DOI:10.3969/j.issn.2095-1191.2025.01.026
摘要:【目的】揭示雜交山羊擁有良好生長性狀的內在機理,為海南黑山羊的品種選育及海×努雜交山羊的飼養(yǎng)管理提供參考依據(jù)。【方法】選取出生4 d內的海南黑山羊(HN組)和海×努雜交山羊(HY組)各6只,在統(tǒng)一的飼養(yǎng)管理標準下飼養(yǎng)至120日齡左右,采集糞便樣品進行16S rRNA測序,分析2組山羊的腸道微生物群落組成差異,并對腸道微生物與山羊體重及平均日增重進行Pearson相關分析。【結果】2組山羊的腸道微生物群落Alpha多樣性指數(shù)無顯著差異(Pgt;0.05),但基于布雷柯蒂斯(Bray-Curtis)距離的主坐標分析(PCoA)發(fā)現(xiàn)2組山羊的腸道微生物組成存在一定差異。在門分類水平上,海南黑山羊與?!僚s交山羊腸道微生物均以厚壁菌門、擬桿菌門、疣微菌門、彎曲菌門、螺旋菌門及變形菌門等為優(yōu)勢菌門;在屬分類水平上,2組山羊腸道微生物組成相似,存在多種能發(fā)酵膳食纖維的菌屬;Metastats分析發(fā)現(xiàn),海×努雜交山羊腸道中的Monoglobus相對豐度顯著高于海南黑山羊(Plt;0.05,下同)。海南黑山羊腸道微生物的生物標志物有腸球菌科、腸球菌屬及Family_XIII_UCG_001等;?!僚s交山羊腸道微生物的生物標志物為短促生乳桿菌屬和顫螺旋菌科未知菌屬。?!僚s交山羊腸道微生物中,厚壁菌門相對豐度與體重及平均日增重呈顯著正相關;海南黑山羊腸道微生物中,另枝菌屬相對豐度與體重呈極顯著正相關(Plt;0.01),與平均日增重呈顯著正相關;將2組山羊合并為一個群體進行分析,發(fā)現(xiàn)厚壁菌門相對豐度與山羊平均日增重呈顯著正相關,Monoglo-bus相對豐度與山羊體重呈顯著正相關?!窘Y論】海南黑山羊與海×努雜交山羊的腸道微生物組成存在一定差異,其中Monoglobus在海×努雜交山羊中的相對豐度顯著高于海南黑山羊。此外,腸道微生物中的厚壁菌門、另枝菌屬和Monoglobus可能是調控山羊生長性能的關鍵菌群,為育肥山羊靶向型飼料添加劑的選擇提供了新方向。
關鍵詞:海南黑山羊;海×努雜交山羊;腸道微生物;16S rRNA測序;體重增長
中圖分類號:S827文獻標志碼:A文章編號:2095-1191(2025)01-0295-10
Comparison of intestinal microbial composition of Hainan black goat and hybrid of Hainan black goat×Nubian goat
TANG Jia-yang,CHEN Tao-yu,LI Shi-yuan,MENG Yong,CHEN Qiao-ling,CHEN Si,GAO Hong-yan,DU Li,WANG Feng-yang,Manchuriga*
(College of Tropical Agriculture and Forestry,Hainan University/Key Laboratory of Tropical Animal Reproductionamp; Breeding and Epidemic Disease Research of Hainan,Haikou,Hainan 570228,China)
Abstract:【Objective】To reveal the internal mechanism of hybrid goats with good growth traits,which could provide reference basis for breedselection of Hainan black goat and feeding management of hybrid of Hainan black goat×Nubian goat.【Method】Six Hainan black goats(HN group)and six hybrids of Hainan black goat×Nubian goat(HY group)born within 4 d were selected and raised under uniform feeding management standards until about 120 days old.Fecal samples were collected for 16S rRNA sequencing to analyze the differences in composition of the intestinal microbial community between the 2 groups of goats,and Pearson correlation analysis was performed to assess relationships between intestinal microbe community and body weight and daily weight gain.【Result】There was no significant difference in the Alpha di-versity index of the intestinal microbe between the 2 groups of goats(Pgt;0.05).However,principal coordinate analysis(PCoA)based on Bray-Curtis distances revealed distinct microbial community structures between the 2 groups of goats.At phylum level,Hainan black goat and hybrid of Hainan black goat×Nubian goat exhibited dominant phyla including Firmicutes,Bacteroidota,Verrucomicrobiota,Campylobacterota,Spirochaetota and Proteobacteria.At the genus level,the intestinal microbial composition was similar in the 2 groups,with a variety of fiber-fermenting genera.Metastats analysis identified significantly higher relative abundance of Monoglobus in hybrid of Hainan black goat×Nubian goat compared to Hainan black goat(Plt;0.05,the same below).The biomarkers of intestinal microbes in Hainan black goat in-cluded Enterococcaceae,Enterococcus,F(xiàn)amily_XIII_UCG_001,etc.The biomarkers of intestinal microbes in hybrid of Hainan black goat×Nubian goat were Levilactobacillus and unclassified_Oscillospiraceae.The relative abundance of Fir-micutes among the intestinal microbes of hybrid of Hainan black goat×Nubian goat was significantly and positively corre-lated with body weight and daily weight gain.In the intestinal microbes of Hainan black goat,there was extremely signifi-cant positive correlation(Plt;0.01)between the relative abundance of Alistipes and body weight,as well as a significant positive correlation with daily weight average gain.Combining 2 groups of goats into a population for analysis,it wasfound that the relative abundance of Firmicutes was significantly and positively correlated with average daily weight gain of goats,and the relative abundance of Monolobus was significantly and positively correlated with body weight of goats.【Conclusion】There are certain differences in the intestinal microbial composition between Hainan black goat and hybrid of Hainan black goat and Nubian goat,among which Monolobus has significantly higher relative abundance in Hainan black goat compared to hybrid of Hainan black goat×Nubian goat.In addition,F(xiàn)irmicutes,Alistipes and Monolobus inintestinal microbes might be key microbial communities that may regulate goat growth performance,which provides new directions for selection of targeted feed additives for goat fattening.
Key words:Hainan black goat;hybrid of Hainan black goat×Nubian goat;intestinal microbes;16S rRNA sequen-cing;body weight gain
Foundation items:China Agriculture Research System(CARS-38);Hainan Academician Innovation Platform Pro-ject(YSPTZX202153)
0引言
【研究意義】海南黑山羊是我國海南省重要的地方畜牧品種資源,具有耐粗飼、耐高溫高濕、抗病力強、性成熟早及肉質鮮美等優(yōu)勢(葉玉秀等,2016),但也存在體重偏小、生長速度緩慢等缺點(孫瑞萍等,2015)。努比亞山羊屬于乳肉兼用型山羊,因其肌肉豐滿、體格較大、抗病力好、繁殖力強,已廣泛應用于山羊雜交育種(Stemmer et al.,2009;胡艷等,2021),以海南黑山羊為母本、努比亞山羊為父本的雜交后代——?!僚s交山羊具有生長迅速、體型較大、產肉量高等特點。腸道微生物是指動物胃腸道內數(shù)量龐大的微生物群(李世杰等,2024;徐蘭夢等,2024),雜交引起的腸道微生物區(qū)系改變可通過調節(jié)宿主代謝方式,而對宿主的生長性狀產生影響(Ber-gamaschietal.,2020)。因此,從腸道微生物層面入手分析雜交后海南黑山羊腸道微生物組成的變化,有利于揭示?!僚s交山羊擁有良好生長性狀的內在機理,為海南黑山羊的品種選育及飼養(yǎng)管理提供參考依據(jù)?!厩叭搜芯窟M展】動物腸道微生物主要由細菌、真菌、古細菌及病毒等組成(Mabwi et al.,2021)。據(jù)報道,人體內擁有數(shù)萬億的腸道微生物(Sender et al.,2016),且這些腸道微生物在機體代謝及免疫調節(jié)等方面發(fā)揮著至關重要的作用(Zhang et al.,2019;Aron-Wisnewsky et al.,2021)。除了飲食和生活環(huán)境是影響腸道微生物群落結構的重要因素外(Singhetal.,2017;Trinhetal.,2018),遺傳因素對于腸道微生物組成也有影響。Doms等(2022)通過研究小鼠基因組與腸道黏膜微生物組成,并繪制高分辨率遺傳圖譜,結果發(fā)現(xiàn)存在一些具有高度遺傳性的腸道微生物;He等(2023)研究證實,與屯昌豬相比,巴克夏豬與屯昌豬雜交子代的腸道微生物組成已發(fā)生變化,其中,乳酸菌屬(Lactobacillus)相對豐度的降低可能會導致雜交子代腸道免疫能力變弱,而普雷沃氏菌屬(Prevotella)相對豐度的增加賦予雜交子代更好的營養(yǎng)代謝和吸收功能。但也有研究表明,宿主的基因差異對腸道微生物組成幾乎沒有影響。Jiang等(2020)研究發(fā)現(xiàn),在相同的環(huán)境和飼養(yǎng)條件下,海南黑山羊與薩嫩山羊雜交F1代中黑山羊和白山羊的腸道微生物組成差異不明顯;楊蓮等(2021)研究證實,純種柯樂豬和巴×柯雜交豬的腸道微生物組成相似。此外,Qi等(2021)研究發(fā)現(xiàn),無菌仔豬的體重和去脂體重較正常仔豬約降低40%,且伴隨著肌肉發(fā)育不良;Cheng等(2022)將高體重綿羊和低體重綿羊的腸道微生物分別移植到小鼠體內,結果表明,接受高體重綿羊腸道微生物移植的小鼠擁有更高的體重及日增重,可能與腸道中Prevotellaceae_UCG-001和Lachnospiraceae_NK4A1 36_group的相對豐度更高有關;同時有諸多研究證實,豬腸道微生物中的消化球菌屬(Peptococcus)、真桿菌屬(Eubacterium)、月單胞菌屬(Selenomo-nas)、莫拉氏菌屬(Moraxella)、柯林斯菌屬(Collin-sella)、Ruminococcaceae_UCG_014和Ruminococca-ceae_UCG_008等與其體重增長呈正相關(Ding et al.,2019;Oh etal.,2020;姜長津等,2022)。可見,腸道微生物組成與宿主的生長性狀密切相關?!颈狙芯壳腥朦c】至今,針對山羊雜交后代腸道微生物組成變化的相關研究鮮見報道,腸道微生物組成變化對山羊生長性狀的影響機制也尚未明確?!緮M解決的關鍵問題】采集海南黑山羊和海×努雜交山羊的糞便樣本,通過16S rRNA測序分析雜交后山羊腸道微生物組成的變化,并探究腸道微生物與山羊體重及日增重的相關性,旨在揭示雜交山羊擁有良好生長性狀的內在機理,為海南黑山羊的品種選育及海×努雜交山羊的飼養(yǎng)管理提供參考依據(jù)。
1材料與方法
1.1試驗動物及飼養(yǎng)管理
選取出生4 d內的海南黑山羊和?!僚s交山羊各6只(4只公羊和2只母羊),海南黑山羊設為HN組,海×努雜交山羊設為HY組(表1)。所有山羊打耳標標記,采用常規(guī)免疫程序進行免疫,并按相同的標準統(tǒng)一飼養(yǎng)管理,每天8:00、14:00和20:00投喂3次,自由飲水。每天觀察山羊健康情況。
1.2體重及日增重測定
記錄好每只山羊的出生重,至山羊約120日齡后禁食12 h,測量其空腹體重,然后計算平均日增重(表1)。
1.3糞便樣本收集
在120日齡左右,收集12只山羊的糞便樣本,裝入做好標記的15 mL離心管中,立即投入液氮中保存,運回實驗室后轉移至-80℃冰箱保存。HN組山羊及其糞便樣本編號分別為HN1、HN2、HN3、HN4、HN5和HN6,HY組山羊及其糞便樣本編號分別為HY1、HY2、HY3、HY4、HY5和HY6。
1.4腸道微生物16S rRNA測序及數(shù)據(jù)處理
采用TGuide S96磁珠法土壤/糞便基因組DNA提取試劑盒提取山羊糞便DNA,根據(jù)全長引物序列合成攜帶Barcode的特異引物27F(5'-AGRGTTTGA TYNTGGCTCAG-3')和1492R(5'-TASGGHTACCTT GTTASGACTT-3')并進行PCR擴增。PCR反應體系30.0μL:DNA模板1.5μL,KOD OneTM PCR Master Mix 15.0μL,上、下游引物各1.5μL,Nuclease-free Water 10.5μL。擴增程序:95℃預變性2 min;98℃10 s,55℃30 s,72℃1 min 30 s,進行25個循環(huán);72℃延伸2 min。PCR擴增產物經(jīng)Qubit定量分析及1.8%瓊脂糖凝膠電泳檢測合格后混樣,以AMPure PB磁珠進行純化回收,并通過Agilent 2100生物分析儀和Illumina文庫定量試劑盒進行評估,上機測序委托北京百邁客生物科技有限公司完成。
下機數(shù)據(jù)以CCS文件呈現(xiàn),通過Lima v1.7.0根據(jù)Barcode對CCS文件進行識別,得到Raw-CCS數(shù)據(jù)并進行質控過濾:使用Cutadapt 1.9.1去除數(shù)據(jù)中的引物(Martin,2011),得到Clean-CCS數(shù)據(jù);通過UCHIME v4.2鑒定并去除嵌合體序列(Edgar et al.,2011),得到Effective-CCS數(shù)據(jù);然后以USEARCH處理Reads(Edgar,2013),在97.0%的相似水平下進行聚類分析以獲得OTUs。以SILVA為參考數(shù)據(jù)庫,通過樸素貝葉斯分類器結合比對的方法對OTUs特征序列進行分類學注釋,得到每個特征序列對應的物種分類信息,分別在門和屬分類水平上統(tǒng)計各樣本的微生物群落組成。
1.5統(tǒng)計分析
通過QIIME 2 2020.6對山羊腸道微生物群落進行Alpha多樣性分析(Bolyen et al.,2019),使用主坐標分析(PCoA)進行Beta多樣性分析,并利用LEfSe分析篩選出不同組別間具有統(tǒng)計學差異的生物標志物(Segataetal.,2011)。此外,以SPSS 22.0對腸道微生物與山羊體重及日增重進行Pearson相關分析,通過Metastats在不同分類水平上進行組間差異分析。
2結果與分析
2.1山羊腸道微生物16S rRNA測序數(shù)據(jù)質控結果
對12份山羊糞便樣本微生物進行16S rRNA測序,共獲得723879條Raw-CCS,經(jīng)質控過濾,去除嵌合體后得到599689條Effective-CCS,各樣本的Raw-CCS比率均在80.0%以上。其中,HN組得到301589條Effective-CCS,HY組得到298100條Effective-CCS。從圖1可看出,當采樣序列數(shù)達10000時,稀釋曲線逐漸趨于平緩。在97.0%的相似水平下對所有Effective-CCS進行OTU聚類分析,結果(圖2)顯示,共獲得2385個OTUs,其中,共有OTUs為1841個,HN組特有OTUs為265個,HY組特有OTUs為279個。
2.2山羊腸道微生物群落Alpha多樣性分析結果
山羊腸道微生物群落Alpha多樣性分析結果(表2)顯示,HY組的ACE指數(shù)、Chao1指數(shù)、Simp-son指數(shù)和Shannon指數(shù)均高于HN組,但差異不顯著(rgt;0.05,下同)。此外,所有山羊糞便樣本的測序結果覆蓋率均在99.00%以上,即測序結果可代表海南黑山羊和?!僚s交山羊腸道微生物的真實情況。
2.3山羊腸道微生物群落Beta多樣性分析結果
基于布雷柯蒂斯(Bray-Curtis)距離矩陣的PCoA分析結果(圖3)顯示,第一主坐標(PCoA1)解釋了32.70%的差異性,第二主坐標(PCoA2)解釋了13.62%的差異性。2組山羊的大部分樣本坐標呈聚集趨勢,但有小部分樣本偏離主群分布,說明HN組和HY組山羊的腸道微生物組成存在潛在差異。
2.4山羊腸道微生物群落組成分析結果
2.4.1門分類水平上的山羊腸道微生物組成在2組山羊糞便樣本中共檢測到25種菌門,相對豐度排前10的菌門如圖4-A所示。其中,厚壁菌門(Fir-micutes)、擬桿菌門(Bacteroidota)、疣微菌門(Verru-comicrobiota)、彎曲菌門(Campylobacterota)、螺旋菌門(Spirochaetota)和變形菌門(Proteobacteria)為六大優(yōu)勢菌門,其相對豐度總和均占HN組和HY組山羊腸道微生物總量的99.00%以上。經(jīng)Metastats分析發(fā)現(xiàn),在HN組與HY組間各菌門的相對豐度差異均不顯著。
2.4.2屬分類水平上的山羊腸道微生物組成在2組山羊糞便樣本中共檢測到339種菌屬,相對豐度排前25的菌屬如圖4-B所示。山羊腸道微生物群落中相對豐度排名前10的優(yōu)勢菌屬分別是毛螺菌科未知菌屬(unclassified_Lachnospiraceae)、毛螺菌科NK4A136菌群(Lachnospiraceae_NK4A136_group)、UCG_005、uncultured_rumen_bacterium、理研菌科RC9腸道菌群(Rikenellaceae_RC9_gut_group)、擬桿菌屬(Bacteroides)、毛螺菌科AC2044菌群(Lachno-spiraceae_AC2044_group)、克里斯滕森菌科R_7菌群(Christensenellaceae R 7 group)、瘤胃球菌屬(Ru-minococcus)及unclassified_[Eubacterium]_coprosta-noligenes_group,占HN組山羊腸道微生物總量的58.67%以上,占HY組山羊腸道微生物總量的54.80%以上。經(jīng)Metastats分析發(fā)現(xiàn),Monoglobus在HY組的相對豐度顯著高于HN組(Plt;0.05,下同)。
2.5山羊腸道微生物組間差異分析結果
LEfSe分析結果(圖5和圖6)表明,當LDA分值≥2時,HN組山羊腸道微生物的生物標志物有腸球菌科(Enterococcaceae)、腸球菌屬(Enterococcus)、Family_XIII_UCG_001、Clostridium_methylpentosum_group和unclassified_Clostridium_methylpentosum_group;HY組山羊腸道微生物的生物標志物為短促生乳桿菌屬(Levilactobacillus)和顫螺旋菌科未知菌屬(unclassified_Oscillospiraceae)。
2.6腸道微生物與山羊生長速度的相關分析結果
選取山羊腸道微生物群落中相對豐度排前10的菌門和排名前30的菌屬,分別與山羊體重及平均日增重進行Pearson相關分析,結果(圖7)表明:在HN組,另枝菌屬(Alistipes)相對豐度與山羊的體重呈極顯著正相關(Plt;0.01),與平均日增重呈顯著正相關(圖7-B)。在HY組,厚壁菌門相對豐度與山羊的體重及平均日增重呈顯著正相關(圖7-C)。將2組山羊群體合并為一個群體進行分析,結果顯示,厚壁菌門相對豐度與山羊的平均日增重呈顯著正相關(圖7-E),Monoglobus相對豐度與山羊的體重呈顯著正相關(圖7-F)。
3討論
腸道微生物在保障宿主健康及其免疫力方面發(fā)揮著至關重要的作用。腸道微生物通過利用蛋白質和碳水化合物進行代謝,得到短鏈脂肪酸,而短鏈脂肪酸不僅能供給機體能量,還可通過結合G蛋白偶聯(lián)受體及促進組蛋白乙?;确绞?,調控機體健康水平,具有抗炎、維持腸道穩(wěn)態(tài)和預防疾病的功能作用(Simpson and Campbell,2015;Fu et al.,2019;Zhao et al.,2019;van der Hee and Wells,2021)。此外,腸道微生物區(qū)系受飲食、遺傳及外界環(huán)境等因素的影響,而腸道微生物區(qū)系的改變又能進一步影響宿主的表型性狀。山羊作為草食動物,其飲食結構中膳食纖維占比較高,導致山羊腸道內存在大量消化膳食纖維的菌群,以便于將膳食纖維代謝為短鏈脂肪酸,而有利于機體吸收。本研究中,2組山羊雖然采用統(tǒng)一的飼養(yǎng)管理標準,較好地限制了飲食及環(huán)境等因素對機體腸道微生物組成的影響,但其腸道微生物組成仍存在一定差異,由此推測是努比亞山羊基因的引入致使雜交山羊腸道微生物組成較海南黑山羊有所改變,且這些腸道微生物組成變化或許對雜交山羊優(yōu)良性狀的形成有促進作用。
為了從腸道微生物層面揭示雜交山羊擁有良好生長性狀的內在機理,本研究分別采集海南黑山羊和?!僚s交山羊的糞便樣本進行16S rRNA測序分析,結果顯示,在門分類水平上,2組山羊腸道微生物均以厚壁菌門和擬桿菌門為絕對優(yōu)勢菌門,與Cao等(2023)的研究結果一致。厚壁菌門和擬桿菌門作為哺乳動物腸道中最具優(yōu)勢的菌門(Ley et al.,2008),均可分解利用膳食纖維,而增強宿主對營養(yǎng)物質的吸收利用(McKee et al.,2021;Sun et al.,2023)。在屬分類水平上,2組山羊腸道的優(yōu)勢菌屬包括毛螺菌科未知菌屬、毛螺菌科NK4A136菌群、UCG_005及理研菌科RC9腸道菌群等,與Zhi等(2022)的研究結果相似。毛螺菌科各菌屬和理研菌科RC9腸道菌群均可發(fā)酵膳食纖維及其他糖類,而產生大量短鏈脂肪酸,進而調節(jié)宿主生理功能并提供能量,供宿主生長所需及日常活動消耗(Ahmad etal.,2022;Zaplana et al.,2023)。Monoglo-bus于2017年從人類糞便中首次分離獲得,是一種具有果膠及膳食纖維代謝功能的腸道微生物,可能與機體的健康相關(Kimetal.,2017;Li etal.,2024)。本研究發(fā)現(xiàn),Monoglobus在?!僚s交山羊腸道中的相對豐度顯著高于海南黑山羊。在海南黑山羊腸道生物標志物中,腸球菌科及其腸球菌屬包含多種致病性細菌(Fiore et al.,2019);Clostridium_methyl-pentosum_group能以戊糖或甲基戊糖為底物進行代謝,而產生短鏈脂肪酸(Himelbloom and Canale-Parola,1989)。在?!僚s交山羊腸道生物標志物中,短促生乳桿菌屬是一種常見的益生菌,通常存在于母乳中,可產生大量γ-氨基丁酸,具有增強免疫的作用(Wu and Shah,2017;Duraisamyet al.,2022),故推測?!僚s交山羊腸道免疫水平高于海南黑山羊。γ-氨基丁酸是一種抑制性神經(jīng)遞質,當其與受體結合后可引起鉀離子外流及氯離子內流,而導致突觸后膜超極化,降低神經(jīng)元的興奮性。γ-氨基丁酸還具有擴張血管、抗氧化、抗抑郁、促進生長激素分泌及抗腫瘤細胞增殖等功能(Sarasa etal.,2020)。顫螺旋菌科未知菌屬則在膳食纖維的降解過程中發(fā)揮關鍵作用,常被認為是丁酸鹽的生產者(Rang et al.,2023),可為?!僚s交山羊提供了更好的膳食纖維消化能力。
為進一步探究山羊腸道微生物與生長性狀之間的相關性,本研究還分別對2組山羊腸道微生物與體重及平均日增重進行Pearson相關分析,結果發(fā)現(xiàn),海×努雜交山羊腸道微生物中的厚壁菌門與體重及平均日增重呈顯著正相關,可能是厚壁菌門給?!僚s交山羊帶來更好的膳食纖維代謝功能所致,膳食纖維是山羊飼料最重要的組成部分,較高的厚壁菌門相對豐度有助于山羊對飼料的消化吸收。此外,厚壁菌門與擬桿菌門比值較高的腸道微生物結構能更好地幫助宿主利用能量,與宿主的肥胖息息相關(DiBaise etal.,2008)。在海南黑山羊腸道微生物中,另枝菌屬與體重呈極顯著正相關,與平均日增重呈顯著正相關。另枝菌屬是一種革蘭氏陰性厭氧菌,其主要代謝產物為乙酸鹽和丙酸鹽,通常與健康的腸道微生物代謝狀態(tài)相關(Parker et al.,2020;Xu et al.,2022)。另枝菌屬相對豐度與體重增長呈正相關,可能是由于海南黑山羊正處于生長發(fā)育期,擁有健康穩(wěn)定的代謝狀態(tài)是確保發(fā)育期山羊體重增長的關鍵。本研究將2組山羊合并為一個群體進行分析,結果發(fā)現(xiàn),厚壁菌門相對豐度與山羊的平均日增重呈顯著正相關,Monoglobus相對豐度與山羊的體重呈顯著正相關,故推測Monoglobus的膳食纖維及果膠代謝能力對山羊生長發(fā)育有促進作用,但其代謝功能及對宿主機體的影響仍需進一步驗證。
4結論
海南黑山羊與?!僚s交山羊的腸道微生物組成存在一定差異,其中Monoglobus在?!僚s交山羊中的相對豐度顯著高于海南黑山羊。此外,腸道微生物中的厚壁菌門、另枝菌屬和Monoglobus可能是調控山羊生長性能的關鍵菌群,為育肥山羊靶向型飼料添加劑的選擇提供了新方向。
參考文獻(References):
胡艷,張叁保,張瑜,高小童,江雨航,申玉建,韋英明,蔣欽楊.2021.努比亞山羊KISS1基因多態(tài)性與繁殖性狀的關聯(lián)分析[J].南方農業(yè)學報,52(10):2880-2886.[Hu Y,Zhang S B,Zhang Y,Gao X T,Jiang Y H,Shen Y J,Wei Y M,Jiang Q Y.2021.Association analysis on KISS1 gene polymorphism with reproductive traits in Nubian goats[J].Journal of Southern Agriculture,52(10):2880-2886.]doi:10.3969/j.issn.2095-1191.2021.10.029.
姜長津,陳云,潘鵬丞,陳寶劍,關志惠,盧慧林,謝炳坤,覃兆鮮.2022.育肥豬糞便菌群結構及其與生長速度的相關性分析[J].中國畜牧獸醫(yī),49(3):924-931.[Jiang C J,Chen Y,Pan P C,Chen B J,Guan Z H,Lu H L,Xie B K,Qin Z X.2022.Fecal microflora structure and its correla-tion with growth rate in finishing pigs[J].China Animal Husbandryamp;Veterinary Medicine,49(3):924-931.]doi:10.16431/j.cnki.1671-7236.2022.03.014.
李世杰,張金輝,王英民,李嫚嫚,趙航,王榮軍,李俊強,李曉迎,許會艷,菅復春.2024.不同性別湖羊早期定植腸道菌群分析[J].河南農業(yè)大學學報,58(2):249-258.[Li S J,Zhang J H,Wang Y M,Li M M,Zhao H,Wang R J,Li J Q,Li X Y,Xu H Y,Jian F C.2024.Analysis of intestinal flora early colonizing in Hu-sheep of different genders[J].Journal of Henan Agricultural University,58(2):249-258.]doi:10.16445/j.cnki.1000-2340.20231120.001.
孫瑞萍,魏立民,劉圈煒,鄭心力,宋奇,王峰.2015.復合酶制劑對育肥前期海南黑山羊生產性能和血清生化指標的影響[J].安徽農業(yè)科學,43(19):102-103.[Sun R P,Wei L M,Liu Q W,Zheng X L,Song Q,Wang F.2015.Effect of complex enzyme preparation on the growth perfor-mance and serum biochemical indicators in Hainan black goat in early fattening stage[J].Journal of Anhui Agricul-tural Sciences,43(19):102-103.]doi:10.13989/j.cnki.0517-6611.2015.19.040.
徐蘭夢,袁巖聰,彭昕,張城,張宏亮,方成偉,萬堃,何航,張傳師,劉安芳,章杰.2024.復合菌制劑對麻羽肉雞性能和腸道微生物的影響[J].西南大學學報(自然科學版),46(5):87-98.[Xu L M,Yuan Y C,Peng X,Zhang C,Zhang H L,F(xiàn)ang C W,Wan K,He H,Zhang C S,Liu AF,Zhang J.2024.Effects of compound bacterial preparation on performance and gut microbiota of Mayu broilers[J].Journal of Southwest University(Natural Science Edition),46(5):87-98.]doi:10.13718/j.cnki.xdzk.2024.05.008.
楊蓮,燕志宏,黃維江,楊仕鈺,吳光松,顧麗菊,林鵬飛,楊蓉,李平,任麗群,張蕓.2021.純種柯樂豬與巴×柯雜交豬腸道菌群結構的研究[J].動物營養(yǎng)學報,33(3):1359-1371.[Yang L,Yan Z H,Huang W J,Yang S Y,Wu G S,Gu L J,Lin P F,Yang R,Li P,Ren L Q,Zhang Y.2021.Study on intestinal microflora structure of pure-bred Kele pigs and Berkshire×Kele hybrid pigs[J].Chinese Journal of Animal Nutrition,33(3):1359-1371.]doi:10.3969/j.issn.1006-267x.2021.03.019.
葉玉秀,雷湘蘭,程文科,晁哲.2016.海南黑山羊研究進展與產業(yè)發(fā)展思路[J].熱帶農業(yè)科學,36(10):114-118.[Ye Y X,Lei X L,Cheng W K,Chao Z.2016.Research prog-ress and some thoughts of industrial development of Hainan black goats[J].Chinese Journal of Tropical Agri-culture,36(10):114-118.]doi:10.12008/j.issn.1009-2196.2016.10.024.
Ahmad A A,Zhang J B,Liang Z Y,Du M,Yang Y Y,Zheng J S,Yan P,Long R J,Tong B,Han J L,Ding X Z.2022.Age-dependent variations in rumen bacterial community of Mongolian cattle from weaning to adulthood[J].BMC Mi-crobiology,22:213.doi:10.1186/s 12866-022-02627-6.
Aron-Wisnewsky J,Warmbrunn M V,Nieuwdorp M,Clément K.2021.Metabolism and metabolic disorders and the microbiome:The intestinal microbiota associated with obesity,lipid metabolism,and metabolic health-patho-physiology and therapeutic strategies[J].Gastroenterology,160(2):573-599.doi:10.1053/j.gastro.2020.10.057.
Bergamaschi M,Maltecca C,Schillebeeckx C,McNulty N P,Schwab C,Shull C,F(xiàn)ix J,Tiezzi F.2020.Heritability and genome-wide association of swine gut microbiome fea-tureswith growth and fatness parameters[J].Scientific Re-ports,10:10134.doi:10.1038/s41598-020-66791-3.
Bolyen E,Rideout J R,Dillon M R,Bokulich NA,Abnet C C,Al-Ghalith G A,Alexander H,Alm E J,Arumugam M,Asnicar F,Bai Y,Bisanz J E,Bittinger K,BrejnrodA,Bri-slawn C J,Brown C T,Callahan B J,Caraballo-Rodríguez A M,Chase J,Cope E K,Da Silva R,Diener C,Dorrestein P C,Douglas G M,Durall D M,Duvallet C,Edwardson C F,Ernst M,Estaki M,F(xiàn)ouquier J,Gauglitz J M,Gibbons S M,Gibson D L,Gonzalez A,Gorlick K,Guo J R,Hill-mann B,Holmes S,Holste H,Huttenhower C,Huttley G A,Janssen S,Jarmusch A K,Jiang L J,Kaehler B D,Kang K B,Keefe C R,Keim P,Kelley S T,Knights D,Koester I,Kosciolek T,Kreps J,Langille M G I,Lee J,Ley R,Liu Y X,Loftfield E,Lozupone C,Maher M,Marotz C,Mar-tin B D,McDonald D,McIver L J,Melnik A V,Metcalf J L,Morgan S C,Morton J T,Naimey A T,Navas-Molina J A,Nothias L F,Orchanian S B,Pearson T,Peoples S L,Petras D,Preuss M L,Pruesse E,Rasmussen L B,Rivers A,Robeson M S,Rosenthal P,Segata N,Shaffer M,Shiffer A,Sinha R,Song S J,Spear J R,Swafford A D,Thompson L R,Torres P J,Trinh P,Tripathi A,Turnbaugh P J,Ul-Hasan S,van der Hooft J J J,Vargas F,Vázquez-Baeza Y,Vogtmann E,von Hippel M,Walters W,Wan Y H,Wang M X,Warren J,Weber K C,Williamson C H D,Willis A D,Xu Z Z,Zaneveld J R,Zhang Y L,Zhu Q Y,Knight R,Caporaso J G.2019.Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J].Nature Biotechnology,37:852-857.doi:10.1038/s41587-019-0209-9.
Cao Y H,F(xiàn)eng T,Wu Y J,Xu Y X,Du L,Wang T,Luo Y H,Wang Y,Li Z P,Xuan Z Y,Chen S M,Yao N,Gao N L,Xiao Q,Huang K W,Wang X B,Cui K Q,Rehman S U,Tang X F,Liu D W,Han H B,Li Y,Chen W H,Liu Q Y.2023.The multi-kingdom microbiome of the goat gastroin-testinal tract[J].Microbiome,11(1):219.doi:10.1186/s40168-023-01651-6.
Cheng J B,Zhang X X,Zhang D Y,Zhang Y K,Li X L,Zhao Y,Xu D,Zhao L M,Li W X,Wang J H,Zhou B B,Lin C C,Yang X B,Zhai R,Cui P P,Zeng X W,Huang Y L,Ma Z W,Liu J,Wang W M.2022.Sheep fecal transplantation affects growth performance in mouse models by altering gut microbiota[J].Journal of Animal Science,100(11):skac303.doi:10.1093/jas/skac303.
DiBaise J K,Zhang H S,Crowell M D,Krajmalnik-Brown R,Anton Decker G,Rittmann B E.2008.Gut microbiota and its possible relationship with obesity[J].Mayo Clinic Pro-ceedings,83(4):460-469.doi:10.4065/83.4.460.
Ding X H,Lan W S,Liu G,Ni H J,Gu J D.2019.Exploring possible associations of the intestine bacterial microbiome with the pre-weaned weight gaining performance of piglets in intensive pig production[J].Scientific Reports,9:15534.doi:10.1038/s41598-019-52045-4.
Doms S,F(xiàn)okt H,Rühlemann M C,Chung C J,Kuenstner A,Ibrahim S M,F(xiàn)rankeA,Turner L M,Baines J F.2022.Keyfeatures of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice[J].eLife,11:e75419.doi:10.7554/eLife.75419.
Duraisamy S,Husain F,Balakrishnan S,Sathyan A,Subramani P,Chidambaram P,Arokiyaraj S,Al-Qahtani W H,Raja-bathar J,Kumarasamy A.2022.Phenotypic assessment of probiotic and bacteriocinogenic efficacy of indigenous LAB strains from human breast milk[J].Current Issues in Molecular Biology,44(2):731-749.doi:10.3390/cimb440 20051.
Edgar R C,Haas B J,Clemente J C,Quince C,Knight R.2011.UCHIME improves sensitivity and speed of chimera detec-tion[J].Bioinformatics,27(16):2194-2200.doi:10.1093/bioinformatics/btr381.
Edgar R C.2013.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,10:996-998.doi:10.1038/nmeth.2604.
Fiore E,van Tyne D,Gilmore M S.2019.Pathogenicity of enterococci[J].Microbiology Spectrum,7(4):23.doi:10.1128/microbiolspec.gpp3-0053-2018.
Fu X D,Liu Z M,Zhu C L,Mou H J,Kong Q.2019.Nondi-gestible carbohydrates,butyrate,and butyrate-producing bacteria[J].Critical Reviews in Food Science and Nutri-tion,59(S1):S130-S152.doi:10.1080/10408398.2018.15 42587.
He J Y,Zhang Y C,Li H,Xie Y S,Huang G Q,Peng C,Zhao P J,Wang Z G.2023.Hybridization alters the gut microbial and metabolic profile concurrent with modifying intestinal functions in Tunchang pigs[J].Frontiers in Microbiology,14:1159653.doi:10.3389/fmicb.2023.1159653.
Himelbloom B H,Canale-Parola E.1989.Clostridium methyl-pentosum sp.nov.:A ring-shaped intestinal bacterium that ferments only methylpentoses and pentoses[J].Archives of Microbiology,151(4):287-293.doi:10.1007/bf00406 553.
Jiang S M,Huo D X,You Z K,Peng Q N,Ma C C,Chang H B,Lin X,Wang L,Zhang J H.2020.The distal intestinal microbiome of hybrids of Hainan black goats and Saanen goats[J].PLoS One,15(1):e0228496.doi:10.1371/jour-nal.pone.0228496.
Kim C C,Kelly W J,Patchett M L,Tannock G W,Jordens Z,Stoklosinski H M,Taylor J W,Sims I M,Bell T J,Rosen-dale D I.2017.Monoglobus pectinilyticus gen.nov.,sp.nov.,a pectinolytic bacterium isolated from human faeces[J].International Journal of Systematic and Evolutionary Microbiology,67(12):4992-4998.doi:10.1099/ijsem.0.0 02395.
Ley R E,Hamady M,Lozupone C,Turnbaugh P J,Ramey R R,Bircher J S,Schlegel M L,Tucker T A,Schrenzel M D,Knight R,Gordon J I.2008.Evolution of mammals and their gut microbes[J].Science,320(5883):1647-1651.doi:10.1126/science.1155725.
Li W,Guan S H,Hu X L,Zhao H,Cai J H,Li X H,Zhang X Y,Zhu W,Pan X,Li S X,Tian J K.2024.Lysimachiacapillipes Hemsl.saponins ameliorate colorectal cancer in mice via regulating gut microbiota and restoring metabolic profiles[J].Fitoterapia,175:105959.doi:10.1016/j.fitote.2024.105959.
Mabwi H A,Kim E,Song D G,Yoon H S,Pan C H,Komba E V G,Ko G P,Cha K H.2021.Synthetic gut microbiome:Advances and challenges[J].Computational and Structu-ral Biotechnology Journal,19:363-371.doi:10.1016/j.csbj.2020.12.029.
Martin M.2011.Cutadapt removes adapter sequences from high-throughput sequencing reads[J].EMBnet.Journal,17:10-12.doi:10.14806/EJ.17.1.200.
McKee L S,La Rosa S L,Westereng B,Eijsink V G,Pope P B,Larsbrink J.2021.Polysaccharide degradation by the Bac-teroidetes:Mechanisms and nomenclature[J].Environmen-tal Microbiology Reports,13(5):559-581.doi:10.1111/1758-2229.12980.
Oh J K,Chae J P,Pajarillo E A B,Kim S H,Kwak M J,Eun J S,Chee S W,Whang K Y,Kim S H,Kang D K.2020.Association between the body weight of growing pigs and the functional capacity of their gut microbiota[J].Animal Science Journal,91(1):e13418.doi:10.1111/asj.13418.
Parker B J,Wearsch P A,Veloo A C M,Rodriguez-Palacios A.2020.The genus Alistipes:Gut bacteria with emergingimplications to inflammation,cancer,and mental health[J].Frontiers in Immunology,11:906.doi:10.3389/fim-mu.2020.00906.
Qi R L,Sun J,Qiu X Y,Zhang Y,Wang J,Wang Q,Huang J X,Ge L P,Liu Z H.2021.The intestinal microbiota con-tributes to the growth and physiological state of muscle tis-sue in piglets[J].Scientific Reports,11:11237.doi:10.1038/s41598-021-90881-5.
Rang Y F,Liu H,Cheng X B,Li WY,Shi J,Ou G H,Huang H Y,Chen C Y,Xiao X M,Liu C H.2023.Structural charac-terization of pectic polysaccharides from Amaranth cauda-tus leaves and the promotion effect on hippocampal glucagon-like peptide-1 level[J].International Journal of Biological Macromolecules,242(4):124967.doi:10.1016/j.ijbiomac.2023.124967.
Sarasa S B,Mahendran R,Muthusamy G,Thankappan B,Selta D R F,Angayarkanni J.2020.A brief review on the non-protein amino acid,gamma-amino butyric acid(GABA):Its production and role in microbes[J].Current Microbio-logy,77(4):534-544.doi:10.1007/s00284-019-01839-w.
Segata N,Izard J,Waldron L,Gevers D,Miropolsky L,Garrett W S,Huttenhower C.2011.Metagenomic biomarker dis-covery and explanation[J].Genome Biology,12(6):R60.doi:10.1186/gb-2011-12-6-r60.
Sender R,F(xiàn)uchs S,Milo R.2016.Revised estimates for the number of human and bacteria cells in the body[J].PLoS Biology,14(8):e1002533.doi:10.1371/journal.pbio.1002533.
Simpson H L,Campbell B J.2015.Review article:Dietary fibre-microbiota interactions[J].Alimentary Pharmacologyamp;Therapeutics,42(2):158-179.doi:10.1111/apt.13248.
Singh R K,Chang H W,Yan D,Lee K M,Ucmak D,Wong K,Abrouk M,F(xiàn)arahnik B,Nakamura M,Zhu T H,Bhutani T,Liao W.2017.Influence of diet on the gut microbiome and implications for human health[J].Journal of Translational Medicine,15:73.doi:10.1186/s 12967-017-1175-y.
Stemmer A,Siegmund-Schultze M,Gall C,Z?rate A V.2009.Development and worldwide distribution of the Anglo Nubian goat[J].Tropical and Subtropical Agroecosys-tems,11:185-188.
Sun Y G,Zhang S S,Nie Q X,He H J,Tan H Z,Geng F,Ji H H,Hu J L,Nie S P.2023.Gut firmicutes:Relationship with dietary fiber and role in host homeostasis[J].Critical Reviews in Food Science and Nutrition,63(33):12073-12088.doi:10.1080/10408398.2022.2098249.
Trinh P,Zaneveld J R,Safranek S,Rabinowitz P M.2018.One health relationships between human,animal,and environ-mental microbiomes:A mini-review[J].Frontiers in Pub-lic Health,6:235.doi:10.3389/fpubh.2018.00235.
van der Hee B,Wells J M.2021.Microbial regulation of host physiology by short-chain fatty acids[J].Trends in Micro-biology,29(8):700-712.doi:10.1016/j.tim.2021.02.001.
Wu Q L,Shah N P.2017.Highγ-aminobutyric acid production from lactic acid bacteria:Emphasis on Lactobacillus brevis as a functional dairy starter[J].Critical Reviews in Food Science and Nutrition,57(17):3661-3672.doi:10.1080/10408398.2016.1147418.
Xu Z L,Jiang W,Huang W L,Lin Y,Chan F K L,Ng S C.2022.Gut microbiota in patients with obesity and meta-bolic disorders—A systematic review[J].Genesamp;Nutri-tion,17:2.doi:10.1186/s 12263-021-00703-6.
Zaplana T,Miele S,Tolonen A C.2023.Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics[J].Frontiers in Bioengineering and Biotechnology,11:1324 396.doi:10.3389/fbioe.2023.1324396.
Zhang C X,Wang H Y,Chen T X.2019.Interactions betweenintestinal microflora/probiotics and the immune system[J].BioMed Research International,2019:6764919.doi:10.1155/2019/6764919.
Zhao J F,Zhang X Y,Liu H B,Brown M A,Qiao S Y.2019.Dietary protein and gut microbiota composition and func-tion[J].Current Proteinamp;Peptide Science,20(2):145-154.doi:10.2174/1389203719666180514145437.
Zhi W B,Tang K,Yang J S,Yang T S,Chen R,Huang J M,Tan H S,Zhao J G,Sheng Z W.2022.Research on the gut microbiota of Hainan black goat[J].Animals,12(22):3129.doi:10.3390/ani 12223129.
(責任編輯:蘭宗寶)