANN"P,"CALDWELL"B"A."Stabilization"ND"destabilization"of"soil"organic"matter:"mechanisms"and"controls[J]."Geoderma,"1996,"74(1/2):"65-105.
[25]"緱倩倩,"王國華,"屈建軍."農田土壤有機碳庫研究述評[J]."中國農學通報,"2017,"33(33):"107-114.GOU"Q"Q,"WANG"G"H,"QU"J"J."A"review"of"researches"on"soil"organic"carbon"pool"in"cropland[J]."Chinese"Agricultural"Science"Bulletin,"2017,"33(33):"107-114."(in"Chinese)
[26]"HERATH"H"M"S"K,"CAMPS-ARBESTAIN"M,"HEDLEY"M."Effect"of"biochar"on"soil"physical"properties"in"two"contrast ing"soils:"an"Alfisol"and"an"Andisol[J]."Geoderma,"2013,"209/210:"188-197.
[27]"龐津雯,"王鈺皓,"陶宏揚,"衛(wèi)婷,"高飛,"劉恩科,"賈志寬,"張鵬."生物炭不同添加量對旱作覆膜農田土壤團聚體特性及有機碳含量的影響[J]."中國農業(yè)科學,"2023,"56(9):"1729-1743.PANG"J"W,"WANG"Y"H,"TAO"H"Y,"WEI"T,"GAO"F,"LIU"E"K,"JIA"Z"K,"ZHANG"P.nbsp;Effects"of"different"biochar"applica tion"rates"on"soil"aggregate"characteristics"and"organic"carbon"contents"for"film-mulching"field"in"semiarid"areas[J]."Scien tific"Agricultural"Sinica,"2023,"56(9):"1729-1743."(in"Chinese)
[28]"張紅雪,"趙壯,"王曉朋,"朱巧蓮,"鄒雙全,"毛艷玲."生物炭對亞熱帶紅壤水穩(wěn)性團聚體及其碳、氮分布的影響[J]."中國土壤與肥料,"2020(6):"27-33.ZHANG"H"X,"ZHAO"Z,"WANG"X"P,"ZHU"Q"L."ZOU"S"Q,"MAO"Y"L."Effect"of"biochar"on"water"stable"aggregate"and"distribution"of"carbon"and"nitrogen"in"subtropical"red"soil[J]."Soil"and"Fertilizer"Sciences"in"China,"2020(6):"27-33."(in"Chinese)
[29]"李艷春,"汪航,"李兆偉,"葉菁,"王義祥."幾種改良措施對酸化茶園土壤理化性質和微生物群落結構的影響[J]."茶葉科學,"2022,"42(5):"661-671.LI"Y"C,"WANG"H,"LI"Z"W,"YE"J,"WANG"Y"X."Ameliorative"effect"of"several"measures"on"soil"physicochemical"properties"and"microbial"community"structures"in"acidified"tea"gar dens[J]."Journal"of"Tea"Science,"2022,"42(5):"661-671."(in"Chinese)
[30]"CAMBARDELLA"C"A,"ELLIOTT"E"T."Carbon"and"nitrogen"distribution"in"aggregates"from"cultivated"and"native"grassland"soils[J]."Soil"Science"Society"of"America"Journal,"1993,"57(4):"1071-1076.
[31]"鮑士旦."土壤農化分析[M]."北京:"中國農業(yè)出版社,"2005."BAO"S"D."Soil"agrochemical"analysis[M]."Beijing:"China"Agriculture"Press,"2005."(in"Chinese)
[32]"VAN"VEEN"J"A,"KUIKMAN"P"J."Soil"structural"aspects"of"decomposition"of"organic"matter"by"micro-organisms[J]."Bio-geochemistry,"1990,"11:"213-223.
[33]"MANNA"M"C,"SWARUP"A,"WANJARIR"H,"RAVANKAR"H"N,"MISHRA"B,"SAHA"M"N,"SINGH"Y"V,"SAHI"D"K,"SARAP"P"A."Long-term"effect"of"fertilizer"and"manure"ap plication"on"soil"organic"carbon"storage,"soil"quality"and"yield"sustainability"under"sub-humid"and"semi-arid"tropical"India[J]."Field"Crops"Research,"2005,"93(2/3):"264-280.
[34]"MIKHA"M"M,"RICE"C"W."Tillage"and"manure"effects"onnbsp;soil"and"aggregate-associated"carbon"and"nitrogen[J]."Soil"Science"Society"of"America"Journal,"2004,"68:"809-816.
[35]"HAYNES"R"J,"FRANCIS"G"S."Changes"in"microbial"bio mass"C,"soil"carbohydrate"composition"and"aggregate"stabil-ity"induced"by"growth"of"selected"crop"and"forage"species"under"field"conditions[J]."Journal"of"Soil"Science,"1993,"44(4):"665-675.
[36]"BRONICK"C"J,"LAL"R."Soil"structure"and"management:"a"review[J]."Geoderma,"2005,"124(1/2):"3-22.
[37]"張平良,"劉曉偉,"曾駿,"郭天文."長期施用有機肥對西北半干旱區(qū)小麥田土壤團聚體分布及其有機碳的影響[J]."中國土壤與肥料,"2024(4):"1-8.ZHANG"P"L,"LIU"X"W,"ZENG"J,"GUO"T"W."Effects"of"long-term"organic"manure"application"on"the"distribution"and"organic"carbon"content"of"soil"aggregates"in"wheat"field"of"northwest"semi-arid"region[J]."Soil"and"Fertilizer"in"China,"2024(4):"1-8."(in"Chinese)
[38]"李婕,"黎青慧,"李平儒,"王蓮蓮,"楊學云,"張樹蘭."長期有機肥施用、秸稈還田對塿土團聚體及其有機碳含量的影響[J]."土壤通報,"2012,"43(6):"1456-1460.LI"J,"LI"Q"H,"LI"P"R,"WANG"L"L,"YANG"X"Y,"ZHANG"S"L."Effects"of"long-term"organic"inputs"on"distribution"of"aggre gate"size"and"its"organic"carbon"content"on"Lou"soil[J]."Chinese"Journal"of"Soil"Science,"2012,"43(6):"1456-1460."(in"Chinese)
[39]"劉京,"常慶瑞,"李崗,"魏永勝."連續(xù)不同施肥對土壤團聚性影響的研究[J]."水土保持通報,"2000(4):"24-26.LIU"J,"CHANG"Q"R,"LI"G,"WEI"Y"S."Effect"of"different"fer tilization"on"soil"characteristics"of"aggregate[J]."Bulletin"of"Soil"and"Water"Conservation,"2000(4):"24-26."(in"Chinese)
[40]"霍琳,"武天云,"藺海明,"曹詩瑜,"唐文雪."長期施肥對黃土高原旱地黑壚土水穩(wěn)性團聚體的影響[J]."應用生態(tài)學報,"2008(3):"545-550.HUO"L,"WU"T"Y,"LIN"H"M,"CAO"S"Y,TANG"W"X."Effects"of"long-term"fertilization"on"water-stablenbsp;aggregates"in"calcic"kastanozem"of"Loess"Plateau[J]."Chinese"Journal"of"Applied"Ecology,"2008(3):"545-550."(in"Chinese)
[42]"ISLAM"M"U,"JIANG"F"H,"GUO"Z"C,"PENG"X"H."Does"biochar"application"improve"soil"aggregation?"A"meta-"analysis[J]."Soil"and"Tillage"Research,"2021,"209:"104926.
[43]"王亞瓊,"牛文全,"李學凱,"王婕,"官雅輝,"董繼紅."生物炭對日光大棚土壤團聚體結構的影響[J]."水土保持通報,"2019,"39(4):"190-195.WANG"Y"Q,"NIU"W"Q,"LI"X"K,"WANG"J,"GUAN"Y"H,"DONG"J"H."Effect"of"biochar"on"soil"aggregate"structure"in"greenhouse[J]."Bulletin"of"Soil"and"Water"Conservation,"2019,"39(4):"190-195."(in"Chinese)
[44]"姜燦爛,"何園球,"劉曉利,"陳平幫,"王艷玲,"李輝信."長期施用有機肥對旱地紅壤團聚體結構與穩(wěn)定性的影響[J]."土壤學報,"2010,"47(4):"715-722.JIANG"C"L,"HE"Y"Q,"LIU"X"L,"CHEN"P"B,"WANG"Y"L,"LI"H"X."Effect"of"long-term"application"of"organic"manure"on"structure"and"stability"of"aggregate"in"upland"red"soil[J]."Acta"Pedologica"Sinica,"2010,"47(4):"715-722."(in"Chinese)
[45]"BUSSCHER"W"J,"NOVAK"J"M,"EVANS"D"E,"WATTS"D"W."Influence"of"pea"can"biochar"on"physical"properties"of"a"Norfolk"loamy"sand[J]."Soil"Science,"2010,"175(1):"10-14.
[46]"ZHANG"M,"CHENG"G,"FENG"H,"SUN"B"H,"ZHAO"Y,"CHEN"H"X,"CHEN"J,"DYCK"M,"WANG"X"D,"ZHANG"J"G,"ZHANG"A"F."Effects"of"straw"and"biochar"amendments"on"aggregate"stability,"soil"organic"carbon,"and"enzyme"activi ties"in"the"Loess"Plateau,"China[J]."Environmental"Science"and"Pollution"Research"International,"2017,"24(11):"10108-"10120.
[47]"侯曉娜,"李慧,"朱劉兵,"韓燕來,"唐政,"李忠芳,nbsp;譚金芳,"張水清."生物炭與秸稈添加對砂姜黑土團聚體組成和有機碳分布的影響[J]."中國農業(yè)科學,"2015,"48(4):"705-712.HOU"X"N,"LI"H,"ZHU"L"B,"HAN"Y"L,"TANG"Z,"LI"Z"F,"TAN"J"F,"ZHANG"S"Q."Effects"of"biochar"and"straw"additions"on"lime"concretion"black"soil"aggregate"composition"and"or ganic"carbon"distribution[J]."Scientific"Agricultural"Sinica,"2015,"48(4):"705-712."(in"Chinese)
[48]"李偉,"代鎮(zhèn),"張光鑫,"劉楊,"韓娟."生物炭和氮肥配施提高塿土團聚體穩(wěn)定性及作物產量[J]."植物營養(yǎng)與肥料學報,"2019,"25(5):"782-791.LI"W,"DAI"Z,"ZHANG"G"X,"LIU"Y,"HAN"J."Combination"of"biochar"and"nitrogen"fertilizer"to"improve"soil"aggregate"sta bility"and"crop"yield"in"Lou"soil[J]."Journal"of"Plant"Nutrition"and"Fertilizers,"2019,"25(5):"782-791."(in"Chinese)
[49]"鄧偉明,"唐夢天,"郭玉棟,"池哲偉,"黃期,"鄺曦芝,"蔡昆爭,"田紀輝."生物炭與磷肥添加對紅壤團聚體及其磷組分分布的影響[J]."土壤通報,"2023,"54(2):"352-363.DENG"W"M,"TANG"M"T,"GUO"Y"D,"CHI"Z"W,"HUANG"Q,"KUANG"X"Z,"CAI"K"Z,"TIAN"J"H."Effects"of"biochar"and"phosphorus"application"on"red"soil"aggregates"and"their"phos phorus"components"distribution[J]."Chinese"Journal"of"Soil"Science,"2023,"54(2):"352-363."(in"Chinese)
[50]"羅梅,"田冬,"高明,"黃容."紫色土壤有機碳活性組分對生物炭施用量的響應[J]."環(huán)境科學,"2018,"39(9):"4327-4337.LUO"M,"TIAN"D,"GAO"M,"HUANG"R."Soil"organic"carbon"of"purple"soil"as"affected"by"different"application"of"biochar[J]."Environmental"Science,"2018,"39(9):"4327-4337."(in"Chinese)
[51]"CHAI"Y"J","ZENG"X"B,"S."Z."E,"BAI"L"Y,"SU"S"M,"HUANG"T."Effects"of"freeze-thaw"on"aggregate"stability"and"the"or ganic"carbon"and"nitrogen"enrichment"ratios"in"aggregatenbsp;fractions[J]."Soil"Use"and"Management,"2014,"30(4):"507-516.
[52]"WANG"C,"LIU"J"Y,"SHEN"J"L,"CHEN"D,"LI"Y,"IANG"B"S,"WU"J"S."Effects"of"biochar"amendment"on"net"greenhouse"gas"emissions"and"soil"fertility"in"a"double"rice"cropping"sys tem:"a"4-year"field"experiment[J]."Agriculture,"Ecosystems"and"Environment,"2018,"262:"83-96.
[53]"ZIMERMAN"A"R,"GAO"B,"AHN"M"Y."Positive"and"nega tive"carbon"mineralization"priming"effects"among"a"variety"of"biochar-amended"soils[J]."Soil"Biology"and"Biochemistry,"2011,"43(6):"1169-1179.
[54]"張曉杰."生物炭添加對稻田土壤團聚體穩(wěn)定性及有機碳組分的影響[D]."沈陽:"沈陽農業(yè)大學,"2023.ZHANG"X"J."Effects"of"biochar"addition"on"the"stability"of"aggregates"and"organic"carbon"components"in"paddy"soil[D]."Shenyang:"Shenyang"Agricultural"University,"2023."(in"Chi nese)
[55]"王攀宇."炭基有機肥對土壤團聚體有機碳分布及烤煙產質量的影響[D]."雅安:"四川農業(yè)大學,"2023.WANG"P"Y."Effect"of"charcoal-based"organic"fertilizer"on"carbon"distribution"in"soil"aggregates"and"quality"of"roasted"tobacco"production[D]."Ya’an:"Sichuan"Agricultural"Univer sity,"2023."(in"Chinese)
[56]"李越,"徐曼,"謝永紅,"王穎,"黃容,"謝軍,"王子芳,"高明."不同改良劑對酸性紫色土團聚體和有機碳的影響[J]."環(huán)境科學,"2024,"45(2):"974-982.LI"Y,"XU"M,"XIE"Y"H,"WANG"Y,"HUANG"R,"XIE"J,"WANG"Z"F,"GAO"M."Effects"of"different"modifiers"on"ag gregates"and"organic"carbon"in"acidic"purple"soil[J]."Envi ronmental"Science,"2024,"45(2):"974-982."(in"Chinese)