DOI:10.3969/j.issn.2095-1191.2025.01.028
摘要:【目的】探究N-乙酰半胱氨酸(N-acetylcysteine,NAC)緩解小鼠代謝綜合征膀胱纖維化的分子機制,為深入理解膀胱纖維化的病理學(xué)過程及開發(fā)新的治療策略提供理論參考?!痉椒ā窟x擇8周齡C57BL/6雄性小鼠和ob/ob(B6.V-Lepob/J)雄性小鼠(代謝綜合征模型),試驗持續(xù)20周,試驗結(jié)束后處死小鼠,采集膀胱組織。以C57BL/6雄性小鼠為對照組(Con),ob/ob(B6.V-Lepob/J)雄性小鼠為代謝綜合征模型組(ob/ob),利用Western blotting檢測小鼠膀胱組織中TGF-β1、SMAD、p38、p-ERK、p-JNK、α-SMA、3-Nitrotyrosine(NT)等蛋白相對表達量,采用免疫組織化學(xué)染色檢測小鼠膀胱組織中NF-κB與TGF-β1表達情況及分布特點。分離小鼠膀胱平滑肌細胞(BSMCs),篩選葡萄糖濃度并繪制BSMCs生長曲線。設(shè)對照組(Con)、高糖組(HG)、高糖+NAC組(HG+NAC)和高滲組(HO),檢測CRP、IL-6、IL-1β、NLRP3、TGF-β1、BK-β1、SKCa3蛋白相對表達量。使用MCC950和PDTC抑制NLRP3和NF-κB信號通路,檢測ROCK1、NLRP3、NF-κB、TGF-β1蛋白相對表達量。【結(jié)果】與Con組相比,ob/ob組小鼠膀胱組織中NT、TGF-β1和α-SMA蛋白相對表達量顯著升高(Plt;0.05,下同),SMAD、p38、p-ERK和p-JNK蛋白相對表達量無顯著差異(Pgt;0.05,下同)。葡萄糖濃度篩選結(jié)果表明,45 mmol/L的葡萄糖為最佳干預(yù)濃度。Western blotting檢測結(jié)果顯示,與Con組相比,HG組BSMCs中CRP、IL-6、TGF-β1、IL-1β和NLRP3蛋白相對表達量顯著升高,BK-β1和SKCa3蛋白相對表達量顯著降低。與HG組相比,HG+NAC組BSMCs中CRP、IL-6、TGF-β1、IL-1β和NLRP3蛋白相對表達量顯著降低,BK-β1和SKCa3蛋白相對表達量顯著升高。抑制NLRP3和NF-κB信號通路后,與HG組相比,HG+MCC950和HG+PTCD組BSMCs中TGF-β1蛋白相對表達量顯著降低,NF-κB蛋白相對表達量顯著升高,HG+MCC950組BSMCs中ROCK1和NLRP3蛋白相對表達量顯著降低,HG+PTCD組BSMCs中ROCK1和NLRP3蛋白相對表達量無顯著差異?!窘Y(jié)論】高糖因素誘發(fā)的小鼠膀胱功能損傷涉及氧化應(yīng)激—炎癥反應(yīng)—組織纖維化相關(guān)分子機制通路,NAC主要通過抑制ROS/NLRP3/NF-κB/TGF-β1信號通路阻斷功能損傷中氧化應(yīng)激、炎癥反應(yīng)和纖維化的發(fā)展進程。與抗炎治療相比,NAC抗氧化治療對組織纖維化的治療效果可能更顯著。
關(guān)鍵詞:N-乙酰半胱氨酸;代謝綜合征;膀胱功能損害;氧化應(yīng)激;炎癥反應(yīng)
中圖分類號:S865.13文獻標志碼:A文章編號:2095-1191(2025)01-0314-10
Molecular mechanism of N-acetylcysteine alleviating bladder fibrosis in mice with metabolic syndrome
RENYa-lin1,2,SU Bo-yan2,HE Qi-qi2*
(1College of Animal Sciences and Technology,Guangxi University,Nanning,Guangxi 530004,China;2Department of Urology,Lanzhou University Second Hospital,Lanzhou,Gansu 730030,China)
Abstract:【Objective】To explore the molecular mechanism by which N-acetylcysteine(NAC)alleviated bladder fi-brosis in metabolic syndrome mice,which could provide theoretical reference for a deeper understanding of the pathologi-cal process of bladder fibrosis and the development of new treatment strategies.【Method】C57BL/6 male mice and ob/ob(B6.V-Lepob/J)male mice(metabolic syndrome model)at 8 weeks of age were selected.The experiment lasted for 20 weeks.After the end of the experiment,the mice were killed and the bladder tissues were collected.C57BL/6 male mice were used as the control group(Con),and ob/ob(B6.V-Lepob/J)male mice were used as the metabolic syndrome model group(ob/ob).The relative expression levelsofTGF-β1,SMAD,p38,p-ERK,p-JNK,α-SMA,3-Nitrotyrosine(NT)and other proteins in the bladder tissues of mice were detected by Western blotting.Immunohistochemical staining was used to detect the expression and distribution characteristics of NF-κB and TGF-β1 in the bladder tissues of mice.Mouse bladder smooth muscle cells(BSMCs)were isolated,the glucose concentration was screened and the growth curve of BSMCs was drawn.The control group(Con),high glucose group(HG),high glucose+NAC group(HG+NAC)and hyperos-motic group(HO)were set up to detect the relative expression levels of CRP,IL-6,IL-1β,NLRP3,TGF-β1,BK-β1 and SKCa3 proteins.MCC950 and PDTC were used to inhibit the NLRP3 and NF-κB signaling pathways,and the relative ex-pression levels of ROCK1,NLRP3,NF-κB and TGF-β1 proteins were detected.【Result】Compared with the Con group,the relative expression of NT,TGF-β1 andα-SMA proteins in the bladder tissue of the ob/ob group mice was signifi-cantly increased(rlt;0.05,the same below),and there was no significant difference in the relative expression of SMAD,p38,p-ERK and p-JNK proteins(rgt;0.05,the same below).The results of glucose concentration screening showed that 45 mmol/L glucose was the optimal intervention concentration.Western blotting results showed that compared with the Con group,the relative expression of CRP,IL-6,TGF-β1,IL-1βand NLRP3 proteins in BSMCs of the HG group was signifi-cantly increased,and the relative expression of BK-β1 and SKCa3 proteins was significantly decreased.Compared with the HG group,the relative expression of CRP,IL-6,TGF-β1,IL-1βand NLRP3 proteins in BSMCs of the HG+NAC group was significantly decreased,and the relative expression of BK-β1 and SKCa3 proteins was significantly increased.After in-hibiting the NLRP3 and NF-κB signaling pathways,compared with the HG group,the relative expression of TGF-β1 pro-tein in BSMCs of HG+MCC950 and HG+PTCD groups was significantly decreased,and the relative expression of NF-κB protein was significantly increased;the relative expression of ROCK1 and NLRP3 proteins in BSMCs of HG+MCC950 group was significantly decreased,and there was no significant difference in the relative expression of ROCK1 and NLRP3 proteins in BSMCs of HG+PTCD group.【Conclusion】High glucose-induced bladder function damage in mice involves molecular mechanism pathways related to oxidative stress-inflammatory response-tissue fibrosis.NAC mainly blocks the development of oxidative stress,inflammatory response and fibrosis in functional damage by inhibiting the ROS/NLRP3/NF-κB/TGF-β1 signaling pathway.Compared with anti-inflammatory treatment,NAC antioxidant treat-ment may have a more significant therapeutic effect on tissue fibrosis.
Key words:N-acetylcysteine;metabolic syndrome;bladder function damage;oxidative stress;inflammatory re- sponse
Foundation items:National Natural Science Foundation of China(81800671,82360156);Gansu Health Care In-dustry Research Management Project(GSWSKY2021-070);Lanzhou University Cuiying Talent Top Project(CY2021-MS-A02)
0引言
【研究意義】近年來,肥胖問題在全球范圍內(nèi)日益嚴峻,尤其是在人類和動物群體中,肥胖發(fā)生率逐年上升。Courcier等(2010)、Cave等(2012)研究表明,約63%的貓和59%的狗存在超重或肥胖問題。肥胖所引發(fā)的代謝綜合征(Metabolic syndrome,MS)已被證實與下尿路疾病密切相關(guān),如膀胱出口梗阻、膀胱過度活動癥及尿潴溜等,并能導(dǎo)致MS型膀胱功能損傷(Metabolic syndrome bladder dysfunc-tion,MBD)(Lee et al.,2008;Zhang et al.,2018;Fu et al.,2024)。N-乙酰半胱氨酸(N-acetylcysteine,NAC)是一種廣泛應(yīng)用的抗氧化劑和抗炎劑,是內(nèi)源性氨基酸L-半胱氨酸的衍生物,也是三肽谷胱甘肽(GSH)的前體物質(zhì)(王海云等,2023)。Samuni等(2013)研究表明,NAC不僅能調(diào)節(jié)氧化應(yīng)激反應(yīng),還能影響多種疾病的病理進程,包括線粒體功能障礙、細胞凋亡及炎癥反應(yīng)等。探究NAC緩解小鼠代謝綜合征膀胱纖維化的潛在分子機制,對深入理解膀胱纖維化的病理學(xué)過程及開發(fā)新的治療策略具有重要意義?!厩叭搜芯窟M展】Tanaka等(2005)對糖脂代謝的研究表明,貓肝臟中葡萄糖激酶的活性缺乏,且糖異生速率的限制酶活性顯著高于犬,使得貓更易形成肥胖,并發(fā)生胰島素抵抗,最終發(fā)展為MS;Tvarijonaviciute等(2012)研究發(fā)現(xiàn),約20%的超重或肥胖犬存在代謝紊亂,且符合MS的診斷標準。肥胖相關(guān)的代謝綜合征是動物泌尿系統(tǒng)疾病的重要危險因素。Lekcharoensuk等(2000)研究發(fā)現(xiàn),肥胖引起的代謝綜合征還會增加犬只罹患尿道括約肌功能不全、草酸鈣結(jié)石癥及膀胱移行細胞癌等疾病的風(fēng)險;Henegar等(2001)研究表明,肥胖癥與犬類腎臟組織學(xué)變化密切相關(guān),表現(xiàn)為腎小囊、系膜基質(zhì)、腎小球和腎小管基底膜的增厚,及腎小球的分裂細胞數(shù)增加;He等(2016)對B6.V-Lepob/J小鼠肥胖模型的研究表明,肥胖引發(fā)的代謝綜合征會導(dǎo)致排尿功能障礙,且ob/ob小鼠和高脂飼料喂養(yǎng)的SD大鼠均是研究MS相關(guān)疾病的理想動物模型;章文靜等(2017)研究發(fā)現(xiàn),果糖誘導(dǎo)的代謝綜合征動物模型表現(xiàn)出高水平的逼尿肌細胞凋亡及膀胱逼尿肌肥厚,同時膀胱壁M2、M3型毒蕈堿受體的表達也顯著上調(diào);Rodríguez等(2020)研究發(fā)現(xiàn),肥胖的伊比利亞母豬表現(xiàn)出腎小球腫大、系膜擴張、結(jié)節(jié)性腎小球硬化及脂質(zhì)沉積等病理特征。NAC能通過清除活性氧(Reactive oxygen species,ROS)來調(diào)節(jié)氧化還原平衡,在多種疾病模型中展現(xiàn)出顯著的抗氧化與抗炎作用(雷少青等,2018;Yang et al.,2019;Yuan et al.,2019;楊欣榮等,2020;Li etal.,2022)。氧化應(yīng)激涉及自由基積累與抗氧化防御系統(tǒng)失衡,是多種病理過程的核心驅(qū)動因素。雷少青等(2018)研究表明,NAC可通過直接中和ROS、增強GSH合成酶活性及恢復(fù)線粒體功能等途徑有效減輕氧化應(yīng)激誘導(dǎo)的組織損傷,在2型糖尿病模型中,NAC顯著降低了肝臟脂質(zhì)過氧化產(chǎn)物丙二醛(MDA)水平,并抑制了FoxO1信號通路過度活化,進而改善了代謝紊亂引起的器官損傷。在泌尿系統(tǒng)疾病領(lǐng)域,氧化應(yīng)激與膀胱過度活動癥的發(fā)病機制密切相關(guān)。唐陽國等(2022)研究表明,MS型SD大鼠膀胱平滑肌含量減少,黏膜下炎癥細胞增多,并伴有較多的粗大纖維條索,使用NAC治療后,病理變化有所緩解;武冠宇等(2023)研究發(fā)現(xiàn),膀胱組織中ROS的異常積累可導(dǎo)致尿路上皮敏感性增強與逼尿肌功能失調(diào),表明NAC可能通過抑制炎癥因子的釋放及調(diào)節(jié)相關(guān)信號通路來發(fā)揮抗氧化作用?!颈狙芯壳腥朦c】NAC能有效緩解高脂飼料誘導(dǎo)的肥胖大鼠膀胱纖維化(He et al.,2016),但其具體分子機制尚未見報道。【擬解決的關(guān)鍵問題】采用Western blotting、免疫組織化學(xué)染色等方法,解析NAC抑制代謝綜合征膀胱纖維化進程的分子機制,闡明抗氧化治療與經(jīng)典抗炎信號通路間的交叉對話機制,為開發(fā)基于多靶點協(xié)同干預(yù)的MBD精準治療策略提供理論依據(jù)。
1材料與方法
1.1試驗材料
1.1.1試驗動物供試20只SPF級6周齡C57BL/6雄性小鼠購自廣西醫(yī)科大學(xué)實驗動物中心,20只瘦素缺陷型ob/ob(B6.VLepob/J)雄性小鼠(代謝綜合征模型)購自鼠來寶(武漢)生物科技有限公司。動物試驗由蘭州大學(xué)第二醫(yī)院倫理委員會批準,批準號2021A-006。
1.1.2細胞株來源小鼠膀胱平滑肌細胞(BSMCs)由C57BL/6雄性小鼠膀胱組織分離獲得。取5只雄性小鼠,經(jīng)安樂死后,通過腹部正中切口切取膀胱組織;膀胱組織在生理鹽水和PBS中反復(fù)洗滌,去除黏膜、黏膜下層及漿膜層,剪成肉糜,使用II型膠原酶消化1 h;消化后的組織通過細胞篩網(wǎng)過濾并離心,接種于含10%胎牛血清(FBS)和1%雙抗的DMEM細胞培養(yǎng)基中;培養(yǎng)48 h后換液,繼續(xù)培養(yǎng)7 d,直至細胞鋪板并進行傳代。
1.1.3主要儀器設(shè)備及試劑主要儀器設(shè)備:熒光顯微鏡(寧波舜宇儀器有限公司)、渦旋振蕩器(武漢賽維爾生物科技有限公司)、實時熒光定量PCR儀(上海楓嶺生物技術(shù)有限公司)、超微量分光光度計[鼎昊源(天津)生物科技有限公司]、垂直板電泳轉(zhuǎn)移裝置(北京六一生物科技有限公司)、化學(xué)發(fā)光儀(上海天能生命科學(xué)有限公司)、酶標儀[帝肯(上海)實驗器材有限公司]、脫水機(濟南丹吉爾電子有限公司)、包埋機和冷凍臺(武漢俊杰電子有限公司)、病理切片機(上海徠卡儀器有限公司)、掃描儀(山東斯瑞締醫(yī)療科技有限公司)。供試試劑:高脂飼料(蛋白20%,碳水化合物20%,脂肪60%)和常規(guī)飼料(蛋白20%,碳水化合物76%,脂肪4%)(沈陽茂華生物科技有限公司)、葡萄糖和NAC(合肥凱米克生化科技有限公司)、D-甘露醇(大連美侖生物技術(shù)有限公司)、抗熒光淬滅劑和DAPI(武漢賽維爾生物科技有限公司)、IL-6抗體、TGF-β抗體和TGF-β1抗體[賽信通(上海)生物試劑有限公司]、BK-β1抗體、p-ERK抗體和p-JNK抗體[艾博抗(上海)貿(mào)易有限公司]、SKCa3抗體(亞諾法生技股份有限公司)、NF-κB抗體、IL-1β抗體、GAPDH抗體、β-Actin抗體和ROCK1抗體(武漢三鷹生物技術(shù)有限公司)、MCC950和PDTC(上海皓元生物醫(yī)藥科技有限公司)。
1.2動物飼養(yǎng)
實驗小鼠飼養(yǎng)在溫度(23±2)℃、濕度(50±10)%、12 h光照/12 h黑暗交替的動物房內(nèi)2周,自由采食,以適應(yīng)環(huán)境。選擇8周齡C57BL/6雄性小鼠和ob/ob(B6.V-Lepob/J)雄性小鼠,試驗持續(xù)20周,試驗結(jié)束后處死小鼠,采集膀胱組織。
1.3免疫組織化學(xué)染色
C57BL/6雄性小鼠為對照組(Con),ob/ob(B6.V-Lepob/J)雄性小鼠為代謝綜合征模型組(ob/ob)。小鼠膀胱組織在4%多聚甲醛中固定,隨后進行脫水、石蠟包埋、切片和抗原修復(fù)處理。切片完成后,使用3%BSA封閉30min,加入一抗在4℃下孵育過夜。使用PBS洗滌3次,每次5min,加入二抗,在避光條件下孵育50min。使用DAPI復(fù)染細胞核,滴加抗熒光淬滅劑封片。
1.4葡萄糖濃度篩選
BSMCs在37℃培養(yǎng)箱中于含10%FBS的DMEM細胞培養(yǎng)基中培養(yǎng)。以正常培養(yǎng)的BSMCs為對照(Con),在0、25、50和100 mmol/L葡萄糖中培養(yǎng)7 d進行初步篩選,隨后在25~50 mmol/L間增設(shè)35、40和45 mmol/L濃度,進一步篩選。使用超微量分光光度計檢測OD450 nm,繪制細胞生長曲線,確定最佳干預(yù)濃度。
1.5試驗分組
在確定葡萄糖最佳干預(yù)濃度后,試驗設(shè)對照組(Con)、高糖組(HG)、高糖+NAC組(HG+NAC)和高滲組(HO),分別于DMEM細胞培養(yǎng)基、45 mmol/L葡萄糖、45 mmol/L葡萄糖和5 mmol/L NAC、50 mmol/L甘露醇中培養(yǎng)48 h。為進一步探究NAC干預(yù)對細胞纖維化的作用機制,使用0.01μmol/L MCC950和0.01μmol/L PDTC處理細胞,試驗設(shè)對照組(Con)、高糖組(HG)、高糖+MCC950組(HG+MCC950)、高糖+PDTC組(HG+PDTC)和高滲組(HO)。
1.6 Western blotting檢測
向組織和細胞樣品加入蛋白裂解液,按照試劑盒說明提取蛋白。取100μL上清液,在4°C下12000 r/min離心10 min,通過BCA法測定蛋白濃度;蛋白樣品經(jīng)10%SDS-PAGE分析后,將蛋白轉(zhuǎn)移至PVDF膜,使用5%脫脂奶粉封閉1.5 h;PVDF膜與一抗在4℃下孵育過夜;使用1×TBST洗膜3次,每次5min;加入二抗置于搖床中室溫孵育2~3 h;使用1×TBST洗膜3次,每次10 min;加入適量ELC發(fā)光顯影液,在凝膠顯影儀下曝光觀察。
1.7統(tǒng)計分析
試驗數(shù)據(jù)采用GraphPad Prism 9.0進行單因素方差分析(One-way ANOVA)及制圖。
2結(jié)果與分析
2.1小鼠膀胱組織中炎癥因子、氧化應(yīng)激與重構(gòu)因子相關(guān)蛋白相對表達量
收集C57BL/6雄性小鼠和ob/ob(B6.V-Lepob/J)雄性小鼠膀胱組織,進行Western blotting檢測。結(jié)果如圖1-A所示,ob/ob組小鼠膀胱組織中3-Nitroty‐rosine(NT)、TGF-β1及α-SMA蛋白相對表達量顯著高于Con組(rlt;0.05,下同),提示ob/ob組小鼠膀胱存在明顯的氧化應(yīng)激及纖維化現(xiàn)象。對膀胱組織中多個炎癥標志物進行Western blotting檢測,以明確氧化應(yīng)激與纖維化的炎癥通路。結(jié)果(圖1-B)顯示,與Con組相比,ob/ob組小鼠膀胱組織中SMAD、p38、p-ERK和p-JNK蛋白相對表達量無顯著差異(rgt;0.05,下同),提示TGF-β1和α-SMA蛋白的激活由其他信號通路介導(dǎo)。
2.2小鼠膀胱組織中NF-κB和TGF-β1免疫組織化學(xué)染色結(jié)果
免疫組織化學(xué)染色結(jié)果(圖2)顯示,Con組小鼠膀胱組織中NF-κB和TGF-β1的熒光信號較分散且強度較低,ob/ob組小鼠膀胱組織中NF-κB與TGF-β1的熒光信號較集中且強度較高,此外,還在小鼠膀胱組織觀察到大量細胞碎片,表明細胞發(fā)生損傷甚至凋亡。提示高糖環(huán)境中NF-κB和TGF-β1在膀胱組織中的活化程度更高。
2.3葡萄糖濃度篩選結(jié)果
在篩選高糖培養(yǎng)條件時,發(fā)現(xiàn)25 mmol/L葡萄糖能明顯促進BSMCs生長(圖3),通過進一步篩選葡萄糖濃度,最終確定45 mmol/L為最佳干預(yù)濃度,細胞生長曲線如圖4所示,與Con組相比,45 mmol/L的葡萄糖組BSMCs OD450 nm在第4 d顯著升高,第5~7 d極顯著升高(rlt;0.01)。
2.4 NAC對BSMCs中炎癥因子、重構(gòu)因子與鉀離子通道相關(guān)蛋白相對表達量的影響
Western blotting檢測結(jié)果(圖5)顯示,與Con組相比,HG組BSMCs中CRP、IL-6、TGF-β1、IL-1β和NLRP3蛋白相對表達量顯著升高,鉀離子通道蛋白BK-β1和SKCa3相對表達量顯著降低;與HG組相比,HG+NAC組BSMCs中CRP、IL-6、TGF-β1、IL-1β和NLRP3蛋白相對表達量顯著降低,BK-β1和SKCa3蛋白相對表達量顯著升高。上述結(jié)果表明,高糖環(huán)境下BSMCs中炎癥因子及重構(gòu)因子蛋白相對表達量升高,誘導(dǎo)細胞纖維化加劇,同時細胞內(nèi)鉀離子通道功能受到抑制,NAC則降低了高糖環(huán)境下BSMCs中炎癥因子及重構(gòu)因子蛋白相對表達量,緩解了高糖環(huán)境造成的BSMCs鉀離子通道功能抑制。
2.5抑制NLRP3和NF-κB信號通路對BSMCs中重構(gòu)因子、炎癥因子與氧化應(yīng)激相關(guān)蛋白相對表達量的影響
結(jié)果(圖6)顯示,與HG組相比,HG+MCC950和HG+PTCD組BSMCs中TGF-β1蛋白相對表達量顯著降低,提示NLRP3和NF-κB信號通路在高糖誘導(dǎo)的TGF-β1活化過程中發(fā)揮了重要作用,NF-κB蛋白相對表達量顯著升高,HG+MCC950組BSMCs中ROCK1和NLRP3蛋白相對表達量顯著降低,HG+PTCD組BSMCs中ROCK1和NLRP3蛋白相對表達量無顯著差異。提示MBD的發(fā)展為氧化應(yīng)激誘導(dǎo)的炎癥反應(yīng)和纖維化表現(xiàn),且與抗氧化治療相比,抗炎治療對纖維化抑制的效果較為有限。
3討論
MBD與糖尿病膀胱的病理過程具有相似性,高血糖引起的氧化應(yīng)激所誘發(fā)的炎癥反應(yīng),能導(dǎo)致膀胱環(huán)形肌出現(xiàn)纖維化及神經(jīng)調(diào)節(jié)紊亂,進而改變膀胱的收縮頻率與力量,最終發(fā)展為糖尿病并引發(fā)尿潴留和尿毒癥。唐陽國等(2022)研究表明,高脂飼料飼喂的大鼠膀胱組織抗氧化能力降低,且發(fā)生組織纖維化,而NAC治療能有效緩解MBD的癥狀。本研究發(fā)現(xiàn),NAC的干預(yù)有效緩解了MBD的氧化應(yīng)激,抑制了膀胱纖維化,但具體的分子機制尚未明確。ob/ob組小鼠膀胱組織中NT蛋白相對表達量顯著高于Con組,提示ob/ob組小鼠膀胱組織氧化應(yīng)激水平升高。此外,ob/ob組小鼠膀胱組織中TGF-β1和α-SMA蛋白相對表達量顯著高于Con組,表明其膀胱組織纖維化加劇。研究表明,低濃度的ROS可調(diào)節(jié)細胞信號轉(zhuǎn)導(dǎo)和血管張力等生理過程,而高濃度的ROS則會誘導(dǎo)細胞凋亡并造成組織損傷(Birder,2020),進而導(dǎo)致TGF-β1過度激活,促進細胞外基質(zhì)(ECM)過度沉積,成纖維細胞過度增殖和分化,最終加劇膠原沉積和纖維增生(Yan et al.,2018)。
在MBD的病理過程中,氧化應(yīng)激與纖維化的發(fā)生可能是通過炎癥反應(yīng)介導(dǎo)的。高糖和肥胖等因素引發(fā)的胰島素抵抗會導(dǎo)致慢性氧化應(yīng)激,產(chǎn)生大量ROS,而過量的ROS會導(dǎo)致脂質(zhì)、蛋白質(zhì)、碳水化合物和DNA發(fā)生氧化損傷,進而影響細胞生存(Rich‐ter et al.,1988;Cadenas and Davies,2000;Pacher et al.,2007)。與核DNA相比,線粒體DNA(mtDNA)更易受到ROS的影響(Herrero and Barja,2001),mtDNA損傷不僅引發(fā)炎癥反應(yīng),還會導(dǎo)致線粒體形態(tài)改變與功能損傷(Krysko et al.,2011;Chen et al.,2018),進一步產(chǎn)生線粒體活性氧(mtROS),加劇氧化應(yīng)激反應(yīng)。研究表明,ROS能增強T淋巴細胞活化,誘導(dǎo)白細胞和內(nèi)皮細胞的黏附與趨化,進而滲透到炎癥反應(yīng)區(qū)域(Dr?ge,2002;Valko et al.,2007)。此外,脂質(zhì)過氧化物可間接激活2型環(huán)氧合酶(COX-2),從而激活巨噬細胞的炎癥潛能(Kumagai et al.,2004)。研究表明,MS患者機體存在與炎癥相關(guān)性較高的組織重塑過程,肥胖癥患者機體普遍處于慢性低級炎癥狀態(tài),體內(nèi)炎癥因子CRP、TNF-α、IL-6、IL-1β水平普遍高出正常范圍(陳曉可等,2024)。本研究發(fā)現(xiàn),相較于Con組,HG組BSMCs中CRP、IL-6、TGF-β1、IL-1β、NLRP3蛋白相對表達量顯著升高,提示細胞炎癥反應(yīng)加劇。IL-6不僅參與免疫與炎癥反應(yīng),還能通過誘導(dǎo)趨化因子和黏附因子激活巨噬細胞等炎癥細胞發(fā)生分化與遷移,促進組織重塑(王信光等,2024)。NAC干預(yù)后,BSMCs中CRP、IL-6、TGF-β1、IL-1β、NLRP3蛋白相對表達量顯著降低,表明NAC抑制了小鼠膀胱組織炎癥反應(yīng)和纖維化。NAC是一種經(jīng)典的天然抗氧化劑,乙酰化合物的結(jié)構(gòu)特點使其具有明顯的還原性,分子內(nèi)游離的巰基能清除機體內(nèi)的自由基,此外,NAC進入細胞后其含有的半胱氨酸能通過消除自由基減少氧化損
傷并促進GSH合成,而GSH能直接清除OH-和O-,進而增強機體抗氧化能力(Tenório et al.,2021)。NAC的巰基在清除自由基的同時,還能減輕DNA損傷,調(diào)整信號轉(zhuǎn)導(dǎo)與基因表達,抵抗細胞凋亡(Kumar etal.,2021)。本研究中,ob/ob組小鼠膀胱組織中p38、p-ERK與p-JNK蛋白相對表達量與Con組差異不顯著,提示活化TGF-β1及誘導(dǎo)α-SMA介導(dǎo)的組織再生可能由其他信號通路完成。
本研究發(fā)現(xiàn),HG組BSMCs中NLRP3異常升高,推測NLRP3可能是抑制膀胱纖維化的重要干預(yù)因子。NLRP3在動脈粥樣硬化、糖尿病、肝纖維化、肺纖維化及各種急性、慢性腎臟疾病中廣泛存在,并通過調(diào)節(jié)炎癥反應(yīng)參與線粒體自噬與凋亡(Shahzad et al.,2015;Gong et al.,2016;Ludwig-Portugall et al.,2016)。NLRP3能促使IL-1β和IL-18的分泌,進而引發(fā)炎癥反應(yīng)(姜昊瑋和吳照球,2022)。研究發(fā)現(xiàn),NLRP3激活可能受到線粒體損傷、mtROS刺激、K+外流與溶酶體損傷釋放組織蛋白酶等因素的影響(Santoro et al.,1992;Unger et al.,1992;齊士勇和徐勇,2021)。本研究發(fā)現(xiàn),與Con組相比,HG組BSMCs離子通道蛋白BK-β1和SKCa3相對表達量顯著降低,與HG組相比,HG+NAC組BSMCs中BK-β1和SKCa3蛋白相對表達量顯著升高,提示NLRP3可能參與了MBD的病理發(fā)展進程。研究表明,給予高脂飲食的NLRP3缺陷小鼠對胰島素高度敏感(Zhou et al.,2010);NLRP3在大鼠膀胱中定位于尿路上皮(Hughes et al.,2015),能誘導(dǎo)膀胱出口梗阻、出血性膀胱炎及糖尿病并發(fā)癥等膀胱病理性疾病發(fā)生(Hughes et al.,2014,2016);缺乏NLRP3的糖尿病小鼠不會出現(xiàn)糖尿病性膀胱功能障礙,NLRP3的缺失不僅不影響血糖水平,還能消除炎癥癥狀(Hughes et al.,2019)。本研究發(fā)現(xiàn),與Con組相比,HG組BSMCs中NLRP3和IL-1β蛋白相對表達量顯著升高,與HG組相比,HG+NAC組BSMCs中NLRP3和IL-1β蛋白相對表達量顯著降低。研究表明,在NF-κB激活信號下,NLRP3能與ASC、caspase-1組裝形成NLRP3炎癥小體,而NLRP3炎癥小體可釋放caspase-1,并分泌IL-1β、IL-18和Gasdermin D等細胞因子,進而激活細胞焦亡(孫瑋等,2024;陶懷祥等,2024)。此外,低濃度的過氧化氫能激活NF-κB以調(diào)節(jié)促炎細胞因子水平,進而引發(fā)炎癥反應(yīng)并激活NADPH氧化酶,刺激并增加ROS的產(chǎn)生,最終加重氧化應(yīng)激反應(yīng)(Prieto et al.,2014)。NF-κB參與許多炎癥性疾病的發(fā)生,是TLR4信號通路下游的核轉(zhuǎn)錄激活因子,能激活大量炎癥細胞因子的轉(zhuǎn)錄和表達,是調(diào)控炎癥反應(yīng)進程的主要轉(zhuǎn)導(dǎo)信號(Luo et al.,2022)。NAC能通過清除ROS而抑制NF-κB的信號轉(zhuǎn)導(dǎo),進而減少炎癥因子的表達并抑制NLRP3炎癥小體的形成,最終減輕炎癥反應(yīng)。
Ruiz-Ortega等(2020)研究表明,NF-κB/TGF-β1信號通路在有關(guān)纖維化的疾病進展過程中發(fā)揮重要作用。本研究發(fā)現(xiàn),與Con組相比,ob/ob組小鼠膀胱組織中大量細胞發(fā)生損傷,可觀察到許多細胞碎片,NF-κB與TGF-β1分布不均,集中在細胞核周圍,提示ob/ob組小鼠膀胱組織可能發(fā)生NLRP3/NF-κB信號通路引發(fā)的細胞焦亡。抑制NLRP3和NF-κB信號通路后,與HG組相比,HG+MCC950和HG+PDTC組BSMCs中TGF-β1蛋白相對表達量顯著降低,表明抑制NF-κB和NLRP3信號通路有利于減輕纖維化,而介導(dǎo)氧化應(yīng)激反應(yīng)的ROCK1蛋白相對表達量受NF-κB抑制的影響較小,且與HG組相比,HG+NAC組BSMCs中TGF-β1、IL-1β和NLRP3蛋白相對表達量顯著降低,進一步證實了NLRP3/NF-κB信號通路是ROS的下游產(chǎn)物,三者共同介導(dǎo)纖維化的發(fā)生。此外,相較于通過NLRP3/NF-κB信號通路抑制炎癥反應(yīng),NAC的抗氧化治療可能更有利于MBD轉(zhuǎn)歸。
4結(jié)論
高糖因素誘發(fā)的小鼠膀胱功能損傷涉及氧化應(yīng)激—炎癥反應(yīng)—組織纖維化相關(guān)分子機制通路,NAC主要通過抑制ROS/NLRP3/NF-κB/TGF-β1信號通路阻斷功能損傷中氧化應(yīng)激、炎癥反應(yīng)和纖維化的發(fā)展進程。與抗炎治療相比,NAC抗氧化治療對組織纖維化的治療效果可能更顯著。
參考文獻(References):
陳曉可,歷建宇,陳超凡,曹春梅.2024.不同運動類型對超重或肥胖人群炎癥因子影響的網(wǎng)狀Meta分析[J].中國循證醫(yī)學(xué)雜志,24(5):565-571.[Chen X K,Li J Y,Chen C F,Cao C M.2024.Net Meta-analysis of the effect of dif-ferent exercise types on inflammatory factors in overweight or obese populations[J].Chinese Journal of Evidence-Based Medicine,24(5):565-571.]
姜昊瑋,吳照球.2022.NLRP3炎性小體在動脈粥樣硬化中的病理作用研究和臨床試驗進展[J].生物化工,8(4):139-143.[Jiang H W,Wu Z Q.2022.Progress in pathological role and clinical trial of NLRP3 inflammasome in athero-sclerosis[J].Biological Chemical Engineering,8(4):139-143.]doi:10.3969/j.issn.2096-0387.2022.04.035.
雷少青,王雅楓,周璐,張元,夏中元,蘇娃婷.2018.N-乙酰半胱氨酸對2型糖尿病大鼠肝氧化應(yīng)激及FoxO1活性的影響[J].中國實驗動物學(xué)報,26(6):734-738.[Lei S Q,Wang Y F,Zhou L,Zhang Y,Xia Z Y,Su W T.2018.Effects of N-acetylcysteine on oxidative stress and FoxO1 activity of the liver in type 2 diabetic rats[J].Acta Labora-torium Animalis Scientia Sinica,26(6):734-738.]doi:10.3969/j.issn.1005-4847.2018.06.010.
齊士勇,徐勇.2021.NLRP3炎癥小體與草酸鈣腎結(jié)石形成的研究進展[J].醫(yī)學(xué)綜述,27(19):3749-3754.[Qi S Y,Xu Y.2021.Research progress in relationship between NLRP3 inflammasome and formation of calcium oxalate kidney stone[J].Medical Recapitulate,27(19):3749-3754.]doi:10.3969/j.issn.1006-2084.2021.19.002.
孫瑋,陳英華,宋元毓,王浩宇,秦瑞琦,李俊峰,蘇曉慶,吳彤,趙紅旭,韓玉生,苗悅.2024.基于NLRP3/Caspase-1/GSDMD通路探討電針“四神聰”“風(fēng)池”改善血管性癡呆大鼠認知功能障礙的作用機制[J].海南醫(yī)科大學(xué)學(xué)報,30(21):1607-1616.[Sun W,Chen Y H,Song Y Y,Wang HY,Qin R Q,Li J F,Sui X Q,Wu T,Zhao H X,HanY S,Miao Y.2024.Study on the mechanism of electroacupunc-ture“Sishencong”and“Fengchi”to improve cognitive dysfunction in rats with vascular dementia based on NLRP3/Caspase-1/GSDMD pathway[J].Journal of Hainan Medical University 30(21):1607-1616.]doi:10.13210/j.cnki.jhmu.20240703.001.
唐陽國,李昱卓,何綦琪.2022.N-乙酰半胱氨酸對肥胖誘發(fā)大鼠膀胱纖維化的影響[J].蘭州大學(xué)學(xué)報(醫(yī)學(xué)版),48(6):15-19.[Tang Y G,Li Y Z,He Q Q.2022.Effects of N-acetylcysteine on obesity-induced bladder fibrosis in rats[J].Journal of Lanzhou University(Medical Sciences),48(6):15-19.]doi:10.13885/j.issn.1000-2812.2022.06.004.
陶懷祥,駱金光,聞志遠,虞亙明,蘇蕭,王鑫瑋,關(guān)翰,陳志軍.2024.STING高表達通過調(diào)控TLR4/NF-κB/NLRP3通路和影響炎癥與凋亡水平促進小鼠腎臟缺血再灌注損傷[J].南方醫(yī)科大學(xué)學(xué)報,44(7):1345-1354.[Tao H X,Luo J G,Wen ZY,Yu G M,Su X,Wang X W,Guan H,Chen Z J.2024.High STING expression exacerbates renal ischemia-reperfusion injury in mice by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflamma-tion and apoptosis[J].Journal of Southern Medical Unive-rsity,44(7):1345-1354.]doi:10.12122/j.issn.1673-4254.2024.07.14.
王海云,周吳剛,李一民,朱虹,杭海芳.2023.N-乙酰半胱氨酸對急性心肌梗死小鼠心功能的影響[J].中華實用診斷與治療雜志,37(3):229-234.[Wang H Y,Zhou W G,Li Y M,Zhu H,Hang H F.2023.Influence of N-acetylcysteine on heart function of acute myocardial infarc-tion mice[J].Journal of Chinese Practical Diagnosis and Therapy,37(3):229-234.]doi:10.13507/j.issn.1674-3474.2023.03.004.
王信光,薄存香,潘志峰.2024.IL-6家族細胞因子在肺纖維化中的作用[J].中國工業(yè)醫(yī)學(xué)雜志,37(3):263-266.[Wang X G,Bo C X,Pan Z F.2024.Role of IL-6 family cytokines in pulmonary fibrosis[J].Chinese Journal of In-dustrial Medicine,37(3):263-266.]doi:10.13631/j.cnki.zggyyx.2024.03.015.
武冠宇,呂繼宗,莊寶琳,鄭萬祥,袁建林,秦衛(wèi)軍,劉飛.2023.膀胱過度活動癥的氧化應(yīng)激機制與抗氧化治療策略研究進展[J].浙江醫(yī)學(xué),45(15):1668-1671.[Wu GY,LüJ Z,Zhuang B L,Zheng W X,Yuan J L,Qin W J,Liu F.2023.Research progress on oxidative stress mechanism and antioxidant treatment strategy of overactive bladder[J].Zhejiang Medical Journal,45(15):1668-1671.]doi:10.12056/j.issn.1006-2785.2023.45.15.2022-1155.
楊欣榮,陶丁霞,劉紅梅.2020.BiPAP聯(lián)合N-乙酰半胱氨酸對AECOPD合并呼吸衰竭患者氧化應(yīng)激反應(yīng)的影響[J].貴州醫(yī)藥,44(8):1209-1210.[Yang X R,Tao D X,Liu H M.2020.Effect of BiPAP combined with N-acetylcysteine on oxidative stress response inpatients with AECOPD complicated with respiratory failure[J].Gui‐zhou Medical Journal,44(8):1209-1210.]doi:10.3969/j.issn.1000-744X.2020.08.010.
章文靜,王長松,付俊霞,彭麗琴,謝建軍.2017.常見臨床疾病對下尿路功能的影響[J].現(xiàn)代泌尿外科雜志,22(4):316-318.[Zhang W J,Wang C S,F(xiàn)u J X,Peng L Q,Xie J J.2017.Effect of common clinical diseases on lower uri‐nary tract function[J].Journal of Modern Urology,22(4):316-318.]doi:10.3969/j.issn.1009-8291.2017.04.019.
Birder L A.2020.Is there a role for oxidative stress and mito‐chondrial dysfunction in age-associated bladder disorders?[J].Tzu Chi Medical Journal,32(3):223-226.doi:10.4103/tcmj.tcmj_250_19.
Cadenas E,Davies K J.2000.Mitochondrial free radical gen‐eration,oxidative stress,and aging[J].Free Radical Bio-logy and Medicine,29(3-4):222-230.doi:10.1016/s0891-5849(00)00317-8.
Cave N J,Allan F J,Schokkenbroek S L,Metekohy C A M,Pfeiffer D U.2012.A cross-sectional study to compare changes in the prevalence and risk factors for feline obe‐sity between 1993 and 2007 in New Zealand[J].Preven‐tive Veterinary Medicine,107(1-2):121-133.doi:10.1016/j.prevetmed.2012.05.006.
Chen Y X,Zhou Z Y,Min W.2018.Mitochondria,oxidative stress and innate immunity[J].Frontiers in Physiology,9:1487.doi:10.3389/fphys.2018.01487.
Courcier E A,Thomson R M,Mellor D J,Yam P S.2010.An epidemiological study of environmental factors associated with canine obesity[J].The Journal of Small Animal Prac‐tice,51(7):362-367.doi:10.1111/j.1748-5827.2010.00 933.x.
Dr?ge W.2002.Free radicals in the physiological control of cell function[J].Physiological Reviews,82(1):47-95.doi:10.1152/physrev.00018.2001.
Fu X,Wang Y T,Lu Y,Liu J,Li H J.2024.Association be-tween metabolic syndrome and benign prostatic hyperpla‐sia:The underlying molecular connection[J].Life Scien-ces,358:123192.doi:10.1016/j.lfs.2024.123192.
Gong W,Mao S,Yu J,Song J Y,Jia Z J,Huang S M,Zhang A H.2016.NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy[J].American Journal of Physiology-Renal Physiology.Renal Physiology,310(10):F1081-F1088.doi:10.1152/ajprenal.00534.2015.
He Q Q,Babcook M A,Shukla S,Shankar E,Wang Z P,Liu G M,Erokwu B O,F(xiàn)lask C A,Lu L,Daneshgari F,MacLen‐nan G T,Gupta S.2016.Obesity-initiated metabolic syn‐drome promotes urinary voiding dysfunction in a mousemodel[J].Prostate,76(11):964-976.doi:10.1002/pros.23185.
Henegar J R,Bigler S A,Henegar L K,Tyagi S C,Hall J E.2001.Functional and structural changes in the kidney in the early stages of obesity[J].Journal of the American So-ciety of Nephrology:JASN,12(6):1211-1217.doi:10.1681/ASN.V1261211.
Herrero A,Barja G.2001.Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life-span of the rat[J].Journal of the Ameri‐can Aging Association,24(2):45-50.doi:10.1007/s 11357-001-0006-4.
Hughes F M Jr,Hill H M,Wood C M,Edmondson A T,Dumas A,F(xiàn)oo W C,Oelsen J M,Rac G,Purves J T.2016.The NLRP3 inflammasome mediates inflammation produced by bladder outlet obstruction[J].The Journal of Urology,195(5):1598-1605.doi:10.1016/j.juro.2015.12.068.
Hughes F M Jr,Hirshman N A,Inouye B M,Jin H X,Stanton E W,Yun C E,Davis L G,Routh J C,Purves J T.2019.NLRP3 promotes diabetic bladder dysfunction and changes in symptom-specific bladder innervation[J].Dia‐betes,68(2):430-440.doi:10.2337/db 18-0845.
Hughes F M Jr,Turner D P,Purves J T.2015.The potential re-pertoire of the innate immune system in the bladder:Expression of pattern recognition receptors in the rat blad‐der and a rat urothelial cell line(MYP3 cells)[J].Interna‐tional Urology and Nephrology,47(12):1953-1964.doi:10.1007/s11255-015-1126-6.
Hughes F M Jr,Vivar N P,Kennis J G,Pratt-Thomas J D,Lowe D W,Shaner B E,Nietert P J,Spruill L S,Purves J T.2014.Inflammasomes are important mediators of cyclo-phosphamide-induced bladder inflammation[J].American Journal of Physiology.Renal physiology,306(3):F299-F308.doi:10.1152/ajprenal.00297.2013.
Krysko D V,Agostinis P,Krysko O,Garg A D,Bachert C,Lambrecht B N,Vandenabeele P.2011.Emerging role of damage-associated molecular patterns derived from mito‐chondria in inflammation[J].Trends in Immunology,32(4):157-164.doi:10.1016/j.it.2011.01.005.
Kumagai T,Matsukawa N,Kaneko Y,Kusumi Y,Mitsumata M,Uchida K.2004.A lipid peroxidation-derived inflam‐matory mediator:Identification of 4-hydroxy-2-nonenal as a potential inducer of cyclooxygenase-2 in macrophages[J].The Journal of Biological Chemistry,279(46):48389-48396.doi:10.1074/jbc.M409935200.
Kumar P,Liu C,Hsu J W,Chacko S,Minard C,Jahoor F,Sekhar RV.2021.Glycine and N‐acetylcysteine(GlyNAC)supplementation in older adults improves glutathione defi‐ciency,oxidative stress,mitochondrial dysfunction,inflam‐mation,insulin resistance,endothelial dysfunction,geno‐toxicity,muscle strength,and cognition:Results of a pilot clinical trial[J].Clinical and Translational Medicine,11(3):e372.doi:10.1002/ctm2.372.
Lee W C,Chien C T,Yu H J,Lee S W.2008.Bladder dysfunc‐tion in rats with metabolic syndrome induced by long-term fructose feeding[J].The Journal of Urology,179(6):2470-2476.doi:10.1016/j.juro.2008.01.086.
Lekcharoensuk C,Lulich J P,Osborne C A,PusoonthornthumR,Allen T A,Koehler L A,Urlich L K,Carpenter K A,Swanson L L.2000.Patient and environmental factors associated with calcium oxalate urolithiasis in dogs[J].Journal of the American Veterinary Medical Association,217(4):515-519.doi:10.2460/javma.2000.217.515.
Li J,Jia B,Cheng Y,Song Y,Li Q,Luo C.2022.Targeting molecular mediators of ferroptosis and oxidative stress for neurological disorders[J].Oxidative Medicine and Cellu-lar Longevity,3999083.doi:10.1155/2022/3999083.
Ludwig-Portugall I,Bartok E,Dhana E,Evers B D G,Primiano M J,Hall J P,F(xiàn)ranklin B S,Knolle PA,Hornung V,Hart-mann G,Boor P,Latz E,Kurts C.2016.An NLRP3-spe-cific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice[J].Kidney International,90(3):525-539.doi:10.1016/j.kint.2016.03.035.
Luo L,Liu M X,F(xiàn)an Y H,Zhang J J,Liu L,Li Y,Zhang Q Q,Xie HY,Jiang CY,Wu J F,Xiao X,Wu Y.2022.Intermit-tent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice[J].Journal of Neuroinflammation,19(1):141.doi:10.1186/s 12974-022-02501-2.
Pacher P,Beckman J S,Liaudet L.2007.Nitric oxide and per-oxynitrite in health and disease[J].Physiological Reviews,87(1):315-424.doi:10.1152/physrev.00029.2006.
Prieto D,Contreras C,Sánchez A.2014.Endothelial dysfunc-tion,obesity and insulin resistance[J].Current Vascular Pharmacology,12(3):412-426.doi:10.2174/1570161112 666140423221008.
Richter C,Park J W,Ames B N.1988.Normal oxidative dam-age to mitochondrial and nuclear DNA is extensive[J].Proceedings of the National Academy of Sciences of the United States of America,85(17):6465-6467.doi:10.1073/pnas.85.17.6465.
Rodríguez R R,González-Bulnes A,Garcia-Contreras C,Rodriguez-Rodriguez A E,Astiz S,Vazquez-Gomez M,Pesantez J L,Isabel B,J Salido-Ruiz E,González J,CorreaJ D,Luis-Lima S,Porrini E.2020.The Iberian pig fed with high-fat diet:A model of renal disease in obesity and meta-bolic syndrome[J].International Journal of Obesity,44(2):457-465.doi:10.1038/s41366-019-0434-9.
Ruiz-Ortega M,Rayego-Mateos S,Lamas S,Ortiz A,Rodrigues-Diez R R.2020.Targeting the progression of chronic ki-dney disease[J].Nature Reviews Nephrology,16(5):269-288.doi:10.1038/s41581-019-0248-y.
Samuni Y,Goldstein S,Dean O M,Berk M.2013.The chemis-try and biological activities of N-acetylcysteine[J].Biochi-mica et Biophysica Acta,1830(8):4117-4129.doi:10.1016/j.bbagen.2013.04.016.
Santoro D,Natali A,Palombo C,Brandi L S,Piatti M,Ghione S,F(xiàn)errannini E.1992.Effects of chronic angiotensin con-verting enzyme inhibition on glucose tolerance and insulinsensitivity in essential hypertension[J].Hypertension,20(2):181-191.doi:10.1161/01.hyp.20.2.181.
Shahzad K,Bock F,Dong W,Wang H J,Kopf S,Kohli S,Al-Dabet M M,Ranjan S,Wolter J,Wacker C,Biemann R,Stoyanov S,Reymann K,S?derkvist P,Gro?O,
Schwenger V,Pahernik S,Nawroth P P,Gr?ne H J,Mad-husudhan T,Isermann B.2015.Nlrp3-inflammasome acti-vation in non-myeloid-derived cells aggravates diabetic nephropathy[J].Kidney International,87(1):74-84.doi:10.1038/ki.2014.271.
Tanaka A,Inoue A,Takeguchi A,Washizu T,Bonkobara M,Arai T.2005.Comparison of expression of glucokinase gene and activities of enzymes related to glucose metabo-lismin livers between dog and cat[J].Veterinary Research Communications,29(6):477-485.doi:10.1007/s 11259-005-1868-1.
Tenório M C D S,Graciliano N G,Moura FA,Oliveira A C M,Goulart M O F.2021.N-acetylcysteine(NAC):Impacts on human health[J].Antioxidants,10(6):967.doi:10.3390/antiox 10060967.
Tvarijonaviciute A,Ceron J J,Holden S L,Cuthbertson D J,Biourge V,Morris P J,German A J.2012.Obesity-related metabolic dysfunction in dogs:A comparison with human metabolic syndrome[J].BMC Veterinary Research,8:147.doi:10.1186/1746-6148-8-147.
Unger T,Mattfeldt T,Lamberty V,Bock P,Mall G,Linz W,Sch?lkens B A,Gohlke P.1992.Effect of early onset angiotensin converting enzyme inhibition on myocardial capillaries[J].Hypertension,20(4):478-482.doi:10.1161/01.hyp.20.4.478.
Valko M,Leibfritz D,Moncol J,Cronin M T D,Mazur M,Telser J.2007.Free radicals and antioxidants in normal physiological functions and human disease[J].The Inter-national Journal of Biochemistryamp;Cell Biology,39:44-84.doi:10.1016/j.biocel.2006.07.001.
Yan G,Ru Y,Wu K R,Yan F Q,Wang Q H,Wang J X,Pan T,Zhang M,Han H,Li X,Zou L.2018.GOLM1 promotes prostate cancer progression through activating PI3K-AKT-mTOR signaling[J].The Prostate,78(3):166-177.doi:10.1002/pros.23461.
Yang F,Pei R N,Zhang Z W,Liao J Z,Yu W L,Qiao N,Han Q Y,Li Y,Hu L M,Guo J Y,Pan J Q,Tang Z X.2019.Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes[J].Toxicolin Vitro,54:310-316.doi:10.1016/j.tiv.2018.10.017.
Yuan X,Wang H,Cai J T,Bi Y,Li D Y,Song F M.2019.Rice NAC transcription factor ONAC066 functions as a posi-tive regulator of drought and oxidative stress response[J].BMC Plant Biology,19(1):278.doi:10.1186/s 12870-019-1883-y.
Zhang Y J,Song J J,Li B J,Wu Y H,Jia S J,Shu H X,Liu F,Yang X R.2018.Association between body roundness index and overactive bladder:Results from the NHANES 2005-2018[J].Lipids in Health and Disease,23(1):184.doi:10.1186/s 12944-024-02174-1.
Zhou R B,Tardivel A,Thorens B,Choi I,Tschopp J.2010.Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nature Immunology,11(2):136-U151.doi:10.1038/ni.1831.
(責(zé)任編輯:蘭宗寶,張博)