摘要:
應(yīng)用正定二次型構(gòu)造比復(fù)單位球Bn更廣泛的區(qū)域,并在該域上利用雙曲度量證明了Roper-Suffridge算子保凸性、保星形和保ε-星形性。該結(jié)果豐富了已有Roper-Suffridge算子的研究,給出了推廣Roper-Suffridge算子的不一樣思路。
關(guān)鍵詞:
雙全純映照; Roper-Suffridge算子; ε-星形映照; 雙曲度量; 正定二次型
中圖分類號: O 174.5文獻標(biāo)志碼: A ""文章編號: 1000-5013(2025)02-0237-04
Roper-Suffridge Operators and ε-Starlike Mappings
CHEN Mingxin, LIN Xiong, WANG Jianfei
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract: The positive definite quadratic form is utilized to construct a domain that is wider than the complex unit ball Bn, and preserved the convexity, starlikeness, and ε-starlikeness by Roper-Suffridge operators" are proved through the application of hyperbolic metric. This result enriches the existing research on Roper-Suffridge operators and provides a different approach to extending Roper-Suffridge operators.
Keywords:
biholomorphic mapping; Roper-Suffridge operator; ε-starlike mapping; hyperbolic metric; positive definite quadratic form
參考文獻:
[1] ROPER K A,SUFFRIDGE T J.Convex mappings on the unit ball of Cn[J].Journal d′Analyse Mathématique,1995,65(1):333-347.DOI:10.1007/BF02788776.
[2] GRAHAM I,KOHR G.Univalent mappings associated with the Roper-Suffridge extension operator[J].Journal d′Analyse Mathématique,2000,81(1):331-342.DOI:10.1007/BF02788995.
[3] GONG Sheng,LIU Taishun.On the Roper-Suffridge extension operator[J].Journal d′Analyse Mathématique,2002,88(1):397-404.DOI:10.1007/BF02786583.
[4] WANG Jianfei,LIU Taishun.The Roper-Suffridge extension operator and its applications to convex mappings in C2[J].Transactions of the American Mathematical Society,2018,370(11):7743-7759.DOI:10.1090/tran/7221.
[5] 王建飛,劉太順,唐笑敏.雙曲度量和Roper-Suffridge算子[J].中國科學(xué)(數(shù)學(xué)),2022,52(4):369-380.DOI:10.1360/SSM-2020-0243.
[6] GRAHAM I,HAMADA H,KOHR G,et al.Extension operators for locally univalent mappings[J].Michigan Mathematical Journal,2002,50(1):37-55.DOI:10.1307/mmj/1022636749.
[7] GRAHAM I,HAMADA H,KOHR G.Extension operators and subordination chains[J].Journal of Mathematical Analysis and Applications,2012,386(1):278-289.DOI:10.1016/j.jmaa.2011.07.064.
[8] LIU Taishun,XU Qinghua.Loewner chains associated with the generalized Roper-Suffridge extension operator[J].Journal of Mathematical Analysis and Applications,2006,322(1):107-120.DOI:10.1016/j.jmaa.2005.08.055.
[9] GRAHAM I,HAMADA H,KOHR G.Parametric representation of univalent mappings in several complex variables[J].Canadian Journal of Mathematics,2002,54(2):324-351.DOI:10.4153/CJM-2002-011-2.
[10] FENG Shuxia,LIU Taishun.The generalized Roper-Suffridge extension operator[J].Acta Mathematica Scientia (English Edition),2008,28(1):63-80.DOI:10.1016/S0252-9602(08)60007-7.
[11] LIU Mingsheng,ZHU Yucan.On the extension operator in Banach spaces[J].Advances in Mathematics,2005,34(4):506-508.DOI:10.11845/sxjz.2005.34.04.0506.
[12] 劉名生,朱玉燦.有界完全Reinhardt域上推廣的Roper-Suffridge算子[J].中國科學(xué)(A輯: 數(shù)學(xué)),2007,37(10):1193-1206.DOI:10.1360/za2007-37-10-1193.
[13] MUIR J R.A modification of the Roper-Suffridge extension operator[J].Computational Methods and Function Theory,2005,5(1):237-251.DOI:10.1007/BF03321096.
[14] HAMADA H,KOHR G.Roper-Suffridge extension operator and the lower bound for the distortion[J].Journal of Mathematical Analysis and Applications,2004,300(2):454-463.DOI:10.1016/j.jmaa.2004.06.052.
[15] BEARDON F,MINDA D.The hyperbolic metric and geometric function theory[C]∥Proceedings of the International Quasiconformal Mappings and Their Applications.New Delhi: Narosa Publishing House,2007:9-56.
[16] GUSTAFSSON B.On the convexity of a solution of Liouville′s equation[J].Duke Mathematical Journal,1990,60(2):303-311.DOI:10.1215/S0012-7094-90-06012-0.
(責(zé)任編輯:" 黃曉楠 "英文審校: 黃心中)
收稿日期: 2024-01-04
通信作者: 陳銘新(1967-),男,副教授,博士,主要從事單復(fù)變與多復(fù)變函數(shù)論的研究。E-mail:chernmx@hqu.edu.cn。
基金項目: 國家自然科學(xué)基金資助項目(12071161)
http:∥hdxb.hqu.edu.cn/