摘""要:桑葚是一種營(yíng)養(yǎng)豐富、藥食同源果樹(shù),深受消費(fèi)者的喜愛(ài)。香氣是桑葚感官品質(zhì)的重要因素,對(duì)消費(fèi)者的購(gòu)買(mǎi)行為起到重要作用。白長(zhǎng)果是一種非常獨(dú)特的桑葚品種,它能散發(fā)出濃烈的類(lèi)似于奶油的香味,有巨大的潛在市場(chǎng)價(jià)值,但關(guān)于這種香味形成的關(guān)鍵代謝物和機(jī)制尚不清楚。本研究利用GC-MS和RNA-seq技術(shù),檢測(cè)白長(zhǎng)果和無(wú)特殊香味的紅長(zhǎng)果桑的關(guān)鍵香味物質(zhì)(VOCs)和基因表達(dá)情況。結(jié)果表明:2個(gè)桑葚品種共檢測(cè)出661種揮發(fā)性代謝物,其中多數(shù)在白長(zhǎng)果桑中有更高的相對(duì)含量,且47種僅在白長(zhǎng)果桑中存在,表明白長(zhǎng)果桑含有豐富的VOCs。312種代謝物被鑒定為差異代謝物;結(jié)合VOCs感官注釋信息和相對(duì)含量,其中70種候選VOCs被注釋為與甜、香、椰子味和奶油味的感官形成有關(guān),可能是白長(zhǎng)果桑獨(dú)特香氣形成的關(guān)鍵代謝物;利用相對(duì)氣味活性值(rOAV)分析,最終確定γ-葵內(nèi)酯為白長(zhǎng)果桑特殊香氣形成的關(guān)鍵VOC;通過(guò)RNA-seq鑒定19個(gè)與酯類(lèi)合成相關(guān)的關(guān)鍵結(jié)構(gòu)基因(包括AAT、ACX、ALDH、CYP、EHL、FAD、HPL、LOX),這些結(jié)構(gòu)基因多在白長(zhǎng)果桑果實(shí)中的高表達(dá),可能是形成其特殊奶油香味的主要因素。本研究為不同種類(lèi)桑葚的香氣差異研究提供依據(jù),為后續(xù)桑葚的品種改良提供新思路。
關(guān)鍵詞:揮發(fā)性代謝物;相對(duì)氣味活度值;γ-葵內(nèi)酯;轉(zhuǎn)錄組中圖分類(lèi)號(hào):S663.9""""""文獻(xiàn)標(biāo)志碼:A
Unique"Flavor"Substance"Composition"and"Its"Synthetic"Pathway"of"Baichang"Mulberry"Revealed"by"Metabolome"and"Transcriptome"Analyses
WU"Huazhou1,2,"HUANG"Jingjing1,2,"LOU"Dezhao1,"GENG"Tao1,"LIN"Peiqun1,"WANG"Shuchang1*
1."National"Key"Laboratory"for"Tropical"Crop"Breeding,"Sanya,"Hainan,"572024,"China;"2."Institute"of"Environment"and"Plant"Protection,"Chinese"Academy"of"Tropical"Agricultural"Science"(Key"Laboralory"of"Integrated"Pest"Management"on"Tropical"Crops,"Ministry"of"Agriculture"and"Rural"Aflairs"/"Hainan"Key"Laboratory"for"Monitoring"and"Control"of"Tropical"Agricultural"Pests),"Haikou,"Hainan,"571101,"China;"3."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China
Abstract:"Mulberry"is"a"fruit"tree"with"rich"nutrition"and"dual"functions"of"food"and"medicine,"which"is"deeply"loved"by"consumers."The"fragrance"is"a"significant"factor"in"the"sensory"quality"of"mulberries,"playing"a"crucial"role"in"consumer"purchasing"behavior."Mulberry"Baichang"is"a"unique"variety"that"emits"a"strong,"creamy"fragrance,"which"has"enormous"potential"market"value."However,"the"key"metabolites"and"mechanisms"responsible"for"the"formation"of"this"fragrance"are"still"unclear."In"this"study,"we"utilized"GC-MS"and"RNA-seq"technology"to"examine"the"volatile"organic"compounds"(VOCs)"and"gene"expression"in"Baichang"and"Hongchang,"which"lacking"a"distinct"fragrance."The"results"showed"that"661"volatile"metabolites"were"detected"in"both"varieties."Most"of"these"were"found"in"higher"relative"amounts"in"Baichang,"with"47"types"being"present"only"in"Baichang,"suggesting"a"rich"composition"of"VOCs"in"this"variety."A"total"of"312"metabolites"were"identified"as"differential"metabolites;"combining"the"sensory"annotation"information"and"relative"content"of"VOCs,"70"candidate"VOCs"were"annotated"as"being"related"to"the"formation"of"“sweet,"waxy,"coconut"and"oily”"sensations."These"could"potentially"be"the"key"metabolites"contributing"to"the"unique"aroma"of"Baichang."The"relative"odor"activity"value"(rOAV)"analysis"revealed"that"5-hexyldihydro-2(3H)-furanone"(also"known"as"γ-decalactone)"was"the"key"VOC"contributing"to"the"formation"of"the"special"aroma"of"Baichang."Using"RNA-seq,"19"key"structural"genes"related"to"ester"synthesis"were"screened,"including"AAT,"ACX,"ALDH,"CYP,"EHL,"FAD,"HPL"and"LOX."The"high"expression"levels"of"these"structural"genes"in"Baichang"may"contribute"to"the"unique"creamy"aroma"of"this"variety;"however,"the"underlying"mechanisms"require"further"investigation."This"study"would"provide"insights"into"the"aroma"differences"among"different"kinds"of"mulberries.
Keywords:"volatile"organic"compounds;"rOAV;"2(3H)-furanone,"5-hexyldihydro;"RNA-seq
DOI:"10.3969/j.issn.1000-2561.2025.04.006
香氣是判斷水果風(fēng)味品質(zhì)的重要指標(biāo)之一,具有誘人香味的水果能增強(qiáng)消費(fèi)者的購(gòu)買(mǎi)欲望[1]。不同品種的水果具有不同的香氣特征,而具有獨(dú)特的風(fēng)味品質(zhì)的產(chǎn)品更容易在市場(chǎng)競(jìng)爭(zhēng)中勝出。桑葚果實(shí)汁水豐沛、口味甜美、營(yíng)養(yǎng)充足,既可以鮮食,也可以加工成桑葚酒、桑葚飲品或其他桑葚產(chǎn)品,深受市場(chǎng)的青睞。近期本課題組發(fā)現(xiàn)一種新的白長(zhǎng)果桑,在成熟時(shí)能散發(fā)出獨(dú)特的類(lèi)似奶油的香味,這在其他品種桑葚中不常見(jiàn)。作為差異明顯的品種,該桑葚具有巨大的育種價(jià)值和潛在商業(yè)價(jià)值。
水果的香味主要由揮發(fā)性物質(zhì)(volatile"organic"compounds,"VOCs)決定,VOCs的種類(lèi)包括酯類(lèi)、醇類(lèi)、醛類(lèi)、酮類(lèi)、萜類(lèi)和雜環(huán)化合物等[2-3]。雖然VOCs只占果實(shí)重量的很小一部分,但是對(duì)水果的香氣起著決定性作用,對(duì)果實(shí)的口感也有一定影響。不同的VOCs給人以不同的風(fēng)味感官,因此,VOCs對(duì)香氣成分的貢獻(xiàn)不僅僅取決于濃度,還與VOCs的閾值密切相關(guān)[4]。對(duì)于單一VOC來(lái)說(shuō),其濃度和閾值共同決定了其對(duì)香氣構(gòu)成的貢獻(xiàn),通常用香氣強(qiáng)度值(odor"activity"value,"OAV)來(lái)衡量[5]。
已有的研究顯示,酯類(lèi)是VOCs中重要組成部分,對(duì)很多水果的感官風(fēng)味起到?jīng)Q定性作用。如歐洲梨(Pyrus"spp)的主要香味來(lái)源則是十烯二酸甲酯和己基酯[6];在桃子(Prunus"persica)已經(jīng)被鑒定出的100多種VOCs中,酯類(lèi)對(duì)其香味有著決定性的影響[7-8]。揮發(fā)性酯類(lèi)通常在果實(shí)成熟期積累更多,并為多種果實(shí)如草莓(Fragaria×"ananassa)、香蕉(Musa"acuminata)和蘋(píng)果(Malus"domestica)等提供獨(dú)特的水果風(fēng)味[9-10]。植物中酯類(lèi)通過(guò)脂肪酸途徑合成,涉及多個(gè)結(jié)構(gòu)基因,包括丙酮酸脫羧酶(pyruvate"decarboxylase,"PDC)、乙醛脫氫酶(aldehyde"dehydrogenase,"ALDH)、?;d體蛋白?;D(zhuǎn)移酶(acyl"carrier"protein-acyltransferase,"ACP)、脂肪酸脫氫酶(fatty"acid"desaturase,"FAD)、酯酰輔酶A氧化酶(acyl-CoA"oxidase,"ACX)、細(xì)胞色素P450酶(cytochrome"P450,"CYP)、脂肪酸羥化酶(fatty"acidhydr"oxylase,"FAH)、脂氧合酶(lipoxygenase,"LOX)、?環(huán)氧化物水解酶(?epoxide"hydrolase,"EHL)、裂解酶(hydroperoxide"lyase,"HPL)、乙醇脫氫酶(alcohol"dehydrogenase,"ADH)和乙酰轉(zhuǎn)移酶(acetyltransferase,"AAT)等[11-14]。
本研究利用GC-MS技術(shù)檢測(cè)白長(zhǎng)果桑和無(wú)特殊香味的紅長(zhǎng)果桑果實(shí)的VOCs和基因表達(dá)情況,篩選決定白長(zhǎng)果桑特殊香氣的關(guān)鍵VOCs,并通過(guò)轉(zhuǎn)錄組鑒定與香氣形成的關(guān)鍵結(jié)構(gòu)基因。本研究將為桑葚香氣的形成機(jī)制提供新的依據(jù)。
1.1""植物材料
本研究使用的試驗(yàn)材料為白長(zhǎng)果桑(BC)和紅長(zhǎng)果桑(HC)的果實(shí),栽培于中國(guó)熱帶農(nóng)業(yè)科學(xué)研究院環(huán)境與植物保護(hù)研究所種質(zhì)資源圃(海南儋州,中國(guó))。每個(gè)品種選取9株生長(zhǎng)狀況良好的壯年樹(shù),每3棵作為1個(gè)生物學(xué)重復(fù),每株取10~15個(gè)完熟果實(shí)作為樣品。取樣后立即液氮冷凍,?80"℃冰箱保存?zhèn)溆谩?/p>
1.2""方法
1.2.1""揮發(fā)性代謝組檢測(cè)與分析""將研磨均勻的500"mg樣品加入頂空瓶中,再依次加入飽和NaCl溶液、10"μL(50"μg/mL)內(nèi)標(biāo)溶液,進(jìn)行全自動(dòng)頂空固相微萃?。℉S-SPME)后備用。萃取條件:60"℃恒溫,5"min震蕩,120"μm"DVB/CWR/PDMS萃取頭置于樣品頂空瓶中萃取15"min,250"℃下解析5"min,進(jìn)行GC-MS分離鑒定。取樣前,萃取頭在Fiber"Conditioning"Station中進(jìn)行5"min老化,溫度為250"℃。色譜條件為DB-5MS毛細(xì)管柱,載氣為高純氦氣,恒流流速設(shè)定為1.2"mL/min,進(jìn)樣口設(shè)定溫度250"℃,不分流進(jìn)樣,溶劑延遲3.5"min。程序升溫設(shè)置,40"℃保持3.5"min,以10"℃/min升至100"℃,再以7"℃/min升至180"℃,最后以25"℃/min升至280"℃,保持5"min。質(zhì)譜條件設(shè)置為:電子轟擊離子源(EI),離子源設(shè)定溫度230"℃,四級(jí)桿設(shè)定溫度為150"℃,質(zhì)譜接口溫度為280"℃,電子能量70"eV。掃描方式為選擇離子檢測(cè)模式(SIM),定性定量離子精準(zhǔn)掃描(GB"23200.8—2016)。
使用MassHunter軟件處理質(zhì)譜分析后的下機(jī)原始數(shù)據(jù),基于Metetware公司自建數(shù)據(jù)庫(kù)進(jìn)行定性定量分析。利用主成分分析(PCA)對(duì)樣品中代謝物的差異性和可靠性進(jìn)行分析驗(yàn)證。使用R軟件繪制聚類(lèi)熱圖,利用cor函數(shù)計(jì)算皮爾遜相關(guān)系數(shù)。以VIPgt;1和Fold"Change≥2和Fold"Change≥0.5為標(biāo)準(zhǔn)篩選差異代謝物,使用LRI"amp;"odour"database、Flavornet"and"human"odor"space和Flavor"Ingredient"Library數(shù)據(jù)庫(kù)對(duì)VOCs的感官風(fēng)味特征注釋。通過(guò)R包計(jì)算VOCs的相對(duì)氣味活度值(relative"odor"activity"value,"rOAV)值[15]。
1.2.2""轉(zhuǎn)錄組測(cè)序與分析""取1.1的樣品用于轉(zhuǎn)錄組測(cè)序(RNA-seq),測(cè)序由武漢邁特維爾公司完成。使用CTAB法提取樣品RNA,利用片段化后的mRNA和隨機(jī)引物進(jìn)行cDNA合成,然后在其兩端加上接頭并進(jìn)行純化。
每個(gè)樣品建立1個(gè)測(cè)序文庫(kù),用Illumina"Hiseq"X進(jìn)行測(cè)序,并通過(guò)邊合成邊測(cè)序的方法進(jìn)行雙端測(cè)序。
對(duì)所測(cè)讀序(read)進(jìn)行過(guò)濾,然后組裝轉(zhuǎn)錄本,所用程序?yàn)門(mén)rinity,主要參數(shù)為“min_kmer_"cov2”,最后將最長(zhǎng)的轉(zhuǎn)錄本指定為元基因(unigene)。采用DESeq"R包(1.10.1)分析2組間的差異表達(dá),|log2(Fold"Change)|gt;1且P-valuelt;"0.05視為差異表達(dá)基因(differential"expression"genes,"DEGs)。RNA-seq的原始數(shù)據(jù)以以下ID號(hào)提交給NCBI:PRJNA1084918和PRJNA1142089。
1.2.3""qRT-PCR分析""首先,用天根RNA試劑盒提取1.1的樣品RNA;接著使用天根FastKing"gDNA"Dispelling"RT"SuperMix試劑盒反轉(zhuǎn)錄合成"cDNA;以酯類(lèi)合成關(guān)途徑基因脂肪酸脫氫酶(fatty"acid"desaturase,"FAD)、酯酰輔酶A氧化酶(acyl-CoA"oxidase,"ACX)、脂氧合酶(lipoxyge na se,"LOX)、?環(huán)氧化物水解酶(?epoxide"hydrolase,"EHL)和乙酰轉(zhuǎn)移酶(acetyltransferase,"AAT)基因?yàn)槟康幕颍褂肞rimer"3.0(https://primer3.ut."ee/)軟件設(shè)計(jì)基因的qPCR引物(表1),然后通過(guò)ChamQ"Universal"SYBR"qPCR"Master"Mix試劑盒進(jìn)行PCR反應(yīng),反應(yīng)體系(20"μL):2×ChamQ"Universal"SYBR"qPCR"Master"Mix"10"μL,primer1"0.4"μL,primer2"0.4"μL,cDNA"2"μL,ddH2O"7.2"μL。反應(yīng)程序:95"℃"15"min;95"℃"10"s,60"℃"30"s,72"℃"30"s,40個(gè)循環(huán)。以桑樹(shù)肌動(dòng)蛋白(Actin)為內(nèi)參基因[16]。按照2?ΔΔCt方法計(jì)算。
1.3""數(shù)據(jù)處理
本研究主要使用TBtools軟件[17]和邁維云平臺(tái)(https://cloud.metware.cn)進(jìn)行熱圖繪制和數(shù)據(jù)分析。采用SPSS"27.0軟件進(jìn)行獨(dú)立樣本t檢驗(yàn)分析,P-valuelt;0.05和P-valuelt;0.01被認(rèn)為具有統(tǒng)計(jì)學(xué)意義,并使用“*”和“**”表示。
2.1""白長(zhǎng)果桑和紅長(zhǎng)果桑成熟果實(shí)代謝組分析
白長(zhǎng)果桑和紅長(zhǎng)果桑的成熟果實(shí)如圖1A所示。在2個(gè)種類(lèi)的桑葚成熟果實(shí)中共鑒定出661種揮發(fā)性代謝產(chǎn)物,分為15個(gè)種類(lèi),其中萜烯類(lèi)(terpenoids)數(shù)量最多,為133個(gè),占全部揮發(fā)性代謝產(chǎn)物種類(lèi)的20.12%,其次為酯類(lèi)(ester)和雜環(huán)化合物(heterocyclic"compound),分別占總量的16.79%和15.89%,其余為含氮化合物(nitrogen"compounds)、醛類(lèi)(aldehyde)、酮類(lèi)(ketone)、醇類(lèi)(alcohol)、烴類(lèi)(hydrocarbons)、芳烴(aromatics)、酸類(lèi)(acid)、苯酚(phenol)、鹵代烴(halogenated"hydrocarbons)、胺類(lèi)(amine)、硫化合物(sulfur"compounds)等成分(圖1B)。有47種揮發(fā)性代謝物僅在白長(zhǎng)果桑中被檢測(cè)出,表明其香氣成分可能更豐富。主成分分析(PCA)顯示,同一桑葚種類(lèi)之間的3個(gè)重復(fù)相互靠攏,表明樣品的重復(fù)性良好;2組之間呈明顯的分離趨勢(shì),表明2個(gè)品種的VOCs差異較大;其中第一主成分決定了64.40%的變異率,第二主成分決定了29.14%的變異率(圖1C)。
2.2""差異揮發(fā)性代謝物分析
2個(gè)桑葚品種共鑒定出312種差異代謝物。相比于白長(zhǎng)果桑,紅長(zhǎng)果桑多數(shù)差異代謝物(290種)下調(diào),僅有22種差異代謝物上調(diào),這可能是白長(zhǎng)果桑更有特色香氣成分的成因。根據(jù)感官體驗(yàn),白長(zhǎng)果桑具有香味,而紅長(zhǎng)果桑不含香味,所以影響白長(zhǎng)果桑香味的關(guān)鍵代謝物很可能屬于下調(diào)差異代謝物(圖2A)。通過(guò)對(duì)2個(gè)品種桑葚的差異代謝物進(jìn)行感官風(fēng)味特征注釋,發(fā)現(xiàn)青香(green)、辛辣香(spicy)、木香(woody)、花香(floral)、清香(fresh)、草香(herbal)、蠟香(waxy)、脂肪香(fatty)、果味(fruity)、甜味(sweet)為排名前十的差異代謝物感官風(fēng)味,其中青香、甜味、果味、脂肪香4種感官風(fēng)味中含有的差異代謝物數(shù)量最多(圖2B)。
2.3""香氣成分的關(guān)鍵差異代謝物篩選
通過(guò)繪制感官風(fēng)味網(wǎng)絡(luò)圖確定每種感官風(fēng)味的關(guān)鍵差異代謝物(圖3A)。甜味、蠟香、椰子油(coconut"oily)幾種感官風(fēng)味與白長(zhǎng)果桑的嗅覺(jué)體驗(yàn)一致,基于這4種感官風(fēng)味,共篩選出73種相關(guān)聯(lián)的差異代謝物。白長(zhǎng)果桑在嗅覺(jué)感官上有較為濃郁的奶香味,因此,白長(zhǎng)果桑中與香味相關(guān)的關(guān)鍵差異代謝物的相對(duì)含量更高。5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮[2(5H)-Furanone,"5-ethyl-3-hydroxy-4-methyl-]、trans,"cis-2,6-Non ad i en-1-ol、1-Nonanol三種物質(zhì)的含量在紅長(zhǎng)果桑中更高,表明其不是形成白長(zhǎng)果桑香味的關(guān)鍵物質(zhì),而其余70種差異代謝物在白長(zhǎng)果桑中相對(duì)含量更高,可能是造成2個(gè)種類(lèi)桑葚果實(shí)香味差異的候選關(guān)鍵代謝物質(zhì)(圖3B)。
2.4""相對(duì)氣味活度值(rOAV)分析
相對(duì)氣味活度值(rOAV)可以闡明每種香氣化合物對(duì)果實(shí)整體香氣特征的貢獻(xiàn),與差異代謝物的含量結(jié)合分析,可以進(jìn)一步尋找到造成白長(zhǎng)果桑和紅長(zhǎng)果桑香味存在差異的關(guān)鍵物質(zhì)。由圖4可知,對(duì)白長(zhǎng)果桑香味影響最大的4種物質(zhì)分別是1-對(duì)孟烯-8-硫醇(3-Cyclohexene-1-m etha ne thiol,.alpha.,.alpha.,4-trimethyl-)、5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮、3-巰基-3-甲基丁基甲酸酯[3-Mercapto-3-methylbutyl"formate"(ester)]、γ-葵內(nèi)酯[2(3H)-Furanone5-hexyldihydro-]。其中5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮、3-巰基-3-甲基丁基甲酸酯的rOAV值在紅長(zhǎng)果桑中高,而在白長(zhǎng)果桑中低,與白長(zhǎng)果桑香味濃郁而紅長(zhǎng)果桑無(wú)明顯香味的嗅覺(jué)感官體驗(yàn)不相符。因此,推測(cè)這2種物質(zhì)不是造成2個(gè)桑葚品種香味差異的關(guān)鍵物質(zhì)。1-對(duì)孟烯-8-硫醇的氣味注釋為硫磺味、芳香味、柚子味、樹(shù)脂味和木頭味,與白長(zhǎng)果桑實(shí)際的奶香味嗅覺(jué)感受相差甚遠(yuǎn)。綜合分析,推測(cè)γ-葵內(nèi)酯為白長(zhǎng)果桑奶香味來(lái)源的主要物質(zhì),也是形成2種桑葚氣味差異的關(guān)鍵代謝產(chǎn)物。
2.5""轉(zhuǎn)錄組測(cè)序和差異基因分析
通過(guò)轉(zhuǎn)錄組分析,6個(gè)桑葚果實(shí)樣品分別獲得42"731"000~51"231"176個(gè)raw"reads,過(guò)濾后分別得到41"862"788~49"701"590個(gè)clean"reads和6.28~7.46"Gb的clean"base。所有樣品的錯(cuò)誤率均為0.02%,Q20含量在98.06%~98.14%之間,Q30含量在94.42%~94.76%之間,GC含量在46.3%~"47.04%之間。相關(guān)性分析顯示樣品重復(fù)性較好(圖5A)。差異分析顯示,在BC"vs"HC比較組中,有1823個(gè)基因上調(diào),2352個(gè)基因下調(diào)(圖5B)。
GO分析將差異基因歸類(lèi)與生物過(guò)程(biolog ic al"process"BP)、細(xì)胞組成(cellular"component"CC)和分子功能(molecular"function"MF)3個(gè)條目,在3個(gè)比較組合中,生物過(guò)程中注釋基因數(shù)量最多的為細(xì)胞過(guò)程(cellular"process)(基因數(shù)目為2063個(gè)),細(xì)胞組成中注釋基因數(shù)量最多的為cellular"anatomical"entity"(基因數(shù)目為2689個(gè)),分子功能中注釋基因數(shù)量最多的為binding(基因數(shù)目為1932個(gè))(圖5C)。KEGG分析將差異基因被富集到多個(gè)代謝通路,包括biosynthesis"of"secondary"metabolites、metabolic"pathways、flavone"and"flavonol"biosynthesis、alpha-
2.6""桑葚發(fā)育過(guò)程中Lactones(內(nèi)脂)合成途徑基因表達(dá)情況
本研究從差異基因中篩選了與酯類(lèi)合成相關(guān)的結(jié)構(gòu)基因,包括1個(gè)乙酰轉(zhuǎn)移酶基因AAT(M.alba_G0004770)、1個(gè)酯酰輔酶A氧化酶ACX(M.alba_G0004521)、3個(gè)乙醛脫氫酶ALDH(M.alba_G0000606、M.alba_G0019840和M.alba_G0013314)、4個(gè)細(xì)胞色素P450酶CYP(novel.128、M.alba_G0014072、M.alba_G0006952和M.alba_G0003440)、4個(gè)環(huán)氧化物水解酶EHL(M.alba_G0008184、M.alba_G0005973、M.alba_G0000938和M.alba_G0010612)、3個(gè)脂肪酸脫氫酶FAD(novel.4905、M.alba_G0000805和M.alba_G0009644)、1個(gè)裂解酶HPL(M.alba_"G0002152)和2個(gè)脂氧合酶LOX(M.alba_"G0015824和M.alba_G0014496)。在這些結(jié)構(gòu)基因中,多數(shù)成員在白長(zhǎng)果品種中高表達(dá),少部分在紅長(zhǎng)果品種中高表達(dá)(附表1)。如相較于紅長(zhǎng)果桑,M.alba_G0000606(ALDH)在白長(zhǎng)果桑中的表達(dá)上調(diào)了14.50倍,M.alba_G0014072(CYP)上調(diào)11.14倍,M.alba_G0004521(ACX)上調(diào)了7.06倍,M.alba_G0004770(AAT)上調(diào)了2.71倍等(圖6)。這些基因可能是白長(zhǎng)果桑獨(dú)特香氣成分形成的關(guān)鍵因素。qPCR驗(yàn)證基因表達(dá)結(jié)果與轉(zhuǎn)錄組結(jié)果趨勢(shì)一致(圖7)。
香味是衡量水果品質(zhì)重要的標(biāo)準(zhǔn)之一,它影響著水果的價(jià)格及銷(xiāo)量,一些能散發(fā)出迷人香氣的新品種水果往往更容易得到消費(fèi)者的偏愛(ài)[18-19]。香味不僅對(duì)鮮食水果有著深遠(yuǎn)的影響,對(duì)其后續(xù)加工制品,如果酒、罐頭、水果凍干、果醬等生產(chǎn)同樣意義重大[20-21]。部分香味物質(zhì)如內(nèi)酯類(lèi)物質(zhì),還可以用于制作香水、食用香精或藥品等[22]。果實(shí)的香氣通常由VOCs的種類(lèi)、不同含量和各組分的氣味閾值共同決定[23]。水果中的VOCs以其中萜類(lèi)、酯類(lèi)和脂肪酸衍生物最為常見(jiàn)[24]。ZHU等[25]對(duì)3個(gè)栽培品種桑葚(Morus"nigra,"Morus"macroura,"Morus"alba)香氣成分的研究顯示,Hex anal、(E)-2-Hexenal、Benzaldehyde、Methyl"benzo ate、Ethyl"benzoate、Ethyl"acetate、Ethyl"butanoate、E thyl"hexanoate、methional、3-mercapt ohexyl"acetate等是桑葚香氣形成的主要物質(zhì)。然而,至今還無(wú)相關(guān)研究報(bào)道存在明顯奶油香味的桑葚品種。本研究以白長(zhǎng)果桑和紅長(zhǎng)果桑2個(gè)種類(lèi)桑葚為樣本,共檢測(cè)到661種VOCs,其中包括大量的酯類(lèi)、萜類(lèi)、醛類(lèi)和雜環(huán)化合物,這和前人研究是相似的。然而γ-葵內(nèi)酯僅在白長(zhǎng)果桑中具有較高的相對(duì)含量,在其他品種中未見(jiàn)報(bào)道,顯示了其在香氣組分上的特殊性,具有較大的潛在市場(chǎng)價(jià)值[26-27]。
γ-葵內(nèi)酯的氣味被認(rèn)為具有濃郁的奶油、堅(jiān)果和焦糖的香氣,是對(duì)桃子香氣貢獻(xiàn)最大的揮發(fā)性物質(zhì),它使得桃子區(qū)別于其他水果[28-29]。然而,就感官而言,白長(zhǎng)果桑散發(fā)的香氣濃郁而獨(dú)特,與桃子并不相同,這可能是由于二者其他成分的VOCs組成與含量不同所導(dǎo)致的。王娟等[30]研究了8個(gè)草莓品系的香氣成分,發(fā)現(xiàn)γ-葵內(nèi)酯對(duì)京桃香草莓的獨(dú)特香味形成有決定性作用。γ-葵內(nèi)酯除了是水果香味的重要組成成分之外,還是香料和食品工業(yè)中最廣泛使用的內(nèi)酯之一[31]。
酯在植物中的合成途徑尚未被完全解析,脂肪酸(FAs)被認(rèn)為是酯類(lèi)合成的主要前體,香蕉、草莓、甜瓜(Cucumis"melo)果實(shí)的香氣主要由脂肪酸衍生物導(dǎo)致[10,"32]。目前已經(jīng)有報(bào)道了一些脂肪酸途徑的關(guān)鍵的結(jié)構(gòu)基因,包括脂肪酸去飽和酶(FAD)、醇脫氫酶(ADH)、脂氧合酶(LOX)和乙酰轉(zhuǎn)移酶(AAT)等[33]。百香果(Passiflora"edulis)上的研究顯示脂肪酸通路中的ACX13/14/"15/20、ADH13/26/33、ALDH1/4/21、HPL4/6、FAD13/50/52/53/55、PeLOX5/18、PeFAE6、PeFAH2、PeCYP7/13、PeEHL13/15、PeACP-AP1/"5/6/7、PeAAT3可能參與酯類(lèi)合成的調(diào)控[14]。AdFAD1、AdALDH2、AdAAT17參與了獼猴桃(Actinidia"deliciosa)成熟過(guò)程中酯類(lèi)合成的調(diào)控[34]。1-MCP顯著調(diào)控梨酯類(lèi)和VOCs的釋放,調(diào)控AATs和LOX的表達(dá)[35]。AAT催化了酯生物合成的最后一步,通常果實(shí)的成熟水平和酯類(lèi)含量同步增加[36]。杏(Prunus"armeniaca)、木瓜(Carica"papaya)、獼猴桃、葡萄(Vitis"vinifera)和草莓等多種水果種的AATs已被克隆和功能驗(yàn)證[9,"37-40]。PENG等[41]利用產(chǎn)油酵母表達(dá)系統(tǒng)證實(shí)了PpAAT1能催化γ-葵內(nèi)酯的合成。本研究中,多數(shù)脂肪酸途徑的結(jié)構(gòu)基因在白長(zhǎng)果桑果實(shí)中高表達(dá),其中也包含1個(gè)AAT(M.alba_G0004770)。這些基因的高表達(dá)可能導(dǎo)致了白長(zhǎng)果桑擁有更復(fù)雜的香氣組成和獨(dú)特香味。
關(guān)于揮發(fā)性酯類(lèi)的調(diào)控,多數(shù)集中在轉(zhuǎn)錄因子對(duì)脂肪酸途徑的關(guān)鍵結(jié)構(gòu)基因的轉(zhuǎn)錄調(diào)控上。ZHANG等[34]通過(guò)雙熒光素酶試驗(yàn)證明了AdNAC5和AdDof4分別激活和抑制了AdFAD1啟動(dòng)子活性,進(jìn)而調(diào)控獼猴桃酯類(lèi)的合成。NAC轉(zhuǎn)錄因子可以激活A(yù)AT表達(dá),催化多種果實(shí)中揮發(fā)性酯類(lèi)的形成,如桃中PpNAC1激活PpAAT1的表達(dá),蘋(píng)果中MdNAC5激活MdAAT1的表達(dá)。CAO等[36]的研究表明這種調(diào)控受到表觀遺傳的調(diào)控,與果樹(shù)成熟過(guò)程中抑制標(biāo)記H3K27me3的去除密切相關(guān)。關(guān)于桑葚中γ-葵內(nèi)酯合成的調(diào)控機(jī)制有待于進(jìn)一步探究。
本研究利用HS-SPME萃取和GC-MS技術(shù)檢測(cè)白長(zhǎng)果桑和紅長(zhǎng)果桑的揮發(fā)性代謝物,并通過(guò)RNA-seq篩選影響白長(zhǎng)果桑香氣形成的關(guān)鍵基因。從代謝組中共檢測(cè)出661中揮發(fā)性代謝物,其中47種為白長(zhǎng)果桑特有,共篩選到312種為差異代謝物,結(jié)合其相對(duì)含量、感官注釋和rOAV分析,最終確定了γ-葵內(nèi)酯為白長(zhǎng)果桑特殊香氣形成的關(guān)鍵VOC。通過(guò)RNA-seq,鑒定了19個(gè)與酯類(lèi)合成相關(guān)的關(guān)鍵結(jié)構(gòu)基因,包括AAT、ACX、ALDH、CYP、EHL、FAD、HPL和LOX,這些結(jié)構(gòu)基因在白長(zhǎng)果桑果實(shí)中的高表達(dá),可能是形成其特殊奶油香味的主要因素。本研究為不同種類(lèi)桑葚的香氣差異研究提供了依據(jù),為后續(xù)桑葚的品種改良提供了新思路。
參考文獻(xiàn)
[1]"ZHU"J,"CHEN"F,"WANG"L,"NIU"Y,"CHEN"H"X,"WANG"H"L,"XIAO"Z."Characterization"of"the"key"aroma"volatile"compounds"in"cranberry"(Vaccinium"macrocarpon"Ait.)"using"gas"chromatography-olfactometry"(GC-O)"and"odor"activity"value"(OAV)[J]."Journal"of"Agricultural"and"Food"Chemistry,"2016,"64(24):"4990-4999.
[2]"GOFF"S"A,"KLEE"H"J."Plant"volatile"compounds:"sensory"cues"for"health"and"nutritional"value?[J]."Science,"2006,"311(5762):"815-819.
[3]"PICHERSKY"E,"GERSHENZON"J."The"formation"and"function"of"plant"volatiles:"perfumes"for"pollinator"attraction"and"defense[J]."Current"Opinion"in"Plant"Biology,"2002,"5(3):"237-243.
[4]"KLEE"H"J."Improving"the"flavor"of"fresh"fruits:"genomics,"biochemistry,"and"biotechnology[J]."New"Phytologist,"2010,"187(1):"44-56.
[5]"HE"Y"L,"QIN"H"Y,"WEN"J"L,"CAO"W"Y,"YAN"Y"P,"SUN"Y"N,"YUAN"P"Q,"SUN"B"W,"FAN"S"T,"LU"W"P,"LI"C"Y."Characterization"of"key"compounds"of"organic"acids"and"aroma"volatiles"in"fruits"of"different"Actinidia"argute"resources"based"on"high-performance"liquid"chromatography"(HPLC)"and"headspace"gas"chromatography-ion"mobility"spectrometry"(HS-GC-IMS)[J]."Foods,"2023,"12(19):"3615.
[6]"RAPPARINI"F,"PREDIERI"S."Pear"fruit"volatiles[J]."Horticultural"Reviews,"2002,"28:"237-324.
[7]"EDUARDO"I,"CHIETERA"G,"BASSI"D,"ROSSINI"L,"VECCHIETTI"A."Identification"of"key"odor"volatile"compoundsnbsp;in"the"essential"oil"of"nine"peach"accessions[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2010,"90(7):"1146-1154.
[8]"JIA"H,"HIRANO"K,"OKAMOTO"G."Effects"of"fertilizer"levels"on"tree"growth"and"fruit"quality"of"'Hakuho'"peaches"(Prunus"persica)[J]."Journal"of"the"Japanese"Society"for"Horticultural"Science,"1999,"68(3):"487-493.
[9]"BEEKWILDER"J,"ALVAREZ-HUERTA"M,"NEEF"E,"VERSTAPPEN"F"W,"BOUWMEESTER"H"J,"AHARONI"A."Functional"characterization"of"enzymes"forming"volatile"esters"from"strawberry"and"banana[J]."Plant"Physiology,"2004,"135(4):"1865-1878.
[10]"SOULEYRE"E"J,"CHAGNE"D,"CHEN"X,"TOMES"S,"TURNER"R"M,"WANG"M"Y,"MADDUMAGE"R,"HUNT"M"B,"WINZ"R"A,"WIEDOW"C."The"AAT"1"locus"is"critical"for"the"biosynthesis"of"esters"contributing"to"‘ripe"apple’"flavour"in"‘Royal"Gala’"and"‘Granny"Smith’"apples[J]."The"Plant"Journal,"2014,"78(6):"903-915.
[11]"ECHEVERRA"G,"GRAELL"J,"LóPEZ"M"L,"LARA"I."Volatile"production,"quality"and"aroma-related"enzyme"activities"during"maturation"of"‘Fuji’"apples[J]."Postharvest"Biology"and"Technology,"2004,"31(3):"217-227.
[12]"LInbsp;X,"TIEMAN"D,"LIU"Z,"CHEN"K,"KLEE"H"J."Identification"of"a"lipase"gene"with"a"role"in"tomato"fruit"short-chain"fatty"acid-derived"flavor"volatiles"by"genome-wide"association[J]."The"Plant"Journal,"2020,"104(3):"631-644.
[13]"SONG"J,"BANGERTH"F."Fatty"acids"as"precursors"for"aroma"volatile"biosynthesis"in"pre-climacteric"and"climacteric"apple"fruit[J]."Postharvest"Biology"and"Technology,"2003,"30(2):"113-121.
[14]"XIA"Z"Q,"HUANG"D"M,"ZHANG"S"K,"WANG"W"Q,"MA"F"N,"WU"B,"XU"Y,"XU"B"Q,"CHEN"D,"ZOU"M"L,"XU"H"Y,"ZHOU"X"C,"ZHAN"R"L,"SONG"S."Chromosome-scale"genome"assembly"provides"insights"into"the"evolution"and"flavor"synthesis"of"passion"fruit"(Passiflora"edulis"Sims)[J]."Horticulture"Research,"2023,"1:"259-272.
[15]"YUE"Y,"WANG"C,"CHEN"Y"S,"ZHENG"M"M,"ZHANG"Y,"DENG"Q"C,"ZHOU"Q."Aroma"characteristics"of"flaxseed"milk"via"GC–MS-O"and"odor"activity"value"calculation:"imparts"and"selection"of"different"flaxseed"varieties[J]."Food"Chemistry,"2024,"432:"137095.
[16]"DAI"F"W,"ZHAO"X"T,"TANG"C"M,"WANG"Z"J,"KUANG"Z"S,"LI"Z"Y,"HUANG"J,"LUO"G"Q."Identification"and"validation"of"reference"genes"for"qRT-PCR"analysis"in"mulberry"(Morus"alba"L.)[J]."PLoS"One,"2018,"13(3):"e0194129.
[17]"GONG"P,"SHEN"Q"T,"ZHANG"M"Z,"QIAO"R,"JIANG"J,"SU"L"L,"ZHAO"S"W,"FU"S,"MA"Y,"GE"L"H,"WANG"Y"Q,"LOZANO-DURáN"R,WANG"A"M,"LI"F"F,"ZHOU"X"P."Plantnbsp;and"animal"positive-sense"single-stranded"RNA"viruses"encode"small"proteins"important"for"viral"infection"in"their"negative-sense"strand[J]."Molecular"Plant,"2023,"16(11):"1794-"1810.
[18]"LU"H"F,"ZHAO"H"F,"ZHONG"Tnbsp;L,"CHEN"D"W,"WU"Y"Q,"XIE"Z"W."Molecular"regulatory"mechanisms"affecting"fruit"aroma[J]."Foods,"2024,"13(12):"1870.
[19]"NUZZI"M,"LO"SCALZO"R,"TESTONI"A,"RIZZOLO"A."Evaluation"of"fruit"aroma"quality:"comparison"between"gas"chromatography–olfactometry"(GC–O)"and"odour"activity"value"(OAV)"aroma"patterns"of"strawberries[J]."Food"Analytical"Methods,"2008,"1(4):"270-282.
[20]"EL"HADI"M"A"M,"ZHANG"F"J,"WU"F"F,"ZHOU"C"H,"TAO"J."Advances"in"fruit"aroma"volatile"research[J]."Molecules,"2013,"18(7):"8200-8229.
[21]"SIEGMUND"B."Biogenesis"of"aroma"compounds:"flavour"formation"in"fruits"and"vegetables[M]."Amsterdam:"Elsevier."2015:"127-149.
[22]"SARTORI"S"K,"DIAZ"M"A"N,"DIAZ-MU?OZ"G."Lactones:"classification,"synthesis,"biological"activities,"and"industrial"applications[J]."Tetrahedron,"2021,"84:"132001.
[23]"NIU"Y"W,"ZHU"Q,"XIAO"Z"B."Characterization"of"perceptual"interactions"among"ester"aroma"compounds"found"in"Chinese"Moutai"Baijiu"by"gas"chromatography-olfactometry,"odor"Intensity,"olfactory"threshold"and"odor"activity"value[J]."Food"Research"International,"2020,"131:"108986.
[24]"LIU"J,"YIN"X,"KOU"C"X,"THIMMAPPA"R,"HUA"X,"XUE"Z"Y."Classification,"biosynthesis"and"biological"function"of"triterpene"esters"in"plants[J]."Plant"Communications,"2024,"5(4):"100845.
[25]"ZHU"J"C,"WANG"L"Y,"XIAO"B"Z,"NIU"Y"W."Characterization"of"the"key"aroma"compounds"in"mulberry"fruits"by"application"of"gas"chromatography–olfactometry"(GC-O),"odor"activity"value"(OAV),"gas"chromatography-mass"spectrometry"(GC–MS)"and"flame"photometric"detection"(FPD)[J]."Food"Chemistry,"2018,"245:"775-785.
[26]"ELMAC"Y,"ALTU?"T."Flavour"evaluation"of"three"black"mulberry"(Morus"nigra)"cultivars"using"GC/MS,"chemical"and"sensory"data[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2002,"82(6):"632-635.
[27]"FENG"Y"M,"LIU"M,"OUYANG"Y"A,"ZHAO"X"F,"JU"Y"L,"FANG"Y"L."Comparative"study"of"aromatic"compounds"in"fruit"wines"from"raspberry,"strawberry,"and"mulberry"in"central"Shaanxi"area[J]."Food"amp;"Nutrition"Research,"2015,"59(1):"29290.
[28]"PENG"B,"YU"M"M,"ZHANG"B"B,"XU"J"L,"MA"R."Differences"in"PpAAT1"activity"in"high-and"low-aroma"peach"varieties"affect"γ-decalactone"production[J]."Plant"Physiology,"2020,"182(4):"2065-2080.
[29]"ZHANG"L"P,"LI"H"Y,"GAO"L,"QI"Y"J,"FU"W"Y,"LI"X"W,"ZHOU"X,"GAO"Q"K,"GAO"Z"S,"JIA"H"J."Acyl-CoA"oxidase1"is"involved"in"γ-decalactone"release"from"peach"(Prunus"persica)"fruit[J]."Plant"Cell"Reports,"2017,"36:"829-842.
[30]"王娟,"孫瑞,"王桂霞,"常琳琳,"孫健,"鐘傳飛,"董靜,"張運(yùn)濤,"ULRICH"D."8個(gè)草莓品種"(系)"果實(shí)特征香氣成分比較分析[J]."果樹(shù)學(xué)報(bào),"2018,"35(8):"967-976.WANG"J,"SUN"R,"WANG"G"X,"CHANG"L"L,"SUN"J,"ZHONG"C"F,"DONG"J,"ZHANG"Y"T,"ULRICH"D."Comparative"analysis"of"characteristic"aroma"components"in"fruits"of"eight"strawberry"cultivars"(lines)[J]."Journal"of"Fruit"Science,"2018,"35(8):"967-976."(in"Chinese)
[31]"WACHé"Y,"AGUEDO"M,"NICAUD"J"M,"BELIN"J"M."Catabolism"of"hydroxyacids"and"biotechnological"production"of"lactones"by"Yarrowia"lipolytica[J]."Applied"microbiology"and"biotechnology,"2003,"61:"393-404.
[32]"EL-SHARKAWY"I,"MANRíQUEZ"D,"FLORES"F"B,"REGAD"F,"BOUZAYEN"M,"LATCHE"A,"PECH"J"C."Functional"characterization"of"a"melon"alcohol"acyl-transferase"gene"family"involved"in"the"biosynthesis"of"ester"volatiles."Identification"of"the"crucial"role"of"a"threonine"residue"for"enzyme"activity[J]."Plant"Molecular"Biology,"2005,"59:"345-362.
[33]"ZHOU"D"D,"SUN"Y,"LI"M"Y,"ZHU"T,"TU"K."Postharvest"hot"air"and"UV-C"treatments"enhance"aroma-related"volatiles"by"simulating"the"lipoxygenase"pathway"in"peaches"during"cold"storage[J]."Food"Chemistry,"2019,"292:"294-303.
[34]"ZHANG"A"D,"ZHANG"Q"Y,"LI"J"Z,"GONG"H"S,"FAN"X"G,"YANG"Y"Q,"LIU"X"Q,"YIN"X"R."Transcriptome"co-expre s sion"network"analysis"identifies"key"genes"and"regulators"of"ripening"kiwifruit"ester"biosynthesis[J]."BMC"Plant"Biology,"2020,"20:"1-12.
[35]"LI"G"P,"JIA"H"J,"LI"J"H,"LI"H"X,"TENG"Y"W."Effects"of"1-MCP"on"volatile"production"and"transcription"of"ester"biosynthesis"related"genes"under"cold"storage"in"‘Ruanerli’"pear"fruit"(Pyrus"ussuriensis"Maxim.)[J]."Postharvest"Biology"and"Technology,"2016,"111:"168-174.
[36]"CAO"X"M,"WEI"C"Y,"DUAN"W"Y,"GAO"Y,"KUANG"J"F,"LIU"M"C,"CHEN"K"S,"KLEE"H,"ZHANG"B."Transcriptional"and"epigenetic"analysis"reveals"that"NAC"transcription"factors"regulate"fruit"flavor"ester"biosynthesis[J]."The"Plant"Journal,"2021,"106(3):"785-800.
[37]"BALBONTIN"C,"GAETE-EASTMAN"C,"FUENTES"L,"FIG U EROA"C"R,"HERRERA"R,"MANRIQUEZ"D,"LAT CH E"A,"PECH"J"C,"MOYA-LEO?N"M"A"A."VpAAT1,"a"gene"encoding"an"alcohol"acyltransferase,"is"involved"in"ester"biosynthesis"during"ripening"of"mountain"papaya"fruit[J]."Journal"of"Agricultural"and"Food"Chemistry,"2010,"58(8):"5114-5121.
[38]"GONZáLEZ-AGüERO"M,"TRONCOSO"S,"GUDE NSC HWAGER"O,"CAMPOS-VARGAS"R,"MOYA-LEóN"M"A,"DEFILIPPI"B"G."Differential"expression"levels"of"aroma-"rela t ed"genes"during"ripening"of"apricot"(Prunus"armeniaca"L.)[J]."Plant"Physiology"and"Biochemistry,"2009,"47(5):"435-440.
[39]"GüNTHER"C"S,"CHERVIN"C,"MARSH"K"B,"NEWCOMB"R"D,"SOULEYRE"E"J."Characterisation"of"two"alcohol"acyltransferases"from"kiwifruit"(Actinidia"spp.)"reveals"distinct"substrate"preferences[J]."Phytochemistry,"2011,"72(8):"700-"710.
[40]"WANG"J"H,"LUCA"V"D."The"biosynthesis"and"regulation"of"biosynthesis"of"Concord"grape"fruit"esters,"including"‘foxy’"methylanthranilate[J]."The"Plant"Journal,"2005,"44(4):"606-619.
[41]"PENG"B,"XU"J"L,"CAI"Z"X,"ZHANG"B"B,"YU"M"L,"MA"R"J."Different"roles"of"the"five"alcohol"acyltransferases"in"peach"fruit"aroma"development[J]."Journal"of"the"American"Society"for"Horticultural"Science,"2020,"145(6):"374-381.