• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      狗尾草生物量增大突變體的轉(zhuǎn)錄組分析及氮素代謝相關(guān)基因挖掘

      2025-04-14 00:00:00張麗麗趙海旭胡帥霍姍姍夏啟玉郭安平趙輝
      熱帶作物學(xué)報(bào) 2025年4期
      關(guān)鍵詞:文獻(xiàn)標(biāo)志碼狗尾草生物量

      摘""要:生物量大小是植物進(jìn)化適應(yīng)和產(chǎn)量的關(guān)鍵因素,獲得高產(chǎn)作物品種一直是作物育種的基本要求。本研究在對(duì)狗尾草ME34的組織培養(yǎng)過程中,發(fā)現(xiàn)1株生物量變大的突變體植株Mu,其性狀可以穩(wěn)定遺傳給下一代。通過對(duì)狗尾草表型觀察和幼苗、成苗的農(nóng)藝性狀統(tǒng)計(jì)分析,發(fā)現(xiàn)狗尾草突變體幼苗的生物量(鮮重和干重)及成苗的株高均顯著高于狗尾草野生型植株,狗尾草突變體成苗的穗長和種子長度也顯著長于狗尾草野生型植株,且均達(dá)極顯著水平。同時(shí),對(duì)ME34和Mu的葉和莖進(jìn)行轉(zhuǎn)錄組測(cè)序,并對(duì)部分基因進(jìn)行熒光定量PCR驗(yàn)證。差異表達(dá)基因分析發(fā)現(xiàn),氮素代謝和調(diào)控相關(guān)的差異表達(dá)基因占差異基因總數(shù)的20%左右。GO功能和KEGG富集分析同樣發(fā)現(xiàn),生物量大小與氮素的代謝、調(diào)控有著密切的關(guān)系。利用DEGseq方法分析差異基因的變化,獲得了參與氮素吸收、運(yùn)輸、同化和再利用的相關(guān)基因,如硝酸鹽轉(zhuǎn)運(yùn)蛋白NRT、銨轉(zhuǎn)運(yùn)蛋白AMT、硝酸還原酶NR、亞硝酸還原酶NiR、谷氨酸合成酶GOGAT、NLP家族轉(zhuǎn)錄因子以及絲氨酸蘇氨酸蛋白激酶等。本研究為谷子等作物的育種工作提供重要分子依據(jù)和基礎(chǔ)。

      關(guān)鍵詞:狗尾草;生物量;轉(zhuǎn)錄組測(cè)序;氮素利用效率中圖分類號(hào):Q319""""""文獻(xiàn)標(biāo)志碼:A

      Transcriptome"Analysis"and"Nitrogen"Metabolism"Related"Gene"Mining"of"a"Setaria"viridis"Mutant"with"Increased"Biomass

      ZHANG"Lili1,2,"ZHAO"Haixu1,2,"HU"Shuai1,2,"HUO"Shanshan1,2,"XIA"Qiyu1,2,"GUO"Anping1,2,"ZHAO"Hui1,2*

      1."Sanya"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Hainan"Key"Laboratory"for"Biosafety"Monitoring"and"Molecular"Breeding"in"Off-season"Reproduction"Regions,"Sanya,"Hainan"572024,"China;"2."Institute"of"Tropical"Bioscience"and"Biotechnology,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China

      Abstract:"Biomass"is"a"key"factor"in"plant"evolutionary"adaptation"and"yield,"and"obtaining"high-yield"crop"varieties"is"always"a"basic"requirement"for"crop"breeding."In"this"study,"a"mutant"Mu"with"increased"biomass"was"discovered"during"the"tissue"culture"of"Setaria"viridis"ME34,"and"the"trait"can"be"stably"inherited"to"the"next"generation."Through"the"observation"of"the"phenotype"of"S."viridis"and"statistical"analysis"of"the"agronomic"traits"of"seedlings"and"adults,"it"was"found"that"the"biomass"(fresh"and"dry"weight)"of"the"mutant"seedlings"and"the"adult"plant"height"of"S."viridis"mutant"was"significantly"higher"than"that"of"the"wild-type"plants,"and"the"spike"length"and"seed"length"were"also"significantly"longer"than"those"of"the"S."viridis"wild-type"plants,"reaching"a"highly"significant"level."Transcriptome"sequencing"was"performed"on"the"leaves"and"stems"of"ME34"and"Mu,"and"some"genes"were"validated"by"RT-PCR."Differential"expression"gene"analysis"revealed"that"the"genes"related"to"nitrogen"metabolism"and"regulation"accounted"for"about"20%"of"the"total"differential"genes."GO"functional"and"KEGG"enrichment"analysis"also"revealed"a"close"relationship"between"biomass"and"nitrogen"metabolism"and"regulation."The"DEGseq"method"was"used"to"analyze"the"changes"in"the"differentially"expressed"genes,"and"some"related"genes"involved"in"nitrogen"absorption,"transport,"assimilation,"and"reuse"were"obtained,"such"as"nitrate"transporter"NRT,"ammonium"transporter"AMT,"nitrate"reductase"NR,"nitrite"reductase"NiR,"glutamate"synthase"GOGAT,"NLP"family"transcription"factors,"and"serine"threonine"protein"kinase."Through"the"above"research,"important"molecular"basis"and"foundation"are"provided"for"the"breeding"work"of"crops"such"as"foxtail"millet.

      Keywords:"Setaria"viridis;"biomass;"transcriptome"sequencing;"nitrogen"utilization"efficiency

      DOI:"10.3969/j.issn.1000-2561.2025.04.008

      狗尾草(Setaria"viridis)屬單子葉植物綱禾本科黍亞科,是重要糧食作物谷子(S."italica)的野生近緣種。谷子是單子葉植物禾本科狗尾草屬植物,二者核型基本相同,帶型相近,基因組序列幾乎一致[1],因此狗尾草也是研究谷子基因的重要模型。與谷子相比,狗尾草具有生長周期短(1.5~2個(gè)月)、植株矮小、易于種植(尤其是室內(nèi)培養(yǎng)箱大量種植)、能產(chǎn)生大量自交系種子等優(yōu)點(diǎn)。因此,研究狗尾草對(duì)C4植物如谷子、玉米、高粱、甘蔗等,尤其是對(duì)同屬的谷子具有重要的借鑒作用,為快速挖掘谷子優(yōu)良基因奠定基礎(chǔ)。

      氮素是植物生長和發(fā)育的重要營養(yǎng)元素,是限制作物產(chǎn)量和品質(zhì)的關(guān)鍵因素[2]。隨著全球人口對(duì)糧食日益增長的需求,氮肥在農(nóng)業(yè)生產(chǎn)中的投入也在逐年增加,然而,投入的氮肥只有不到一半被作物吸收,剩余的則以一氧化二氮的形式排放到大氣中或以硝酸鹽的形式排到地下,造成一系列嚴(yán)重的環(huán)境問題,因此,提高農(nóng)作物自身的氮素利用效率(nitrogen"use"efficiency,"NUE)顯得更為重要[3]。提高NUE可有效提高作物產(chǎn)量、減少氮肥需求、減輕環(huán)境污染、實(shí)現(xiàn)糧食安全和確保農(nóng)業(yè)可持續(xù)發(fā)展。

      本課題組在對(duì)狗尾草ME34組織培養(yǎng)過程中發(fā)現(xiàn)了1株生物量變大的突變體Mu,其株高、穗長及籽粒大小均顯著增加,并且該性狀能夠穩(wěn)定遺傳。生物量對(duì)于植物的生長發(fā)育和最終產(chǎn)量都具有重要影響。通常植物的生物量越大,意味著其進(jìn)行光合作用的能力越強(qiáng),生長更為旺盛,能量轉(zhuǎn)化效率也相應(yīng)提高,從而有可能獲得更高的產(chǎn)量。因此,在農(nóng)作物生產(chǎn)過程中,農(nóng)民經(jīng)常關(guān)注農(nóng)作物的生物量,通過采取合理的栽培管理措施來增加農(nóng)作物的生物量,以期達(dá)到提高產(chǎn)量的目的。其中,籽粒大小是植物進(jìn)化適應(yīng)和種子產(chǎn)量的關(guān)鍵因素[4-7],大種子的幼苗被認(rèn)為在脅迫條件下具有更強(qiáng)的生存能力,而小種子的植物物種則被認(rèn)為具有更好的繁殖后代的能力[8]。本研究利用轉(zhuǎn)錄組測(cè)序,對(duì)狗尾草野生型ME34和狗尾草生物量變大的突變體材料Mu的葉和莖分別進(jìn)行轉(zhuǎn)錄組測(cè)序,分析突變體材料與野生型材料相比所引起的基因變化,挖掘與植物生物量大小相關(guān)的基因資源,尤其是與氮素代謝和調(diào)控相關(guān)的差異基因,從而為下一步谷子的育種工作提供一定的分子線索和基礎(chǔ)。

      1""材料與方法

      1.1""材料

      1.1.1""植物材料""以狗尾草野生型ME34品系(本實(shí)驗(yàn)室保存)和狗尾草野生型ME34的突變體Mu(中國熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所提供)為植物材料,篩選與狗尾草生物量變大的性狀相關(guān)基因。

      1.1.2""試劑耗材""使用Agilent"2100"Bioanalyzer(Agilent"RNA"6000"Nano"Kit)檢測(cè)total"RNA的濃度、RIN值、28S/18S和片段大小;使用紫外分光光度計(jì)NanoDropTM檢測(cè)植物樣本的純度;轉(zhuǎn)錄組測(cè)序儀器采用DNBSEQ-T7。

      1.2""方法

      1.2.1""狗尾草的培養(yǎng)""選取經(jīng)休眠處理的狗尾草ME34和突變體Mu,干燥其成熟種子,用無菌水清洗多次后播種于放有3層濾紙并用無菌水完全浸濕的培養(yǎng)皿中,每皿培養(yǎng)基約放置20粒種子,于24"℃光/暗培養(yǎng)(12"000"lx,16"h/8"h,50%~60%濕度),7"d后分別對(duì)狗尾草ME34和Mu的葉和莖凍樣0.5"g,以供提取RNA。同時(shí),對(duì)在培養(yǎng)皿里生長7"d的ME34和Mu幼苗(完整植株)直接稱量,測(cè)量鮮質(zhì)量,然后將狗尾草幼苗置于60"℃烘箱,24"h后稱量干質(zhì)量。

      將生長7"d的幼苗轉(zhuǎn)移至盆中,于30"℃光培養(yǎng)/22"℃暗培養(yǎng)(12"000"lx,16"h/8"h,50%~60%濕度)45"d后,測(cè)量成苗的株高和穗長,60"d后測(cè)量收獲的種子長度。

      1.2.2""文庫構(gòu)建及轉(zhuǎn)錄組分析""狗尾草ME34、Mu葉和莖的RNA提取,轉(zhuǎn)錄組的文庫構(gòu)建及基礎(chǔ)的生物信息學(xué)分析均由深圳華大基因股份有限公司完成。本項(xiàng)目使用DNBSEQ平臺(tái)完成轉(zhuǎn)錄組的測(cè)序。轉(zhuǎn)錄組差異基因的篩選標(biāo)準(zhǔn)為Fold"Change≥2和Qlt;0.001。

      1.2.3""轉(zhuǎn)錄組及農(nóng)藝性狀數(shù)據(jù)統(tǒng)計(jì)分析""分別取30株ME34和Mu植株幼苗進(jìn)行總生物量統(tǒng)計(jì)(鮮質(zhì)量和干質(zhì)量)。對(duì)ME34和Mu的成苗進(jìn)行株高、穗長和種子長度測(cè)量,采用Excel"2016軟件進(jìn)行數(shù)據(jù)分析。利用DPS數(shù)據(jù)處理系統(tǒng)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、差異顯著性檢驗(yàn)和相關(guān)性分析。

      1.2.4""轉(zhuǎn)錄組熒光定量驗(yàn)證""將轉(zhuǎn)錄組測(cè)序時(shí)提取的狗尾草ME34、Mu的葉和莖的總RNA通過反轉(zhuǎn)錄試劑盒合成cDNA。以反轉(zhuǎn)錄產(chǎn)物為模板,以狗尾草ME34看家基因actin(登錄號(hào):Sevir.9"G114100,)為內(nèi)參,對(duì)轉(zhuǎn)錄組部分基因進(jìn)行熒光定量PCR。熒光定量PCR程序?yàn)椋?5"℃預(yù)變性3"min;95"℃變性15"s,60"℃退火30"s,72"℃延伸35"s,共40個(gè)循環(huán)。引物序列為Actin-F:

      CTTCCAGCCATCTTTCATT;Actin-R:CCAGA"CTCGTCGTACTCAG。

      2""結(jié)果與分析

      2.1""表型觀察及農(nóng)藝性狀的統(tǒng)計(jì)分析

      通過對(duì)狗尾草野生型ME34和突變體Mu成苗的表型觀察及農(nóng)藝性狀進(jìn)行統(tǒng)計(jì)分析發(fā)現(xiàn),相較于野生型,狗尾草突變體Mu的株高更高,生物量更大,突變體株高增加了21.36%,并且達(dá)到極顯著差異(P=0.003lt;0.01);相較于野生型,狗尾草突變體的穗長更長,增加了41.79%,并且達(dá)到極顯著差異(P=0lt;0.01);突變體M0代植株的種子與野生型相比更大更長,突變體籽粒長度增加了36.50%,并且達(dá)到極顯著差異(P=0.0007lt;"0.01);突變體M1代植株的種子與野生型相比延續(xù)了上一代的性狀,種子依然更大更長(圖1,圖2)。

      對(duì)生長7"d的狗尾草野生型ME34和突變體Mu(共30株)的生物量進(jìn)行統(tǒng)計(jì)分析發(fā)現(xiàn),相較于野生型,突變體鮮重增加51.53%,并且達(dá)到極顯著差異(P=0.0001lt;0.01);突變體干重增加57.00%,并且達(dá)到極顯著差異(P=0lt;0.01)(圖2)。

      2.2""狗尾草樣本轉(zhuǎn)錄組測(cè)序數(shù)據(jù)質(zhì)量分析

      本研究共檢測(cè)了12個(gè)樣品,樣品比對(duì)基因組的平均比對(duì)率為93.37%,比對(duì)基因集的平均比對(duì)率為83.80%(表1)。預(yù)測(cè)的新基因?yàn)?23個(gè),共檢測(cè)到表達(dá)的基因數(shù)為26"041,其中已知的基因?yàn)?5"131個(gè),預(yù)測(cè)的新基因?yàn)?10個(gè)。測(cè)序的原始數(shù)據(jù)經(jīng)過過濾及測(cè)序質(zhì)量控制,12個(gè)樣本中的Q20(表示堿基識(shí)別錯(cuò)誤的概率為1%)所占比例均大于97%,Q30(表示堿基識(shí)別錯(cuò)誤的概率為0.1%)所占比例均大于92%,以上結(jié)果表明測(cè)序數(shù)據(jù)質(zhì)量可靠,可用于后續(xù)分析。

      2.3""轉(zhuǎn)錄組基因差異表達(dá)分析

      在狗尾草野生型ME34和狗尾草突變體Mu的葉轉(zhuǎn)錄組差異分析中,共發(fā)現(xiàn)3167個(gè)差異基因,其中上調(diào)基因1893個(gè),下調(diào)基因1274個(gè);在狗尾草野生型ME34和狗尾草突變體Mu莖的轉(zhuǎn)錄組差異分析中,共發(fā)現(xiàn)4667個(gè)差異基因,其中上調(diào)基因2157個(gè),下調(diào)基因2510個(gè)(圖3)。在狗尾草野生型ME34和狗尾草突變體Mu的葉和莖的交叉轉(zhuǎn)錄組差異分析中發(fā)現(xiàn)1737個(gè)共同差異表達(dá)的基因。

      2.4""轉(zhuǎn)錄組差異表達(dá)基因GO(gene"gntology)功能富集分析

      GO富集分析通常依據(jù)細(xì)胞組分、分子功能和生物過程這3個(gè)方向進(jìn)行分類,圖4為狗尾草野生型葉片和突變體葉片(ME34-leaf"vs"Mu-leaf)轉(zhuǎn)錄組差異基因的GO功能富集分析的前十名。在細(xì)胞組成的分類中,差異基因主要集中在膜的固有成分、膜的組成部分等部位;在分子功能分類中,差異基因主要集中在ADP結(jié)合、腺苷核糖核苷酸結(jié)合等功能;在生物過程分類中,差異基因主要集中在吲哚烷基胺生物合成過程、色氨酸生物合成過程、β-葡聚糖生物合成過程、植物型原代細(xì)胞壁生物合成以及纖維素生物合成過程等生物過程。在狗尾草野生型莖和突變體莖(ME34-stem"vs"Mu-stem)的轉(zhuǎn)錄組差異基因的GO功能富集分析如圖5所示,在細(xì)胞組成分類中,差異基因主要集中在非膜結(jié)合細(xì)胞器、細(xì)胞內(nèi)非膜結(jié)合細(xì)胞器等部位;在分子功能分類中,差異基因主要集中在ADP結(jié)合、腺苷核糖核苷酸結(jié)合等功能;在生物過程分類中,差異基因主要集中在防御反應(yīng)、對(duì)壓力的反應(yīng)等生物過程。

      2.5""轉(zhuǎn)錄組差異表達(dá)基因KEGG(kyoto"encyclopedia"of"genes"and"genomes)通路分析

      通過KEGG富集分析發(fā)現(xiàn),在ME34-leaf"vs"Mu-leaf差異表達(dá)基因顯著富集的前20個(gè)通路中,包含參與細(xì)胞過程、環(huán)境信息過程、遺傳信息過

      程和新陳代謝過程,如ABC轉(zhuǎn)運(yùn)蛋白和植物激素信號(hào)轉(zhuǎn)導(dǎo),黃曲霉毒素生物合成,苯丙氨酸、酪氨酸和色氨酸的生物合成以及油菜素內(nèi)酯生物合成等(圖6)。在ME34-stem"vs"Mu-stem差異表達(dá)基因顯著富集的前20個(gè)通路中,包括ABC轉(zhuǎn)運(yùn)蛋白,磷脂酰肌醇信號(hào)系統(tǒng),植物激素信號(hào)轉(zhuǎn)導(dǎo),MAPK信號(hào)通路——植物、苯丙氨酸、酪氨酸和色氨酸的生物合成,肌醇磷酸鹽代謝,煙酸和煙酰胺代謝,不飽和脂肪酸的生物合成及β-丙氨酸代謝等(圖7)。

      2.6""與氮素代謝和調(diào)控相關(guān)差異表達(dá)基因的統(tǒng)計(jì)、熱圖分析及熒光定量RCR驗(yàn)證

      與氮素代謝和調(diào)控相關(guān)差異表達(dá)基因的統(tǒng)計(jì)結(jié)果顯示,ME34-leaf"vs"Mu-leaf"轉(zhuǎn)錄組中共發(fā)現(xiàn)18個(gè)與氮素代謝和調(diào)控相關(guān)的GO分類,去除重復(fù)的基因后,共富集到621個(gè)差異基因,占葉片轉(zhuǎn)錄組中差異基因總數(shù)的19.61%,其中上調(diào)基因396個(gè),下調(diào)基因225個(gè)(表2)。ME34-stem"vs"Mu-stem轉(zhuǎn)錄組中共發(fā)現(xiàn)21個(gè)與氮素代謝和調(diào)控相關(guān)的GO分類,去除重復(fù)的基因后,共富集到1048個(gè)差異基因,占莖轉(zhuǎn)錄組中差異基因總數(shù)的22.46%,其中上調(diào)基因430個(gè),下調(diào)基因618個(gè)。葉片和莖的轉(zhuǎn)錄組中與氮素代謝和調(diào)控相關(guān)的共同差異表達(dá)基因331個(gè),占2個(gè)轉(zhuǎn)錄組中共同差異表達(dá)基因總數(shù)的19.06%(表3)。

      分析得到的與氮素代謝、調(diào)控最為直接相關(guān)的差異基因制成熱圖(圖8)。ME34-leaf"vs"Mu-leaf"轉(zhuǎn)錄組中共篩選到28個(gè)差異基因,其中上調(diào)基因24個(gè),下調(diào)基因4個(gè)。ME34-stem"vs"Mu-stem轉(zhuǎn)錄組中共篩選到32個(gè)差異基因,其中上調(diào)基因16個(gè),下調(diào)基因16個(gè)。在2個(gè)組織中共篩選出10個(gè)與氮素代謝、調(diào)控共同直接相關(guān)的差異基因,其中上調(diào)基因7個(gè),下調(diào)基因3個(gè)(表4),且這10個(gè)基因在2個(gè)組織中表達(dá)模式相似。

      從上述制成熱圖的2個(gè)轉(zhuǎn)錄組基因中各選6個(gè)基因進(jìn)行熒光定量PCR驗(yàn)證(圖9),以檢驗(yàn)轉(zhuǎn)錄組數(shù)據(jù)的可靠性。對(duì)比圖8和圖9中的基因表達(dá)情況可知,基因的表達(dá)趨勢(shì)一致。說明轉(zhuǎn)錄組數(shù)據(jù)真實(shí)可靠。

      3""討論

      本課題組在狗尾草野生型ME34的組織培養(yǎng)中發(fā)現(xiàn)了1株株高、穗長和種子長度均顯著高于野生型的突變體Mu材料,生長1周的突變體狗尾草的生物量顯著高于野生型狗尾草。為了挖掘

      和生物量變大性狀相關(guān)的目標(biāo)基因,分別對(duì)野生型狗尾草ME34和突變體狗尾草Mu葉和莖的轉(zhuǎn)錄組進(jìn)行分析,發(fā)現(xiàn)無論是葉片的轉(zhuǎn)錄組還是莖的轉(zhuǎn)錄組,與氮素代謝、調(diào)控相關(guān)的差異表達(dá)基因占總的差異基因總數(shù)的20%左右,推測(cè)與氮素的代謝、調(diào)控相關(guān)基因?qū)肺膊萆锪康拇笮≈陵P(guān)重要。

      通過轉(zhuǎn)錄組學(xué)的葉片GO功能富集分析中的生物過程分類發(fā)現(xiàn),有一半以上的生物過程,如吲哚烷基胺生物合成過程、色氨酸生物合成過程、β-葡聚糖生物合成過程、植物型原代細(xì)胞壁生物合成以及纖維素生物合成過程都直接或者間接與氮素的代謝有密切關(guān)系。葉片和莖的KEGG富集分析中,苯丙氨酸、酪氨酸和色氨酸的生物合成,煙酸和煙酰胺代謝,黃曲霉毒素生物合成,油菜素內(nèi)酯生物合成以及β-丙氨酸代謝等新陳代謝過程均與氮素的代謝有著密不可分的關(guān)系。通過轉(zhuǎn)錄組中與氮素代謝、調(diào)控相關(guān)的GO分類及基因注釋,結(jié)合GO功能富集和KEGG通路分析,得到與氮素代謝、調(diào)控最為直接相關(guān)的差異基因。

      NUE是一個(gè)涉及遺傳和環(huán)境因素的復(fù)雜性狀,且主要受到氮素吸收、運(yùn)輸、同化和再利用效率這幾個(gè)因素的影響[9]。植物對(duì)氮素的吸收轉(zhuǎn)運(yùn)根據(jù)土壤中氮源的不同,主要分為以下3種形式:酰胺態(tài)氮、硝態(tài)氮和銨態(tài)氮的吸收轉(zhuǎn)運(yùn)。硝酸鹽的吸收和同化已成為影響作物氮利用率的重要因素[10]。通過分析轉(zhuǎn)錄組的差異基因發(fā)現(xiàn),在葉片轉(zhuǎn)錄組中,硝酸鹽轉(zhuǎn)運(yùn)蛋白(nitrate"transporter,"NRT)基因,比如LOC117860105、LOC117860115、LOC117866632、LOC117842703、LOC117846891、LOC117845475、LOC117857667和LOC117866639全部上調(diào)表達(dá)。在莖轉(zhuǎn)錄組中,硝酸鹽轉(zhuǎn)運(yùn)蛋白基因,如LOC117860105、LOC117860115和LOC117846891上調(diào)表達(dá),LOC117836569、LOC117866281、LOC117852271、和LOC117866651下調(diào)表達(dá)。硝態(tài)氮是植物從土壤中吸收和利用氮源的主要形式,其吸收和轉(zhuǎn)運(yùn)主要由NPF(nitrate"transport"l/peptide"transport"family)基因家族成員完成。谷子SiNPF4.12基因協(xié)同調(diào)控了谷子氮素吸收利用和根系與籽粒的生長發(fā)育,有塑應(yīng)用于作物氮高效高產(chǎn)育種[11]。近年來,硝酸鹽轉(zhuǎn)運(yùn)蛋白基因作為一個(gè)重要的家族已被用于作物育種,以提高氮素利用率[12-18],OsNRT1.1A(OsNPF6.3)是硝酸鹽轉(zhuǎn)運(yùn)蛋白家族的成員,參與調(diào)節(jié)氮的利用和開花,為同時(shí)實(shí)現(xiàn)高產(chǎn)和早熟提供了目標(biāo),OsNRT.1A不僅可以上調(diào)硝酸鹽和銨等氮利用相關(guān)基因的表達(dá),還可以調(diào)控開花相關(guān)基因。與野生型相比,osnrt1.1a突變體表現(xiàn)出氮利用率降低和開花延遲,相比之下,osnrt1.1a在水稻中的過表達(dá)大大提高了氮利用效率(nitrogen"use"efficiency,"NUE)和糧食產(chǎn)量,成熟時(shí)間也顯著縮短[19]。在玉米中對(duì)氮供應(yīng)響應(yīng)最強(qiáng)的基因是ZmNRT2.1和ZmNRT2.2,氮饑餓處理后,其在根部的表達(dá)增加了10倍以上。然而,在恢復(fù)氮供應(yīng)24"h后,其表達(dá)恢復(fù)到對(duì)照水平[20]。高粱的水培試驗(yàn)表明[21],在氮饑餓條件下,NRT2.2、NRT2.3、NRT3.1、NRT4.3、NRT4.4和NRT6.3在氮耐受和氮敏感基因型中的表達(dá)均上調(diào)。并且,與氮敏感基因型相比,氮耐受基因型中硝酸鹽轉(zhuǎn)運(yùn)蛋白基因NRT2.4、NRT3.1和NRT4.5的轉(zhuǎn)錄本更豐富。由此推測(cè)這3個(gè)硝酸鹽轉(zhuǎn)運(yùn)蛋白基因的過表達(dá)可能會(huì)提高氮敏感基因型對(duì)氮饑餓的耐受性,從而提高高粱氮素利用效率。在番茄中,LeNRT2.3介導(dǎo)低濃度硝酸鹽的轉(zhuǎn)運(yùn),LeNRT2.3的過表達(dá)可以增加番茄根系對(duì)NO3?的吸收以及NO3?從根到莖的運(yùn)輸,從而增加生物量和果實(shí)重量[22]。TANG等[23]通過全基因組關(guān)聯(lián)分析,鑒定出硝酸鹽轉(zhuǎn)運(yùn)蛋白OsNPF6.1HapB的優(yōu)勢(shì)單倍型,氮轉(zhuǎn)運(yùn)蛋白OsNPF6.1HapB由轉(zhuǎn)錄因子OsNAC42反式調(diào)節(jié),通過激活水稻對(duì)硝酸鹽的吸收來提高NUE。

      銨態(tài)氮在土壤中主要以NH4+的形式存在,銨轉(zhuǎn)運(yùn)蛋白(AMT)在銨(NH4+)的吸收和轉(zhuǎn)運(yùn)中起著至關(guān)重要的作用[24]。在葉片轉(zhuǎn)錄組中,銨轉(zhuǎn)運(yùn)蛋白(ammonium"transporter,"AMT),如LOC117846954、LOC117840316和LOC117862543全部上調(diào)表達(dá)。銨可以被銨轉(zhuǎn)運(yùn)蛋白(AMT)吸收[25-27],OsAMT1;1在低和高NH4+條件下會(huì)顯著促進(jìn)對(duì)NH4+的吸收,在次優(yōu)和最佳氮條件下提高了種子產(chǎn)量[28-29]。木薯MeAMT1基因轉(zhuǎn)化擬南芥后在缺銨反應(yīng)中比野生型植物生長更好,表明MeAMT1在低銨反應(yīng)中起著重要作用,該研究為在其他植物中高效利用氮提供了基礎(chǔ)[30]。木薯MeAMT2(MeAMT2.3、MeAMT2.5和MeATM2.6)在缺銨條件下表達(dá)上調(diào)?;パa(bǔ)實(shí)驗(yàn)表明,用MeAMT2.3、MeAMT2.5或MeATM2.6轉(zhuǎn)化的酵母突變株TM31019b在缺銨條件下比未轉(zhuǎn)化的酵母細(xì)胞生長更好,這表明MeAMT2.3、MeAMT2.5和MeATM2.2可能是木薯缺銨反應(yīng)的主要因素,該研究為進(jìn)一步研究木薯氮素高效利用提供了依據(jù)[31]。甘蔗ScAMT1.1與水稻AMT1.1具有91.57%的同源性,甘蔗ScAMT1.1在水稻中穩(wěn)定過表達(dá)后,在低氮處理下,ScAMT1.1過表達(dá)轉(zhuǎn)基因水稻的株高和鮮重分別比野生型高36.48%和51.55%。轉(zhuǎn)基因植物中銨同化關(guān)鍵酶GS和GDH的活性以及銨同化關(guān)鍵基因(包括GS1.1、GS1.2、GDH、Fd-GOGAT和NADH-GOGAT2)的表達(dá)水平均顯著高于野生型。在盆栽試驗(yàn)中,轉(zhuǎn)基因水稻的粒數(shù)和單株產(chǎn)量分別比野生型高6.44%和9.52%。甘蔗ScAMT1.1在低氮肥條件下具有提高銨同化能力和轉(zhuǎn)基因水稻產(chǎn)量的潛力,該研究為改良氮利用率高的甘蔗品種提供了重要的功能基因[32]。增強(qiáng)銨的吸收和再活化將為未來提高作物氮利用率提供一種有前景的策略。

      氮素在進(jìn)行同化時(shí),硝酸根離子在胞質(zhì)中通過硝酸還原酶(nitrate"reductase,"NR)還原成亞硝酸根離子,然后再通過亞硝酸還原酶(nitrite"reductase,"NiR)還原成銨根離子,最后經(jīng)過GS/GOGAT(谷氨酰胺合成酶/谷氨酸合成酶,glutamine"synthetase"/"glutamate"synthase)循環(huán)合成谷氨酸后被植物生長所利用。在葉片轉(zhuǎn)錄組中,NADPH依賴性硝酸還原酶(NR)LOC117860413下調(diào)表達(dá)。在莖轉(zhuǎn)錄組中亞硝酸還原酶LOC117866314上調(diào)表達(dá),在葉片轉(zhuǎn)錄組中,還有參與氮素同化過程的基因LOC117847605和LOC117847606全部上調(diào)表達(dá)。在莖轉(zhuǎn)錄組中,谷氨酸合成酶基因LOC117857834和LOC117848374下調(diào)表達(dá)。秈稻和粳稻亞種在硝酸鹽同化能力和NUE方面存在差異,GAO等[33]發(fā)現(xiàn)這種差異的主要成分是由編碼NADH/NADPH依賴性硝酸還原酶(NR)的基因OsNR2的等位基因變異引起的,秈稻OsNR2表現(xiàn)出更大的NR活性,秈稻OsNR2還可以通過與編碼硝酸鹽轉(zhuǎn)運(yùn)蛋白的基因OsNRT1.1B相互作用促進(jìn)硝酸鹽的攝取,這些特性使秈稻OsNR2能夠提高有效分蘗數(shù)、籽粒產(chǎn)量和NUE。在秈稻品種中,過表達(dá)OsNADH-GOGAT基因可使籽粒重量增加[34]。OsNADH-GOGAT2的突變會(huì)導(dǎo)致了水稻小穗數(shù)和生產(chǎn)力的顯著降低,證明了OsNADH-GOGAT2在葉片向種子再動(dòng)員中的協(xié)調(diào)作用[35]。在莖的轉(zhuǎn)錄組中發(fā)現(xiàn)2個(gè)NLP(NIN-LIKE"PROTEIN)家族轉(zhuǎn)錄因子LOC117836353和LOC117844922,全部下調(diào)表達(dá)。YU等[36]通過GWAS的方法在水稻中鑒定了一種與NUE相關(guān)的NLP4蛋白,發(fā)現(xiàn)OsNLP4可以反式高度激活編碼亞硝酸還原酶的關(guān)鍵氮同化基因OsNiR,OsNLP4-OsNiR通過增強(qiáng)氮同化和NUE,來最終增加水稻的有效分蘗數(shù)和產(chǎn)量。

      氮再活化利用是氮利用效率的關(guān)鍵組成部分。硝酸鹽轉(zhuǎn)運(yùn)蛋白NRT1.7負(fù)責(zé)將源葉中儲(chǔ)存的過量硝酸鹽運(yùn)輸?shù)巾g皮部,并促進(jìn)硝酸鹽分配到庫葉,在氮饑餓條件下,nrt1.7突變體表現(xiàn)出生長遲緩,表明nrt1.7介導(dǎo)的儲(chǔ)存硝酸鹽的源庫再動(dòng)員對(duì)于維持植物的生長非常重要[37]。增強(qiáng)源庫硝酸鹽再活化是提高氮素利用率和作物產(chǎn)量的新策略。

      此外,在葉片和莖的轉(zhuǎn)錄組中,都有一個(gè)絲氨酸蘇氨酸蛋白激酶LOC117850052下調(diào)表達(dá)。在植物中,氮素是影響植物生長和發(fā)育的關(guān)鍵營養(yǎng)元素之一,而絲氨酸/蘇氨酸蛋白激酶在植物對(duì)氮素的響應(yīng)和利用中發(fā)揮著重要作用。熊延教授團(tuán)隊(duì)的研究揭示了TOR(target"of"rapamycin)蛋白激酶在植物氮素營養(yǎng)中的作用機(jī)制,TOR是一種高度保守的絲氨酸/蘇氨酸蛋白激酶,在植物中,無機(jī)氮(如硝酸根與銨根)和有機(jī)氮(如谷氨酰胺等氨基酸)以彼此相互獨(dú)立的信號(hào)方式激活ROP2-TOR信號(hào)通路,從而調(diào)控莖尖生長和發(fā)育的分子機(jī)制,這一發(fā)現(xiàn)為理解植物如何感知和響應(yīng)氮素營養(yǎng)提供了新的視角,同時(shí)也揭示了絲氨酸/蘇氨酸蛋白激酶在氮素利用率中的關(guān)鍵作用[38]。

      綜上所述,獲得高產(chǎn)、高氮利用效率的作物品種一直是作物育種的一項(xiàng)艱巨任務(wù)。提高氮利用效率的過程包括氮吸收、氮從根到莖的運(yùn)輸、氮同化和氮再分配,每一步都是提高氮利用率不可或缺的。本研究通過一個(gè)狗尾草生物量變大突變體的轉(zhuǎn)錄組分析,挖掘了與狗尾草氮素代謝和調(diào)控等可能與生物量大小相關(guān)的基因,如硝酸鹽轉(zhuǎn)運(yùn)蛋白NRT、銨轉(zhuǎn)運(yùn)蛋白AMT、硝酸還原酶NR、亞硝酸還原酶NiR、谷氨酸合成酶GOGAT、NLP家族轉(zhuǎn)錄因子以及絲氨酸蘇氨酸蛋白激酶等與NUE密切相關(guān)的基因,為下一步谷子及同屬的作物育種提供理論基礎(chǔ)與科學(xué)依據(jù)。

      參考文獻(xiàn)

      • PERCIFIELD"R,"HAWKINS"J,"PONTAROLI"A"C,"ESTEP"M,"FENG"L,"VAUGHN"J,"GRIMWOOD"J,"JENKINS"J,"BARRY"K,"LINDQUIST"E,"HELLSTEN"U,"DESHPANDE"S,"WANG"X"W,"WU"X"M,"MITROS"T,"TRIPLETT"J,"YANG"X"H,"YE"C"Y,"MAURO-HERRERA"M,"WANG"L,"LI"P"H,"SHARMA"M,"SHARMA"R,"RONALD"P"C,"PANAUD"O,"KELLOGG"E"A,"BRUTNELL"T"P,"DOUST"A"N,"TUSKAN"G"A,"ROKHSAR"D,"DEVOS"K"M."Reference"genome"sequence"of"the"model"plant"Setaria[J]."Nature"Biotechnology,"2012,"30(6):"555-561.
      • GUO"J"H,"LIU"X"J,"ZHANG"Y,"SHEN"J"L,"HAN"W"X,"ZHANG"W"F,"CHRISTIE"P,"GOULDING"K"W"T,"VITOUSEK"P"M,"ZHANG"F"S."Signi?cant"acidi?cation"in"major"Chinese"croplands[J]."Science,"2010,"327"(5968):"1008-1010.
      • MULVANEY"R"L,"KHAN"S"A,"ELLSWORTH"T"R."Synthetic"nitrogen"fertilizers"deplete"soil"nitrogen:"a"global"dilemma"for"sustainable"cereal"production[J]."Journal"of"Environmental"Quality,"2009,"38(6):"2295-2314.
      • MOLES"A"T,"ACKERLY"D"D,"WEBB"C"O,"TWEDDLE"J"C,"DICKIE"J"B,"WESTOBY"M."A"brief"history"of"seed"size[J]."Science,"2005,"307(5709):"576-580.
      • GEGAS"V"C,"NAZARI"A,"GRIF?THS"S,"SIMMONDS"J,"FISH"L,"ORFORD"S,"SAYERS"L,"DOONAN"J"H,"SNAPE"J"W."A"genetic"framework"for"grain"size"and"shape"variation"in"wheat[J]."The"Plant"Cell,"2010,"22(4):"1046-1056.
      • LINKIES"A,"GRAEBER"K,"KNIGHT"C,"LEUBNER-"METZGER"G."The"evolution"of"seeds[J]."The"New"Phytologist,"2010,"186(4):"817-831."
      • LI"N,"LI"Y"H."Signaling"pathways"of"seed"size"control"in"plants[J]."Current"Opinion"in"Plant"Biology,"2016,"33:"23-32."
      • JIANG"S,"JIN"X"M,"LIU"Z"B,"XU"R,"HOU"C"C,"ZHANG"F"X,"FAN"C"M,"WU"H"L,"CHEN"T"Y,"SHI"J"H,"HU"Z"M,"WANG"G"D,"TENG"S,"LI"L"G,"LI"Y"H."Natural"variation"in"SSW1"coordinates"seed"growth"and"nitrogen"use"efficiency"in"Arabidopsis[J]."Cell"Reports,"2024,"43(5):"114150."
      • XU"G"H,"FAN"X"R,"MILLER"A"J."Plant"nitrogen"assimilation"and"use"efficiency[J]."Annual"Review"of"Plant"Biology,"2012,"63:"153-182.
      • HOU"M"M,"YU"M,"LI"Z"Q,"AI"Z"Y,"CHEN"J"G."Molecular"regulatory"networks"for"improving"nitrogen"use"efficiency"in"rice[J]."International"Journal"of"Molecular"Sciences,"2021,"22(16):"9040.
      • 程金金."谷子SiNPF4.12基因在氮素吸收和生長發(fā)育過程的功能解析[D]."晉中:"山西農(nóng)業(yè)大學(xué),"2023."CHENG"J"J."Functional"analysis"of"SiNPF4.12"gene"in"nitrogen"uptake"and"growth"and"development"in"foxtail"millet"[D]."Jinzhong:"Shanxi"Agricultural"University,"2023.
      • ZHANG"Z"H,"CHU"C"C."Nitrogen-use"divergence"between"Indica"and"Japonica"rice:"variation"at"nitrate"assimilation[J]."Molecular"Plant,"2020,"13(1):"6-7.
      • HE"X,"QU"B"Y,"LI"W"J,"ZHAO"X"Q,"TENG"W,"MA"W"Y,"REN"Y"Z,"LI"B,"LI"Z"S,"TONG"Y"P."The"nitrate-inducible"NAC"transcription"factor"TaNAC2-5A"controls"nitrate"response"and"increases"wheat"yield[J]."Plant"Physiology,"2015,"169(3):"1991-2005.
      • CHEN"J"G,"FAN"X"R,"QIAN"K"Y,"ZHANG"Y,"SONG"M"Q,"LIU"Y,"XU"G"H,"FAN"X"R."pOsNAR2.1:"OsNAR2.1"expression"enhances"nitrogen"uptake"ef?ciency"and"grain"yield"in"transgenic"rice"plants[J]."Plant"Biotechnology"Journal,"2017,"15(10):"1273-1283."
      • CHEN"J"G,"LIU"X"Q,"LIU"S"H,"FAN"X"R,"ZHAO"L"M,"SONG"M"Q,"FAN"X"R,"XU"G"H."Co-overexpression"of"OsNAR2.1"and"OsNRT2.3a"increased"agronomic"nitrogen"use"ef?ciency"in"transgenic"rice"plants[J]."Frontiers"Plant"Science,"2020,"11:"1245."
      • CHEN"J"G,"QI"T"T,nbsp;HU"Z,"FAN"X"R,"ZHU"L"L,"IQBAL"M"F,"YIN"X"M,"XU"G"H,"FAN"X"R."OsNAR2.1"Positively"regulates"drought"tolerance"and"grain"yield"under"drought"stress"conditions"in"rice[J]."Frontiers"in"Plant"Science,"2019,"10:"197.
      • CHEN"J"G,"ZHANG"Y,"TAN"Y"W,"ZHANG"M,"ZHU"L"L,"XU"G"H,"FAN"X"R."Agronomic"nitrogen-use"ef?ciency"of"rice"can"be"increased"by"driving"OsNRT2.1"expression"with"the"OsNAR2.1"promoter[J]."Plant"Biotechnology"Journal,"2016,"14(8):"1705-1715."
      • FENG"H"M,"LI"B,"ZHI"Y,"CHEN"J"G,"LI"R,"XIA"X"D,"XU"G"H,"FAN"X"R."Overexpression"of"the"nitrate"transporter,"OsNRT2.3b,"improves"rice"phosphorus"uptake"and"translocation[J]."Plant"Cell"Reports,"2017,"36(8):"1287-1296."
      • WANG"W,"HU"B,"YUAN"D"Y,"LIU"Y"Q,"CHE"R"H,"HU"Y"C,"OU"S"J,"LIU"Y"X,"ZHANG"Z"H,"WANG"H"R,"LI"H,"JIANG"Z"M,"ZHANG"Z"L,"GAO"X"K,"QIU"Y"H,"MENG"X"B,"LIU"Y"X,"BAI"Y,"LIANG"Y,"WANG"Y"Q,"ZHANG"L"H,"LI"L"G,"SODMERGEN,"JING"H"C,"LI"J"Y,"CHU"C"C."Expression"of"the"nitrate"transporter"gene"OsNRT1.1A/"OsNPF6.3"confers"high"yield"and"early"maturation"in"rice[J]."The"Plant"Cell,"2018,"30(3):"638-651.
      • DECHORGNAT"J,"FRANCIS"K"L,"DHUGGA"K"S,"RAFALSKI"J"A,"TYERMAN"S"D,"KAISER"B"N."Tissue"and"nitrogen-linked"expression"profiles"of"ammonium"and"nitrate"transporters"in"maize[J]."BMC"Plant"Biology,"2019,"19(1):"206.
      • YANG"G"D,"ZHOU"Y"F,"HUANG"R"D,"LIN"F,"HU"Z"Y,"HAO"Z"Y,"LIANG"C"B,"WANG"Q,"MENG"X"X,"DONG"L"D."Identification"of"differentially"expressed"genes"of"sorghum"[Sorghum"bicolor"(L.)"Moench]"seedlings"under"nitrogen"stress"by"RNA-SEQ[J]."Applied"Ecology"and"Environmental"Research,"2019,"17(5):"11525-11536.
      • FU"Y"L,"YI"H"Y,"BAO"J,"GONG"J"M."LeNRT2.3"functions"in"nitrate"acquisition"and"long-distance"transport"in"tomato[J]."FEBS"Letters,"2015,"589(10):"1072-1079.
      • TANG"W"J,"YE"J,"YAO"X"M,"ZHAO"P"Z,"XUAN"W,"TIAN"Y"L,"ZHANG"Y"Y,"XU"S,"AN"H"Z,"CHEN"G"M,"YU"J,"WU"W,"GE"Y"W,"LIU"X"L,"LI"J,"ZHANG"H"Z,"ZHAO"Y"Q,"YANG"B,"JIANG"X"Z,"PENG"C,"ZHOU"C,"TERZAGHI"W,"WANG"C"M,"WAN"J"M."Genome-wide"associated"study"identifies"NAC42-activated"nitrate"transporter"conferring"high"nitrogen"use"efficiency"in"rice[J]."Nature"Communications,"2019,"10(1):"5279.
      • LOQUé"D,"VON"WIRéN"N."Regulatory"levels"for"the"transport"of"ammonium"in"plant"roots[J]."Journal"of"Experimental"Botany,"2004,"55(401):"1293-1305.
      • GLASS"A"D,"BRITTO"D"T,"KAISER"B"N,"KINGHORN"J"R,"KRONZUCKER"H"J,"KUMAR"A,"OKAMOTO"M,"RAWAT"S,"SIDDIQI"M"Y,"UNKLES"S"E,"VIDMAR"J"J."The"regulation"of"nitrate"and"ammonium"transport"systems"in"plants[J]."Journal"of"Experimental"Botany,"2002,"53(370):"855-864."
      • SONODA"Y,"IKEDA"A,"SAIKI"S,"WIRéN"N"V,"YAMAYA"T,"YAMAGUCHI"J."Distinct"expression"and"function"of"three"ammonium"transporter"genes"(OsAMT1;1-1;3)"in"rice[J]."Plant"Cell"Physiology,"2003,"44(7):"726-734."
      • GUO"S,"KALDENHOFF"R,"UEHLEIN"N,"SATTELMACHER"B,"BRUECK"H."Relationship"between"water"and"nitrogen"uptake"in"nitrate-and"ammoniumsupplied"Phaseolus"vulgaris"L."plants[J]."Journal"of"Soil"Science"and"Plant"Nutrition,"2007,"170(1):"73-80."
      • RANATHUNGE"K,"EL-KEREAMY"A,"GIDDA"S,"BI"Y"M,"ROTHSTEIN"S"J."AMT1;1"transgenic"rice"plants"with"enhanced"NH4+"permeability"show"superiorgrowth"and"higher"yield"under"optimal"and"suboptimal"NH4+"conditions[J]."Journal"of"Experimental"Botany,"2014,"65(4):"965-979.
      • LI"T"Y,"LIAO"K,"XU"X"F,"GAO"Y,"WANG"Z"Y,"ZHU"X"F,"JIA"B"L,"XUAN"Y"H."Wheat"ammonium"transporter"(AMT)"gene"family:"diversity"and"possible"role"in"host-pathogen"interaction"with"stem"rust[J]."Frontiers"in"Plant"Science,"2017,"8:"1637."
      • XIA"Y"Q,"LIU"Y"D,"ZHANG"T"T,"WANG"Y,"JIANG"X"Y,"ZHOU"Y."Genome wide"identification"and"expression"analysis"of"ammonium"transporter"1"(AMT1)"gene"family"in"cassava"(Manihot"esculenta"Crantz)"and"functional"analysis"of"MeAMT1;1"in"transgenic"Arabidopsis[J]."3"Biotech,"2022,"12(1):"4.
      • XIA"J"Z,"WANG"Y,"ZHANG"T"T,"PAN"C"C,"JI"Y"Y,"ZHOU"Y,"JIANG"X"Y."Genome-wide"identification,"expression"profiling,"and"functional"analysis"of"ammonium"transporter"2"(AMT2)"gene"family"in"cassava"(Manihot"esculenta"crantz)[J]."Frontiers"in"Genetics,"2023,"14:"1145735.
      • GAO"S"W,"YANG"Y"Y,"GUO"J"L,"ZHANG"X,"FENG"M"X,"SU"Y"C,"QUE"Y"X,"XU"L"P."Ectopic"expression"of"sugarcane"ScAMT1.1"has"the"potential"to"improve"ammonium"assimilation"and"grain"yield"in"transgenic"rice"under"low"nitrogen"stress[J]."International"Journal"of"Molecular"Sciences,"2023,"24(2):"1595.
      • GAO"Z"Y,"WANG"Y"F,"CHEN"G,"ZHANG"A"P,"YANG"S"L,"SHANG"L"G,"WANG"D"Y,"RUAN"B"P,"LIU"C"L,"JIANG"H"Z,"DONG"G"J,"ZHU"L,"HU"J,"ZHANG"G"H,"ZENG"D"L,"GUO"L"B,"XU"G"H,"TENG"S,"HARBERD"N"P,"QIAN"Q."The"indica"nitrate"reductase"gene"OsNR2"allele"enhances"rice"yield"potential"and"nitrogen"use"efficiency[J]."Nature"Communications,"2019,"10(1):"5207.
      • YAMAYA"T,"OBARA"M,"NAKAJIMA"H,"SASAKI"S,"HAYAKAWA"T,"SATO"T."Genetic"manipulation"and"quantitative-trait"loci"mapping"for"nitrogen"recycling"in"rice[J]."Journal"of"Experimental"Botany,"2002,"53(370):"917-925.
      • TAMURA"W,"KOJIMA"S,"TOYOKAWA"A,"WATANABE"H,"TABUCHI-KOBAYASHI"M,"HAYAKAWA"T,"YAMAYA"T."Disruption"of"a"novel"NADH-Glutamate"Synthase2"gene"caused"marked"reduction"in"spikelet"number"of"rice[J]."Frontiers"in"Plant"Science,"2011,"2:"57.
      • YU"J,"XUAN"W,"TIAN"Y"L,"FAN"L,"SUN"J,"TANG"W"J,"CHEN"G"M,"WANG"B"X,"LIU"Y,"WU"W,"LIU"X"L,"JIANG"X"Z,"ZHOU"C,"DAI"Z"Y,"XU"D"Y,"WANG"C"M,"WAN"J"M."Enhanced"OsNLP4-OsNiR"cascade"confers"nitrogen"use"efficiency"by"promoting"tiller"number"in"rice[J]."Plant"Biotechnology"Journal,"2021,"19(1):"167-176.
      • CHEN"K"E,"CHEN"H"Y,"TSENG"C"S,"TSAY"Y"F."Improving"nitrogen"use"efficiency"by"manipulating"nitrate"remobilization"in"plants[J]."Nature"Plants,"2020,"6(9):"1126-1135.
      • LIU"Y"L,"DUAN"X"L,"ZHAO"X"D,"DING"W"L,"WANG"Y"W,"XIONG"Y."Diverse"nitrogen"signals"activate"convergent"ROP2-TOR"signaling"in"Arabidopsis[J]."Developmental"Cell,"2021,"56(9):"1283-1295.

      猜你喜歡
      文獻(xiàn)標(biāo)志碼狗尾草生物量
      輪牧能有效促進(jìn)高寒草地生物量和穩(wěn)定性
      狗尾草
      用好互聯(lián)網(wǎng) 傳承民俗文化
      人民論壇(2018年5期)2018-03-12 08:01:48
      2005—2014年上海市集體性食物中毒特點(diǎn)與防控措施分析
      誰最需要增強(qiáng)“看齊意識(shí)”
      人民論壇(2016年30期)2016-12-05 14:34:35
      G20杭州峰會(huì)上的中國擔(dān)當(dāng)
      人民論壇(2016年25期)2016-09-28 10:18:21
      螞蟻爬上狗尾草
      生物量高的富鋅酵母的開發(fā)應(yīng)用
      基于SPOT-5遙感影像估算玉米成熟期地上生物量及其碳氮累積量
      最愛狗尾草
      城市| 五指山市| 田东县| 榆林市| 综艺| 民乐县| 达孜县| 长乐市| 台州市| 北流市| 南华县| 舞钢市| 安仁县| 盱眙县| 青铜峡市| 澎湖县| 肥城市| 乐安县| 临夏市| 广德县| 紫阳县| 乌鲁木齐县| 沙河市| 米脂县| 中西区| 灵丘县| 乌拉特中旗| 平阳县| 商丘市| 海林市| 高州市| 宁南县| 来凤县| 新宾| 双城市| 文化| 新竹市| 广南县| 绿春县| 阜宁县| 吉木萨尔县|