【摘要】 近紅外腦功能成像是一種腦功能神經(jīng)影像技術(shù),被廣泛應(yīng)用于神經(jīng)病學(xué)疾病的研究與臨床診斷中。近紅外技術(shù)能夠非侵入性地測(cè)量組織的氧合狀態(tài)和血流動(dòng)力學(xué)參數(shù),為神經(jīng)病學(xué)疾病的診斷、治療和監(jiān)測(cè)提供了新的工具。文章旨在總結(jié)近年來(lái)近紅外技術(shù)在中樞神經(jīng)系統(tǒng)疾病中的應(yīng)用進(jìn)展,并探討其潛在的臨床意義,包括在不同神經(jīng)病學(xué)疾病中的應(yīng)用以及在神經(jīng)康復(fù)中的應(yīng)用前景,為疾病的診斷和治療提供新的思路。
【關(guān)鍵詞】 近紅外腦功能成像;中樞神經(jīng)系統(tǒng)疾病;神經(jīng)康復(fù)
Application of near-infrared brain functional imaging in central nervous system diseases
YANG Yongqin1, LI Daojing2, QI Ziyou3
(1. Jining Medical University, Jining 272067, China; 2. Affiliated Hospital of Jining Medical College, Jining 272000, China)
Corresponding author: QI Ziyou, E-mail: zy-513@163.com
【Abstract】 Near-infrared spectroscopy is a brain functional neuroimaging technology, which is widely used in the research and clinical diagnosis of neurological diseases. Near-infrared technology can measure tissue oxygenation status and hemodynamic parameters non-invasively, providing a new tool for diagnosis, treatment and monitoring of neurological diseases. The purpose of this paper is to summarize the application progress of near-infrared technology in central nervous system diseases in recent years, and discuss its potential clinical significance, including the application in different neurological diseases and the application prospect in neurological rehabilitation, so as to provide new ideas for the diagnosis and treatment of diseases.
【Key words】 Near-infrared brain functional imaging technology; Central nervous system disease; Neurorehabilitation
近紅外腦功能成像(near-infrared spectroscopy,NIRS)是一種非侵入性測(cè)量組織氧合狀態(tài)的光譜分析技術(shù),利用近紅外光在物質(zhì)中的吸收和散射特性來(lái)研究物質(zhì)的組成和結(jié)構(gòu)。其生物學(xué)原理是在神經(jīng)血管耦合機(jī)制的作用下,個(gè)體在大腦進(jìn)行腦功能活動(dòng)時(shí)耗氧量增加[1],葡萄糖的代謝需求增加,導(dǎo)致局部腦血流量供過(guò)于求,以滿(mǎn)足大腦增加的代謝需求,而氧氣通過(guò)血液中的血紅蛋白進(jìn)行傳輸,所以在認(rèn)知活動(dòng)時(shí),大腦活動(dòng)區(qū)域會(huì)出現(xiàn)血液中的氧合血紅蛋白和脫氧血紅蛋白濃度的變化[2]。大腦皮層有著豐富的血管,通過(guò)測(cè)量在認(rèn)知活動(dòng)中大腦局部血管里的氧合血紅蛋白和脫氧血紅蛋白的變化可以間接反映大腦的功能狀態(tài),推測(cè)認(rèn)知活動(dòng)相關(guān)的腦區(qū)和腦區(qū)間的相互關(guān)系。其物理學(xué)原理是當(dāng)光通過(guò)組織時(shí),會(huì)被組織中的染色物質(zhì)吸收,導(dǎo)致出射光的強(qiáng)度減弱,這基于物質(zhì)對(duì)不同波長(zhǎng)的近紅外光的吸收和散射特性不同[2]。不同物質(zhì)的分子結(jié)構(gòu)和化學(xué)鍵會(huì)對(duì)近紅外光的吸收產(chǎn)生特定的影響[3]。在近紅外光譜范圍內(nèi),血紅蛋白、氧合血紅蛋白和細(xì)胞色素氧化酶是組織中的重要染色物質(zhì),它們的吸收光譜隨氧合狀態(tài)的改變而變化。通過(guò)測(cè)量這些染色物質(zhì)的吸收變化,可以實(shí)時(shí)監(jiān)測(cè)組織的氧合狀態(tài)[4]。自J?bsis[5]發(fā)明了體內(nèi)NIRS開(kāi)始,多個(gè)研究小組進(jìn)行了早期的NIRS實(shí)驗(yàn),NIRS已被證明是研究腦生理學(xué)的有效工具,尤其是功能性NIRS(functional NIRS,fNIRS),對(duì)于評(píng)估腦功能和疾病診斷具有重要意義[3, 6],已被廣泛應(yīng)用于腦卒中神經(jīng)康復(fù)、精神疾病、兒童發(fā)育障礙及神經(jīng)退行性疾病等多個(gè)領(lǐng)域[7]。
1 近紅外光譜在中樞神經(jīng)系統(tǒng)疾病中的應(yīng)用
1.1 腦卒中
腦卒中是指由于血管病變導(dǎo)致腦部血液供應(yīng)障礙的疾病,包括腦梗死、腦出血等,是世界范圍內(nèi)第二大死亡原因,也是導(dǎo)致殘疾的主要原因[8]。NIRS可以實(shí)時(shí)監(jiān)測(cè)腦血流灌注和氧合水平的變化,提供對(duì)腦血管病診斷和治療過(guò)程的實(shí)時(shí)監(jiān)測(cè)和評(píng)估。Annus等[9]通過(guò)NIRS監(jiān)測(cè)急性缺血性腦卒中患者在溶栓或血栓切除手術(shù)過(guò)程中的腦血管血流動(dòng)力學(xué)變化,結(jié)果顯示,在溶栓或血栓切除過(guò)程中,NIRS監(jiān)測(cè)的腦氧飽和度可以反映腦血流動(dòng)力學(xué)的變化。不同患者的腦氧飽和度變化情況不同,但總體上與前循環(huán)側(cè)支循環(huán)的變化和臨床結(jié)果相關(guān)。該研究結(jié)果支持使用NIRS監(jiān)測(cè)急性缺血性腦卒中患者,NIRS既可以提供實(shí)時(shí)的腦血流動(dòng)力學(xué)信息,也能監(jiān)測(cè)溶栓和血栓切除的效果。Becker等[10]通過(guò)NIRS探討了急性缺血性腦卒中患者的腦自動(dòng)調(diào)節(jié)功能,并與健康對(duì)照組進(jìn)行比較,結(jié)果顯示患者組的腦自動(dòng)調(diào)節(jié)功能受損,無(wú)法像健康對(duì)照組那樣有效地調(diào)節(jié)系統(tǒng)血壓的波動(dòng)。這項(xiàng)研究揭示了急性缺血性腦卒中患者的腦自動(dòng)調(diào)節(jié)功能受損,這可能是導(dǎo)致其腦血流異常的重要因素,提示NIRS對(duì)于進(jìn)一步理解腦卒中的病理生理機(jī)制及開(kāi)發(fā)相關(guān)治療方法具有重要意義。
1.2 神經(jīng)系統(tǒng)變性疾病
1.2.1 帕金森病
帕金森病是一種神經(jīng)系統(tǒng)退行性疾病,其主要癥狀包括震顫、肌肉僵直和運(yùn)動(dòng)障礙等。NIRS可以實(shí)時(shí)監(jiān)測(cè)帕金森病患者的腦血流量和氧合水平,輔助評(píng)估疾病的嚴(yán)重程度和病情進(jìn)展[11]。研究表明,帕金森病患者的腦血流灌注和氧合水平與病情的發(fā)展和嚴(yán)重程度相關(guān)[12],因此通過(guò)NIRS非侵入性地實(shí)時(shí)監(jiān)測(cè)腦血流動(dòng)力學(xué)有助于評(píng)估患者疾病狀況。Hofmann等[13]探討了PD患者在執(zhí)行連線測(cè)試任務(wù)時(shí)的認(rèn)知功能和腦血氧水平的變化,他們采用了fNIRS來(lái)測(cè)量大腦皮層的氧合水平,并通過(guò)行為數(shù)據(jù)分析來(lái)評(píng)估連線測(cè)試任務(wù)的執(zhí)行情況,結(jié)果顯示帕金森病患者在執(zhí)行連線測(cè)試任務(wù)時(shí)的認(rèn)知功能和腦血氧水平與健康對(duì)照組沒(méi)有顯著差異,這些結(jié)果對(duì)于進(jìn)一步理解帕金森病患者的認(rèn)知功能和腦血流動(dòng)力學(xué)變化具有重要意義。Maidan等[14]使用了fNIRS測(cè)量前額葉皮層的氧合血紅蛋白和脫氧血紅蛋白的變化來(lái)探究帕金森病患者在不同步態(tài)任務(wù)下的前額葉激活情況,分析腦活動(dòng)與步態(tài)表現(xiàn)之間的關(guān)系。結(jié)果顯示,在進(jìn)行數(shù)字減法任務(wù)時(shí),帕金森病患者的前額葉激活水平較低,與正常行走時(shí)相比有所下降。同時(shí),帕金森病患者在通過(guò)障礙物時(shí)的步態(tài)表現(xiàn)也較差,步速較慢且通過(guò)障礙物的時(shí)間較長(zhǎng)。這些結(jié)果表明,帕金森病患者在執(zhí)行認(rèn)知任務(wù)時(shí),前額葉的激活水平下降,可能與步態(tài)控制障礙有關(guān),這為該病患者的神經(jīng)康復(fù)提供了重要信息。
1.2.2 阿爾茨海默病
阿爾茨海默病是一種中樞神經(jīng)退行性病變[7]。fNIRS是一種頗具前景的早期診斷阿爾茨海默病的工具。一項(xiàng)探討fNIRS和正電子發(fā)射斷層掃描評(píng)估輕度認(rèn)知功能障礙和阿爾茨海默病相關(guān)性的研究表明,fNIRS和正電子發(fā)射斷層掃描在評(píng)估兩者時(shí)具有相關(guān)性,而且fNIRS可以提供額外的信息來(lái)幫助了解這兩種疾病的生理機(jī)制[15]。Keles等[16]采用fNIRS研究了阿爾茨海默病患者的大腦活動(dòng),使用高密度f(wàn)NIRS設(shè)備對(duì)阿爾茨海默病患者、輕度認(rèn)知功能障礙患者和健康對(duì)照組進(jìn)行了測(cè)量。結(jié)果顯示,阿爾茨海默病患者的前額葉皮層的功能連接性與健康對(duì)照組存在顯著差異。他們還通過(guò)機(jī)器學(xué)習(xí)算法發(fā)現(xiàn)使用少量的光學(xué)通道可以有效區(qū)分阿爾茨海默病患者和健康對(duì)照者,并且可以預(yù)測(cè)阿爾茨海默病患者的認(rèn)知功能表現(xiàn)。這項(xiàng)研究表明fNIRS有助于更好地理解阿爾茨海默病的神經(jīng)生理機(jī)制,并為其早期診斷和治療提供了線索,可以作為一種潛在的阿爾茨海默病診斷工具和評(píng)估認(rèn)知功能的方法。
1.2.3 認(rèn)知功能障礙
NIRS有助于更好地理解和治療認(rèn)知功能障礙[17]。Haberstumpf等[18]使用fNIRS來(lái)測(cè)量參與者在進(jìn)行視覺(jué)-空間處理任務(wù)時(shí)頂葉皮層的神經(jīng)活動(dòng),結(jié)果顯示,與健康對(duì)照組相比,輕度認(rèn)知功能障礙患者在這項(xiàng)任務(wù)中表現(xiàn)出較低的頂葉激活水平。這表明輕度認(rèn)知功能障礙患者在進(jìn)行視覺(jué)-空間處理時(shí)存在腦功能異常。這項(xiàng)研究對(duì)于理解輕度認(rèn)知功能障礙患者的腦功能變化以及認(rèn)知功能障礙的進(jìn)展具有重要意義。fNIRS有助于發(fā)現(xiàn)認(rèn)知功能障礙的相關(guān)生物學(xué)標(biāo)志物,有助于該疾病的早期檢測(cè)和診斷,并為開(kāi)發(fā)新的治療方法和干預(yù)措施提供基礎(chǔ)。此外,部分研究表明NIRS在癡呆疾病的研究中也有很大的應(yīng)用前景和潛力[19-20]。
1.3 癲 癇
NIRS在癲癇中的應(yīng)用主要是通過(guò)腦血氧濃度的變化來(lái)監(jiān)測(cè)癲癇發(fā)作。癲癇發(fā)作時(shí),腦血流和血氧含量會(huì)發(fā)生變化,這些變化可以通過(guò)NIR進(jìn)行監(jiān)測(cè)和記錄。Sirpal等[21]探討了將fNIRS測(cè)量結(jié)果與腦電圖(electroencephalogram,EEG)數(shù)據(jù)相結(jié)合的優(yōu)勢(shì),發(fā)現(xiàn)EEG-fNIRS多模態(tài)數(shù)據(jù)在癲癇發(fā)作檢測(cè)任務(wù)中表現(xiàn)出更好的性能,并且具有較低的泛化誤差和,誤檢率更低,可以提高癲癇發(fā)作檢測(cè)的性能。此外,該研究提出的神經(jīng)網(wǎng)絡(luò)模型為未來(lái)的多模態(tài)癲癇檢測(cè)和預(yù)測(cè)提供了潛力框架。 此外,Tung等[22]借助fNIRS有效記錄了執(zhí)行語(yǔ)言流暢性任務(wù)的癲癇患者和對(duì)照組的大腦活動(dòng)。通過(guò)使用fNIRS,研究者可以了解顳葉癲癇患者在進(jìn)行語(yǔ)言任務(wù)時(shí)大腦網(wǎng)絡(luò)的重組情況,這有助于理解癲癇對(duì)大腦功能連接的影響,并為癲癇的診斷和治療提供新的線索。
1.4 偏頭痛
偏頭痛是一種嚴(yán)重的致殘性腦部疾病,被列為全球第六大致殘性疾病[23]。NIRS可以評(píng)估偏頭痛與腦血管反應(yīng)性或腦血流動(dòng)力學(xué)之間的關(guān)系,因其具有非侵入性、非放射性、即時(shí)性、低成本、便攜性和易操作等優(yōu)點(diǎn),因此在研究偏頭痛方面具有較高潛力[24]。Pourshoghi等[25]使用fNIRS測(cè)量偏頭痛患者的腦反應(yīng)性,結(jié)果表明,血管理論可能無(wú)法完全解釋偏頭痛患者疼痛改善的機(jī)制,而神經(jīng)理論可能更能解釋偏頭痛的發(fā)生原因。他們還指出,fNIRS可以作為在臨床環(huán)境中評(píng)估不同藥物對(duì)頭痛和偏頭痛血管效應(yīng)的有效工具。
1.5 腦外傷
創(chuàng)傷性腦損傷是世界范圍內(nèi)死亡和殘疾的主要原因[26]。繼發(fā)性腦損傷通常發(fā)生在創(chuàng)傷后前幾小時(shí)內(nèi),因此無(wú)創(chuàng)檢測(cè)可能有助于提供有關(guān)大腦狀況的早期信息,幫助救助人員盡早篩查疑似腦外傷的患者[27]。Robertson等[28]評(píng)估了一種便攜式NIRS設(shè)備在檢測(cè)創(chuàng)傷性顱內(nèi)血腫方面的臨床效果,結(jié)果顯示該便攜式NIRS設(shè)備在檢測(cè)創(chuàng)傷性顱內(nèi)血腫方面具有潛力,并可能成為一種檢測(cè)快速、非侵入性的篩查工具。有研究者使用手持式NIRS設(shè)備(Infrascanner)對(duì)疑似創(chuàng)傷性腦損傷患者進(jìn)行了篩查。結(jié)果顯示,與CT掃描結(jié)果相比,Infrascanner檢測(cè)顱內(nèi)血腫的敏感度為93.3%、特異度為78.6%。這意味著Infrascanner可以較準(zhǔn)確地識(shí)別出需要接受手術(shù)干預(yù)的患者[29]。 NIRS作為一種非侵入性的診斷工具,可以幫助醫(yī)師及早發(fā)現(xiàn)創(chuàng)傷性腦損傷患者并實(shí)施適當(dāng)?shù)闹委熀娃D(zhuǎn)運(yùn)決策,從而提高患者的生存率和生活質(zhì)量,因此NIRS可以成為現(xiàn)場(chǎng)和急救中心早期識(shí)別顱內(nèi)血腫的實(shí)用輔助工具。
NIRS在監(jiān)測(cè)創(chuàng)傷性腦損傷患者病情進(jìn)展中也具有重要的作用和意義,可以非侵入性方式提供腦血流動(dòng)力學(xué)參數(shù),幫助評(píng)估腦自主調(diào)節(jié)功能,并預(yù)測(cè)患者的預(yù)后[30]。有研究者通過(guò)使用血氧水平依賴(lài)功能磁共振成像和fNIRS來(lái)評(píng)估創(chuàng)傷性腦損傷患者的腦血管反應(yīng)。結(jié)果顯示,創(chuàng)傷性腦損傷患者的fNIRS結(jié)果與血氧水平依賴(lài)功能磁共振成像測(cè)量結(jié)果具有相關(guān)性,這提示使用NIRS可以更低價(jià)格且可重復(fù)地評(píng)估腦損傷患者的腦血管反應(yīng)[10]。
在創(chuàng)傷性腦損傷治療方面,研究者通過(guò)NIRS實(shí)時(shí)監(jiān)測(cè)腦部氧合水平的變化以了解經(jīng)顱交流電刺激治療對(duì)腦組織的影響,結(jié)果顯示,在治療過(guò)程中患者的腦氧合水平顯著下降,這可能由神經(jīng)元的活化引起。這一結(jié)果表明,在進(jìn)行經(jīng)顱交流電刺激治療時(shí)可能需要輔助氧療來(lái)維持腦部氧合水平。因此,NIRS在評(píng)估經(jīng)顱交流電刺激對(duì)創(chuàng)傷性腦損傷患者腦氧合的影響方面起到了重要的作用。通過(guò)監(jiān)測(cè)腦氧合水平的變化,可以更好地理解創(chuàng)傷性腦損傷對(duì)腦組織的影響,為患者的治療提供指導(dǎo)和改進(jìn)經(jīng)顱交流電刺激治療的策略[31]。
1.6 意識(shí)障礙
意識(shí)障礙是指各種因素導(dǎo)致人們無(wú)法保持清醒和意識(shí)的狀態(tài)。意識(shí)障礙包括昏迷、植物人狀態(tài)和輕度意識(shí)障礙等不同病理狀態(tài)[32]。fNIRS可通過(guò)測(cè)量大腦皮層的血氧水平變化來(lái)反映大腦活動(dòng),可評(píng)估意識(shí)障礙患者的殘余認(rèn)知水平[33],這對(duì)于判斷患者的意識(shí)狀態(tài)、制定個(gè)體化的康復(fù)治療方案以及預(yù)測(cè)康復(fù)潛力具有重要意義。Shu等[34]在研究中使用fNIRS記錄了意識(shí)障礙患者在接受腦深部電刺激治療前后的大腦活動(dòng)。通過(guò)分析fNIRS數(shù)據(jù),他們?cè)u(píng)估了不同腦葉之間的通信強(qiáng)度和整體通信效率的變化。結(jié)果表明,經(jīng)腦深部電刺激治療后,患者的大腦功能連接性得到改善,整體通信效率也有所提高。這些發(fā)現(xiàn)對(duì)于理解腦深部電刺激治療對(duì)意識(shí)障礙患者的影響具有重要意義,提示fNIRS在評(píng)估意識(shí)障礙的治療效果方面具有一定的潛力,為進(jìn)一步研究神經(jīng)調(diào)控效應(yīng)和個(gè)體化治療提供了重要參考。
昏迷是指各種病因?qū)е碌母呒?jí)神經(jīng)中樞結(jié)構(gòu)與功能活動(dòng)處于嚴(yán)重而廣泛抑制狀態(tài)的病理過(guò)程,是一種持續(xù)的無(wú)意識(shí)狀態(tài)。Rivera-Lara等[35]采用了NIRS和經(jīng)顱多普勒超聲監(jiān)測(cè)技術(shù)監(jiān)測(cè)33例昏迷患者,并比較了2種技術(shù)的最佳平均動(dòng)脈壓的計(jì)算結(jié)果。結(jié)果表明,2種技術(shù)在評(píng)估昏迷患者的腦自主調(diào)節(jié)方面具有一致性,均可作為有效的監(jiān)測(cè)工具。
fNIRS在評(píng)估植物人狀態(tài)和極低意識(shí)狀態(tài)患者的殘余意識(shí)水平方面也有一定的作用和意義。Lu等[36]使用fNIRS評(píng)估了18例長(zhǎng)期意識(shí)障礙患者和15名健康對(duì)照組的腦功能,研究結(jié)果表明,fNIRS可以通過(guò)測(cè)量患者對(duì)不同刺激的腦反應(yīng)來(lái)評(píng)估其殘余意識(shí)水平。與健康對(duì)照組相比,長(zhǎng)期意識(shí)障礙患者在被動(dòng)刺激下的氧合血紅蛋白和脫氧血紅蛋白濃度均值上升,且隨著意識(shí)水平降低而呈上升趨勢(shì)。這表明fNIRS在評(píng)估長(zhǎng)期意識(shí)障礙患者的殘余意識(shí)方面具有可行性和可靠性。此外,通過(guò)fNIRS,研究人員揭示了極低意識(shí)狀態(tài)患者前額葉功能網(wǎng)絡(luò)的紊亂情況,有助于更好地理解極低意識(shí)狀態(tài)的病理機(jī)制[37]。fNIRS也可以檢測(cè)極低意識(shí)狀態(tài)患者的殘余功能網(wǎng)絡(luò)[38],這為進(jìn)一步理解該類(lèi)患者的神經(jīng)生理特征和診斷提供了有價(jià)值的信息。
2 近紅外光譜在神經(jīng)重癥監(jiān)護(hù)中的應(yīng)用
神經(jīng)危重疾病是患者長(zhǎng)期預(yù)后不良的常見(jiàn)原因,對(duì)于神經(jīng)科醫(yī)師來(lái)說(shuō),早期識(shí)別和治療神經(jīng)危重疾病患者是巨大的挑戰(zhàn)[39]。NIRS正成為一種輔助決策因急性腦損傷進(jìn)入ICU患者的治療決策的有效工具[40]。Adatia等[41]使用NIRS監(jiān)測(cè)了患者的腦氧飽和度,并將其與體溫變化進(jìn)行比較。他們使用COx指數(shù)來(lái)評(píng)估患者的腦血流自動(dòng)調(diào)節(jié)狀態(tài)。通過(guò)監(jiān)測(cè)腦血流自動(dòng)調(diào)節(jié)的變化,醫(yī)師可以及時(shí)調(diào)整治療策略以維持患者的腦灌注和氧供,從而改善患者的預(yù)后。Rivera-Lara等[42]探討了使用NIRS監(jiān)測(cè)腦血流自動(dòng)調(diào)節(jié)狀態(tài)和計(jì)算最佳平均動(dòng)脈壓的可行性,并分析了平均動(dòng)脈壓偏離最佳平均動(dòng)脈壓與患者預(yù)后的關(guān)系。結(jié)果顯示,通過(guò)優(yōu)化腦灌注壓,可以減少腦缺血和腦灌注不足,從而降低患者的病死率和嚴(yán)重殘疾率。該項(xiàng)研究提示NIRS在神經(jīng)危重病患者的監(jiān)測(cè)和治療中具有重要的作用和意義。此外,多項(xiàng)研究系統(tǒng)地探討了NIRS在神經(jīng)危重病護(hù)理中的潛在應(yīng)用和發(fā)展前景[39-40, 43],未來(lái)NIRS將在神經(jīng)危重疾病領(lǐng)域發(fā)揮更大作用。
3 近紅外光譜在神經(jīng)康復(fù)中的應(yīng)用
近年來(lái),NIRS在神經(jīng)康復(fù)領(lǐng)域得到了廣泛應(yīng)用[44]。fNIRS在研究腦功能和血氧代謝變化方面具有重要作用,它可被用于診斷和篩查腦功能障礙,推斷神經(jīng)活動(dòng)狀態(tài),實(shí)時(shí)監(jiān)測(cè)腦區(qū)的血氧代謝變化,并為康復(fù)治療提供指導(dǎo)[45]??祻?fù)訓(xùn)練對(duì)腦卒中后運(yùn)動(dòng)功能的恢復(fù)至關(guān)重要。研究者利用fNIRS分析了腦卒中患者和健康人群進(jìn)行上肢訓(xùn)練時(shí)的大腦皮層活動(dòng)狀態(tài),結(jié)果顯示,在腦卒中患者和健康人群中,與被動(dòng)運(yùn)動(dòng)相比,主動(dòng)上肢運(yùn)動(dòng)更易引起更高的皮層激活,外部運(yùn)動(dòng)表現(xiàn)的視覺(jué)反饋可能有助于促進(jìn)對(duì)側(cè)大腦半球的感覺(jué)運(yùn)動(dòng)區(qū)的活動(dòng)[46]。這些發(fā)現(xiàn)對(duì)于理解腦卒中患者的上肢康復(fù)和運(yùn)動(dòng)訓(xùn)練的神經(jīng)機(jī)制具有重要意義。此外,研究顯示fNIRS還可用于評(píng)估腦卒中患者的吞咽功能和卒中后失語(yǔ)的康復(fù)治療效果[47-48],也可用于評(píng)估機(jī)器人輔助步態(tài)訓(xùn)練的效果[49]。隨著技術(shù)的不斷發(fā)展和改進(jìn),NIRS還可為神經(jīng)源性下尿路功能障礙、女性的控尿功能障礙等疾病的病理機(jī)制研究提供神經(jīng)影像學(xué)依據(jù)[50],NIRS將為神經(jīng)康復(fù)的個(gè)體化治療和康復(fù)效果評(píng)估提供更多的可能性,也能為開(kāi)發(fā)新的診斷和治療方法提供思路。
4 結(jié)語(yǔ)與展望
神經(jīng)系統(tǒng)疾病在現(xiàn)代疾病發(fā)病率中的占比逐漸升高,因此早期診斷極其重要。NIRS具有易操作、方便快捷、適用人群廣、對(duì)身體及環(huán)境條件要求低、對(duì)參與者的行為限制少等優(yōu)點(diǎn)。其中的fNIRS具有疾病病種適用廣泛、應(yīng)用場(chǎng)景多元、抗運(yùn)動(dòng)干擾、抗電磁干擾、支持長(zhǎng)時(shí)程無(wú)創(chuàng)檢測(cè)、可移動(dòng)性好等獨(dú)特優(yōu)勢(shì),這使得fNIRS在腦功能疾病診斷和療效評(píng)估方面的應(yīng)用越來(lái)越廣泛[7]。目前,通過(guò)fNIRS可以實(shí)時(shí)監(jiān)測(cè)腦血流灌注和氧合水平變化,實(shí)現(xiàn)對(duì)神經(jīng)系統(tǒng)疾病診療過(guò)程的實(shí)時(shí)監(jiān)測(cè)和評(píng)估,為個(gè)性化治療提供更多的可能性。但NIRS存在一些局限性,包括缺乏解剖特異性、空間分辨率低、無(wú)法進(jìn)入不鄰近頭皮的皮質(zhì)區(qū)域,信號(hào)容易受到頭皮、頭發(fā)等組織散射和吸收的影響,需要進(jìn)行信號(hào)處理和校正[2, 6, 51],這些挑戰(zhàn)不可忽略。未來(lái),隨著技術(shù)水平的提高,設(shè)備的空間分辨率和時(shí)間分辨率將進(jìn)一步提升,并可結(jié)合人工智能技術(shù)提高診斷效能,NIRS將在神經(jīng)系統(tǒng)疾病的診療中發(fā)揮更大的作用。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] OKADA F, TOKUMITSU Y, HOSHI Y, et al. Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia[J]. Eur Arch Psychiatry Clin Neurosci, 1994, 244(1): 17-25. DOI: 10.1007/BF02279807.
[2] PINTI P, TACHTSIDIS I, HAMILTON A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1):
5-29. DOI: 10.1111/nyas.13948.
[3] FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 2012, 63(2): 921-935. DOI: 10.1016/j.neuroimage.2012.03.049.
[4] OWEN-REECE H, SMITH M, ELWELL C E, et al. Near infrared spectroscopy[J]. Br J Anaesth, 1999, 82(3): 418-426. DOI: 10.1093/bja/82.3.418.
[5] J?BSIS F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267. DOI: 10.1126/science.
929199.
[6] CHEN W L, WAGNER J, HEUGEL N, et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions[J]. Front Neurosci, 2020, 14: 724. DOI: 10.3389/fnins.2020.00724.
[7] 近紅外腦功能成像臨床應(yīng)用專(zhuān)家共識(shí)編寫(xiě)組. 近紅外腦功能成像臨床應(yīng)用專(zhuān)家共識(shí)[J]. 中國(guó)老年保健醫(yī)學(xué), 2021,
19(2): 3-9. DOI: 10.3969/j.issn.1672-2671.2021.02.001.
Expert consensus on clinical application of near-infrared brain functional imaging technology writing group. Expert consensus on clinical application of near-infrared brain functional imaging technology[J]. Chin J Geriatr Care, 2021, 19(2): 3-9. DOI: 10.3969/j.issn.1672-2671.2021.02.001.
[8] FEIGIN V L, NORRVING B, MENSAH G A. Global burden of stroke[J]. Circ Res, 2017, 120(3): 439-448. DOI: 10.1161/
circresaha.116.308413.
[9] ANNUS á, NAGY A, VéCSEI L, et al. 24-hour near-infrared spectroscopy monitoring of acute ischaemic stroke patients undergoing thrombolysis or thrombectomy: a pilot study[J]. J Stroke Cerebrovasc Dis, 2019, 28(8): 2337-2342. DOI:10.1016/j.jstrokecerebrovasdis.2019.05.026.
[10] BECKER S, KLEIN F, K?NIG K, et al. Assessment of dynamic cerebral autoregulation in near-infrared spectroscopy using short channels: a feasibility study in acute ischemic stroke patients[J]. Front Neurol, 2022, 13: 1028864. DOI: 10.3389/fneur.2022.1028864.
[11] BONILAURI A, SANGIULIANO INTRA F, ROSSETTO F, et al. Whole-head functional near-infrared spectroscopy as an ecological monitoring tool for assessing cortical activity in Parkinson’s disease patients at different stages[J]. Int J Mol Sci, 2022, 23(23): 14897. DOI: 10.3390/ijms232314897.
[12] MAIDAN I, NIEUWHOF F, BERNAD-ELAZARI H, et al. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study[J]. Neurorehabil Neural Repair, 2016, 30(10): 963-971. DOI:10.1177/1545968316650426.
[13] HOFMANN A, ROSENBAUM D, INT-VEEN I, et al. Abnormally reduced frontal cortex activity during Trail-Making-Test in prodromal Parkinson’s disease: a fNIRS study[J]. Neurobiol Aging, 2021, 105: 148-158. DOI: 10.1016/j.neurobiolaging.
2021.04.014.
[14] MAIDAN I, BERNAD-ELAZARI H, GAZIT E, et al. Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures[J]. J Neurol, 2015, 262(4): 899-908. DOI: 10.1007/s00415-015-7650-6.
[15] YOON J A, KONG I J, CHOI I, et al. Correlation between cerebral hemodynamic functional near-infrared spectroscopy and positron emission tomography for assessing mild cognitive impairment and Alzheimer’s disease: an exploratory study[J]. PLoS One, 2023, 18(8): e0285013. DOI: 10.1371/journal.pone.0285013.
[16] KELES H O, KARAKULAK E Z, HANOGLU L, et al. Screening for Alzheimer’s disease using prefrontal resting-state functional near-infrared spectroscopy[J]. Front Hum Neurosci, 2022, 16: 1061668. DOI: 10.3389/fnhum.2022.1061668.
[17] LI R, RUI G, CHEN W, et al. Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy[J]. Front Aging Neurosci, 2018, 10: 366. DOI: 10.3389/fnagi.2018.
00366.
[18] HABERSTUMPF S, SEIDEL A, LAUER M, et al. Reduced parietal activation in participants with mild cognitive impairments during visual-spatial processing measured with functional near-infrared spectroscopy[J]. J Psychiatr Res, 2022, 146: 31-42. DOI: 10.1016/j.jpsychires.2021.12.021.
[19] BUTTERS E, SRINIVASAN S, O’BRIEN J T, et al. A promising tool to explore functional impairment in neurodegeneration: a systematic review of near-infrared spectroscopy in dementia[J].
Ageing Res Rev, 2023, 90: 101992. DOI: 10.1016/j.arr.2023.
101992.
[20] YEUNG M K, CHAN A S. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: a systematic review[J]. J Psychiatr Res, 2020, 124: 58-76. DOI: 10.1016/j.jpsychires.2020.02.017.
[21] SIRPAL P, KASSAB A, POULIOT P, et al. fNIRS improves seizure detection in multimodal EEG-fNIRS recordings[J]. J Biomed Opt, 2019, 24(5): 1-9. DOI: 10.1117/1.jbo.24.5.
051408.
[22] TUNG H, LIN W H, LAN T H, et al. Network reorganization during verbal fluency task in fronto-temporal epilepsy: a functional near-infrared spectroscopy study[J]. J Psychiatr Res, 2021, 138: 541-549. DOI: 10.1016/j.jpsychires.2021.05.012.
[23] GOADSBY P J, HOLLAND P R, MARTINS-OLIVEIRA M, et al. Pathophysiology of migraine: a disorder of sensory processing[J]. Physiol Rev, 2017, 97(2): 553-622. DOI: 10.1152/physrev.
00034.2015.
[24] CHEN W T, HSIEH C Y, LIU Y H, et al. Migraine classification by machine learning with functional near-infrared spectroscopy during the mental arithmetic task[J]. Sci Rep, 2022, 12(1): 14590. DOI: 10.1038/s41598-022-17619-9.
[25] POURSHOGHI A, DANESH A, TABBY D S, et al. Cerebral reactivity in migraine patients measured with functional near-infrared spectroscopy[J]. Eur J Med Res, 2015, 20: 96. DOI:10.1186/s40001-015-0190-9.
[26] MCCREA M A, GIACINO J T, BARBER J, et al. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study[J].
JAMA Neurol, 2021, 78(8): 982-992. DOI: 10.1001/jamaneurol.2021.2043.
[27] KO S B. Multimodality monitoring in the neurointensive care unit: a special perspective for patients with stroke[J]. J Stroke, 2013, 15(2): 99-108. DOI: 10.5853/jos.2013.15.2.99.
[28] ROBERTSON C S, ZAGER E L, NARAYAN R K, et al. Clinical evaluation of a portable near-infrared device for detection of traumatic intracranial hematomas[J]. J Neurotrauma, 2010, 27(9): 1597-1604. DOI: 10.1089/neu.2010.1340.
[29] PETERS J, VAN WAGENINGEN B, HOOGERWERF N, et al. Near-infrared spectroscopy: a promising prehospital tool for management of traumatic brain injury[J]. Prehosp Disaster Med, 2017, 32(4): 414-418. DOI: 10.1017/s1049023x17006367.
[30] GOMEZ A, DIAN J, FROESE L, et al. Near-infrared cerebrovascular reactivity for monitoring cerebral autoregulation and predicting outcomes in moderate to severe traumatic brain injury: proposal for a pilot observational study[J]. JMIR Res Protoc, 2020, 9(8): e18740. DOI: 10.2196/18740.
[31] TROFIMOV A O, KOPYLOV A A, MARTYNOV D S, et al. The changes in brain oxygenation during transcranial alternating current stimulation as consequences of traumatic brain injury: a near-infrared spectroscopy study[J]. Adv Exp Med Biol, 2021, 1269: 235-239. DOI: 10.1007/978-3-030-48238-1_37.
[32] SEPTIEN S, RUBIN M A. Disorders of consciousness: ethical issues of diagnosis, treatment, and prognostication[J]. Semin Neurol, 2018, 38(5): 548-554. DOI: 10.1055/s-0038-1667384.
[33] SI J, YANG Y, XU L, et al. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy[J]. Neurophotonics, 2023, 10(2): 025003. DOI: 10.1117/1.nph.10.2.025003.
[34] SHU Z, WU J, LI H, et al. fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment[J]. Clin Neurophysiol, 2023, 147: 60-68. DOI:10.1016/j.clinph.2022.12.011.
[35] RIVERA-LARA L, GEOCADIN R, ZORRILLA-VACA A, et al. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients[J]. Neurocritical Care, 2017, 27(3): 362-369. DOI: 10.1007/s12028-017-0421-8.
[36] LU H, JIANG J, SI J, et al. A functional near-infrared spectroscopy study on hemodynamic changes of patients with prolonged disorders of consciousness responding to different auditory stimuli[J]. BMC Neurol, 2023, 23(1): 242. DOI:10.1186/s12883-023-03292-6.
[37] CHEN H, MIAO G, WANG S, et al. Disturbed functional connectivity and topological properties of the frontal lobe in minimally conscious state based on resting-state fNIRS[J]. Front Neurosci, 2023, 17: 1118395. DOI: 10.3389/fnins.2023.
1118395.
[38] LIU Y, KANG X G, CHEN B B, et al. Detecting residual brain networks in disorders of consciousness: a resting-state fNIRS study[J]. Brain Res, 2023, 1798: 148162. DOI: 10.1016/j.brainres.2022.148162.
[39] VIDERMAN D, ABDILDIN Y G. Near-infrared spectroscopy in neurocritical care: a review of recent updates[J]. World Neurosurg, 2021, 151: 23-28. DOI: 10.1016/j.wneu.2021.
04.054.
[40] THOMAS R, SHIN S S, BALU R. Applications of near-infrared spectroscopy in neurocritical care[J]. Neurophotonics, 2023, 10(2): 023522. DOI: 10.1117/1.nph.10.2.023522.
[41] ADATIA K, GEOCADIN R G, HEALY R, et al. Effect of body temperature on cerebral autoregulation in acutely comatose neurocritically ill patients[J]. Crit Care Med, 2018, 46(8): e733-e741. DOI: 10.1097/ccm.0000000000003181.
[42] RIVERA-LARA L, GEOCADIN R, ZORRILLA-VACA A, et al. Optimizing mean arterial pressure in acutely comatose patients using cerebral autoregulation multimodal monitoring with near-infrared spectroscopy[J]. Crit Care Med, 2019, 47(10): 1409-1415. DOI: 10.1097/ccm.0000000000003908.
[43] GOMEZ A, SAINBHI A S, FROESE L, et al. Near infrared spectroscopy for high-temporal resolution cerebral physiome characterization in TBI: a narrative review of techniques, applications, and future directions[J]. Front Pharmacol, 2021, 12: 719501. DOI: 10.3389/fphar.2021.719501.
[44] MIHARA M, MIYAI I. Review of functional near-infrared spectroscopy in neurorehabilitation[J]. Neurophotonics, 2016, 3(3): 031414. DOI: 10.1117/1.nph.3.3.031414.
[45] LIU Y, LUO J, FANG J, et al. Screening diagnosis of executive dysfunction after ischemic stroke and the effects of transcranial magnetic stimulation: a prospective functional near-infrared spectroscopy study[J]. CNS Neurosci Ther, 2023, 29(6): 1561-1570. DOI: 10.1111/cns.14118.
[46] XIA W, DAI R, XU X, et al. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: a functional near-infrared spectroscopy study[J]. Brain Res, 2022, 1788: 147935. DOI: 10.1016/j.brainres.2022.147935.
[47] LIU H, PENG Y, LIU Z, et al. Hemodynamic signal changes and swallowing improvement of repetitive transcranial magnetic stimulation on stroke patients with dysphagia: a randomized controlled study[J]. Front Neurol, 2022, 13: 918974. DOI:10.3389/fneur.2022.918974.
[48] XIE H, JING J, MA Y, et al. Effects of simultaneous use of m-NMES and language training on brain functional connectivity in stroke patients with aphasia: a randomized controlled clinical trial[J]. Front Aging Neurosci, 2022, 14: 965486. DOI:10.3389/fnagi.2022.965486.
[49] SONG K J, CHUN M H, LEE J, et al. The effect of robot-assisted gait training on cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. NeuroRehabilitation, 2021, 49(1): 65-73. DOI: 10.3233/nre-210034.
[50] 徐正嫻, 潘偉婷, 于燦燦, 等. 基于fNIRS對(duì)女性不同膀胱狀態(tài)下盆底肌收縮任務(wù)的前額葉激活情況[J]. 新醫(yī)學(xué), 2024, 55(4): 280-286. DOI: 10.3969/j.issn.0253-9802.2024.04.008.
XU Z X, PAN W T, YU C C, et al. fNIRS-based study of prefrontal cortex activation during pelvic floor muscle contraction in women under different bladder states[J]. J New Med, 2024, 55(4): 280-286. DOI: 10.3969/j.issn.0253-9802.2024.04.008.
[51] KHAKSARI K, CHEN W L, GROPMAN A L. Review of applications of near-infrared spectroscopy in two rare disorders with executive and neurological dysfunction: UCD and PKU[J].
Genes (Basel), 2022, 13(10): 1690. DOI: 10.3390/genes13101690.
(責(zé)任編輯:洪悅民)