摘要 芬頓反應(yīng)是一種能產(chǎn)生強氧化性羥基自由基(·OH)的綠色氧化反應(yīng),選用三聚磷酸鈉(STPP)為外加電解質(zhì)、金剛石為磨粒,比較STPP、NaCl和Na2SO4對芬頓反應(yīng)中金剛石磨粒分散穩(wěn)定性的影響,并研究該綠色拋光液在不同pH值下對電芬頓拋光液中金剛石磨粒的抗沉降能力、Zeta電位以及拋光液粒徑的影響,并對GaN晶圓的拋光效果進行驗證。結(jié)果表明:STPP能與芬頓反應(yīng)拋光液中的Fe2+絡(luò)合,防止多余的金屬陽離子流入擴散層,提高了金剛石磨粒的分散穩(wěn)定性,且STPP能有效改善芬頓反應(yīng)拋光液中金剛石磨粒團聚的現(xiàn)象;此外,STPP使拋光液能在偏中性環(huán)境中具有較好的分散性,且含有STPP的綠色拋光液可在中性環(huán)境下實現(xiàn)對GaN晶圓高效、無損的超精密拋光。
關(guān)鍵詞 芬頓反應(yīng);電化學(xué)機械拋光;金剛石磨粒分散;三聚磷酸鈉;GaN
中圖分類號 TQ164; TG73; TG147 文獻標(biāo)志碼 A
文章編號 1006-852X(2025)01-0113-09
伴隨近年來智能制造、集成電路以及5G通信領(lǐng)域的發(fā)展,以氮化鎵(GaN)為典型的第三代寬禁帶半導(dǎo)體材料[1],因其具有高熱導(dǎo)率、高電子遷移率、優(yōu)異的耐腐蝕性能和抗輻照能力而受到世界各國政府、企業(yè)的高度重視[2]。但GaN作為襯底材料使用時,其需要原子級的光滑表面[3]。然而,GaN材料具有高硬、脆和化學(xué)惰性等特性,對其表面平坦化難度巨大?;瘜W(xué)機械拋光(chemical mechanical polishing,CMP)是目前應(yīng)用較廣且能實現(xiàn)全局平坦化的超精密表面加工技術(shù),其原理是通過化學(xué)反應(yīng)與機械磨削的協(xié)同作用,對晶圓表層材料進行去除,從而得到光滑的平坦表面[3]。在以往的拋光研究和生產(chǎn)中,為了提高材料表面去除速率,通常會使用強酸、強堿或強腐蝕性的氧化劑來增強化學(xué)作用[4],以大幅度提升加工效率,但這會極大程度地降低拋光加工的安全性。
芬頓反應(yīng)利用Fe2+與H2O2反應(yīng)生成具有強氧化性的羥基自由基(·OH),從而被視作一種新型的綠色氧化反應(yīng)。近年來,芬頓反應(yīng)常被用作電化學(xué)機械拋光(electrochemical mechanical polishing,ECMP)GaN的化學(xué)氧化劑來源。楊軍等[5]發(fā)現(xiàn)電場的加入能在拋光液中重新生成新的Fe2+和H2O2,保證了拋光液中·OH的供給量與存在壽命,且ECMP相對于CMP技術(shù)有著更高的加工效率。在磨粒的選取中,金剛石磨粒被視作工程陶瓷、玻璃、半導(dǎo)體等硬脆材料高效精密加工的重要載體[6],其具有較長的使用壽命和較高的加工效率[7]。但在拋光過程中,金剛石磨粒會出現(xiàn)團聚現(xiàn)象,增加拋光液中磨粒的平均粒徑,從而影響GaN最終的表面精度,且芬頓反應(yīng)中Fe2+的加入會使此現(xiàn)象變得更加顯著。針對這一問題,在加工前一般會對拋光液進行超聲分散,或在拋光液中添加一定量的分散劑降低金剛石磨粒的表面能[8],從而改善磨粒的團聚和沉降現(xiàn)象。
向芬頓反應(yīng)拋光液中添加Na2SO4或NaCl等電解質(zhì)能增強拋光液的導(dǎo)電性。ZHU等[9]使用Na2SO4為電解質(zhì),制備了新型氮化碳改性電極電芬頓溶液。朱蒙[10]研究了NaCl電解質(zhì)在基于硫酸根自由基的電催化耦合高級氧化體系和4個不同的電芬頓體系的作用機制。程磊[11]研究發(fā)現(xiàn):在以金剛石為磨粒的芬頓反應(yīng)拋光液中加入NaCl或Na2SO4電解質(zhì),提高了拋光液中金剛石磨粒的沉降速率。鄧鳳霞[12]發(fā)現(xiàn)三聚磷酸鈉(STPP)能增強芬頓體系的氧化能力。此外,為了防止拋光液中產(chǎn)生含鐵沉淀,芬頓反應(yīng)拋光液的pH值通?!?。DO等[13]發(fā)現(xiàn)越高的pH值使得H2O2的穩(wěn)定性越差,可利用的Fe2+越少。為滿足pH值≤3的要求,就必須使常規(guī)芬頓反應(yīng)的拋光液呈強酸性。張碧波等[14]研究發(fā)現(xiàn):檸檬酸無毒且具有生物降解性,可在拋光液偏中性的條件下激活芬頓反應(yīng)。
為比較STPP、NaCl和Na2SO4對芬頓反應(yīng)中金剛石磨粒分散穩(wěn)定性的影響,以檸檬酸和氫氧化鈉為pH調(diào)節(jié)劑,深入研究綠色拋光液在不同pH值下的芬頓反應(yīng)及其對金剛石磨粒的抗沉降能力、Zeta電位以及拋光液粒徑的影響,并對GaN晶圓的拋光效果進行驗證。
1實驗
1.1拋光液制備
采用平均粒徑為180.0 nm的納米金剛石磨粒,分別將3份5 g金剛石磨粒加入500 mL去離子水中,同時加入質(zhì)量分數(shù)為5%的H2O2和0.2 g FeSO4·7H2O為芬頓反應(yīng)原拋光液;再分別加入質(zhì)量分數(shù)為1%的NaCl、Na2SO4和STPP電解質(zhì)制備3組芬頓反應(yīng)拋光液(拋光液分別命名為B、C、D),與未額外加入任何電解質(zhì)的原芬頓反應(yīng)拋光液(拋光液命名為A,除了無電解質(zhì)外,其他完全相同)對比;且利用型號為pHS-25的pH計測量拋光液的pH值,拋光液A~D在pH調(diào)節(jié)劑加入前的pH值分別為5.5、5.8、5.5和8.0。4種拋光液均勻攪拌5 min后在20 kHz頻率下超聲分散10 min,選用檸檬酸和氫氧化鈉為拋光液pH調(diào)節(jié)劑,將4組拋光液的pH調(diào)至3.0。同時,制作pH為6.0的加入STPP電解質(zhì)的拋光液(該組拋光液命名為E,其制作過程與拋光液D的制作過程完全相同,只是檸檬酸的加入量不同,以使其pH不同),作為對照組初步探究pH值對STPP電解質(zhì)下金剛石磨??钩两敌Ч挠绊憽4送?,再制作僅添加金剛石磨粒與去離子水的純金剛石拋光液F(pH為7.0)。6組拋光液的成分如表1所示。
此外再制備5組拋光液,其加入的物質(zhì)、含量及分散過程和參數(shù)與拋光液D在pH調(diào)節(jié)劑加入前的完全相同,只是后續(xù)加入pH調(diào)節(jié)劑的種類和含量不同。未添加pH調(diào)節(jié)劑的拋光液,即原始拋光液的pH值為8.0,其他拋光液的pH值是在8.0的基礎(chǔ)上伴隨檸檬酸的加入而降低,伴隨氫氧化鈉的加入而升高。5組拋光液的最終pH值分別為5.0、6.0、7.0、8.0、9.0,并分別命名為1、2、3、4、5,作為拋光液D的pH對照組使用。
1.2拋光液性能分析
1.2.1金剛石磨??钩两祵嶒?/p>
分別選取上述拋光液A~E和1~5各50 mL加入容積為50 mL的規(guī)則圓柱型玻璃瓶中進行磨粒沉降實驗,觀察不同組拋光液中金剛石磨粒的分散穩(wěn)定情況。1.2.2 Zeta電位測定
取分散好的拋光液各2 mL,將其均勻稀釋1 000倍后,利用Zetasizer Nano ZS90納米粒徑電位分析儀分別測量A~D拋光液在pH調(diào)節(jié)劑加入前后的Zeta電位,以及編號為1~5的拋光液稀釋相同倍數(shù)后的Zeta電位。
1.2.3粒徑分析
為了驗證STPP對拋光液中金剛石磨粒團聚的影響,利用Zetasizer Nano ZS90納米粒徑電位分析儀測量純金剛石拋光液F(由質(zhì)量分數(shù)為1%的上述金剛石磨粒與去離子水混合而成,溶液pH值為7.0),pH值調(diào)節(jié)至3.0時的原始芬頓組樣品A,外加質(zhì)量分數(shù)分別為1%NaCl、Na2SO4和STPP的樣品B、C、D,以及未添加pH調(diào)節(jié)劑(pH為8.0的STPP)的樣品4這6組樣品中磨粒的粒徑。
1.3 GaN-ECMP實驗
實驗采用自研的ECMP拋光機及配制的A、B、C、D拋光液以及配制的1、2、3、4、5拋光液分別對GaN進行ECMP,拋光參數(shù)是:拋光壓力為1.2 kg,拋光壓強為27.6 kPa,拋光的陰陽兩極導(dǎo)電材料均選取耐腐蝕不銹鋼材料,氧化電壓為7.5 V,拋光頭和下拋光盤轉(zhuǎn)速分別為70和110 r/min。為保證拋光液在磨拋界面的存在量,選用半徑為150 mm的凹槽型拋光盤,拋光頭和下拋光盤偏心距為35 mm,拋光時長為15 min。GaN晶圓的尺寸為10.0 mm×10.0 mm×0.5 mm。
GaN晶圓在拋光前后都選用KQ3200DA型數(shù)控超聲波清洗器在無水乙醇下進行15 min的超聲清洗,對清洗完畢后的GaN晶圓進行吹干處理。采用廈門易仕特儀器有限公司的ST-E120B II超精密天平對拋光前后的晶圓質(zhì)量進行稱量,天平精度為0.01 mg。選取5次穩(wěn)定稱量結(jié)果的均值,計算其表面的材料去除率RMRR:
RMRR=Δm/ρSt(1)
式中:Δm為精密天平稱量GaN樣品拋光前后的質(zhì)量差的平均值,mg;S為樣品的表面積,cm2;t為樣品拋光時間,h;RMRR單位為nm/h。
利用Bruker公司的Dimension Icon型原子力顯微鏡表征樣品的表面粗糙度,用樣品的表面輪廓算術(shù)平均偏差Ra表示。每個晶圓以幾何中心為正中心,分別選取晶圓幾何中心點及與幾何中心點均勻分布的其他4個點,4點距離中心點均為30 mm,分別掃描5個10μm×10μm區(qū)域的粗糙度值,樣品的表面粗糙度Ra值取5組粗糙度值的均值。
2結(jié)果與討論
2.1電解質(zhì)對芬頓反應(yīng)中金剛石磨粒分散穩(wěn)定性的影響
圖1為不同時間下A~E拋光液的抗沉降效果。如圖1所示:在pH為3.0時,原始芬頓反應(yīng)拋光液A、加入NaCl和加入Na2SO4電解質(zhì)的拋光液B和C相對于加入STPP的拋光液D的抗降沉能力更弱,且B和C拋光液對金剛石磨粒抗沉降能力提升的效果不明顯,前3組在前10 min時底部就出現(xiàn)明顯的分層現(xiàn)象,即STPP能夠提高芬頓反應(yīng)拋光液中金剛石磨粒的抗沉降能力。對比pH為3.0和6.0時的D、E樣品時發(fā)現(xiàn):拋光液D中金剛石的抗沉降能力也明顯低于E樣品的,即STPP能使金剛石磨粒在pH為6.0的環(huán)境中有更好的抗沉降能力。
圖2為不同時間下1~5拋光液的抗沉降效果。如圖2所示:外加STPP下,1~5拋光液的pH值分別為5.0~9.0,以未添加pH調(diào)節(jié)劑(pH=8.0)的拋光液4為基礎(chǔ),伴隨酸或堿性pH調(diào)節(jié)劑的加入,拋光液中磨粒的抗沉降能力隨pH調(diào)節(jié)劑添加量的增加而減弱。即無論對原始STPP芬頓反應(yīng)拋光液做任何pH值調(diào)節(jié),都會使拋光液中磨粒的抗沉降能力降低,且酸或堿性電解質(zhì)的添加量越多,拋光液的抗沉降能力越弱。對比pH為7.0和pH為9.0的拋光液3和5,發(fā)現(xiàn)堿性pH調(diào)節(jié)劑比酸性pH調(diào)節(jié)劑對芬頓拋光液中金剛石磨??钩聊芰Φ南魅醺鼮轱@著。
Zeta電位是評價拋光液穩(wěn)定性的重要指標(biāo)。通常認為:Zeta電位的絕對值越高,磨粒表面所帶的電荷數(shù)就越多,磨粒之間的斥力越大,相互之間的距離也就越遠,磨粒在拋光液中的懸浮穩(wěn)定性就越好。將表1中A~D 4組拋光液稀釋1 000倍后,對比其在pH調(diào)節(jié)前及調(diào)節(jié)至3.0后的Zeta電位的大小,結(jié)果如圖3所示。
圖3的結(jié)果顯示:pH調(diào)節(jié)前(A~D的pH值范圍為5.5~8.0)金剛石磨粒在原始芬頓反應(yīng)拋光液A中的Zeta電位為?21.2 mV,在含NaCl和Na2SO4電解質(zhì)的B和C液中Zeta電位分別為?16.1 mV和?16.7 mV,在含STPP電解質(zhì)的D液中Zeta電位為?35.6 mV。Zeta電位絕對值gt;30.0 mV時表明拋光液體系趨于穩(wěn)定。通過Zeta電位絕對值比較發(fā)現(xiàn):NaCl和Na2SO4電解質(zhì)的加入使得拋光液的Zeta電位絕對值更小,穩(wěn)定性變得更差;而STPP的加入極大程度上提高了芬頓反應(yīng)拋光液中金剛石磨粒的分散穩(wěn)定性。同時,在pH調(diào)節(jié)至3.0后,所有拋光液的Zeta電位的絕對值相比pH調(diào)節(jié)前的都略有降低,說明拋光液的穩(wěn)定性有所下降,即酸性電解質(zhì)的加入可能會降低拋光液的穩(wěn)定性。
單個顆粒在膠體溶液中是呈現(xiàn)電中性的,當(dāng)2個顆粒間的距離減小到雙電層結(jié)構(gòu)時,相同電荷間會相互排斥,形成一個雙電層斥力[11]。拋光液中外加的電解質(zhì)會打破拋光液中原有的電荷濃度平衡,使得溶液內(nèi)電荷濃度增加。當(dāng)pH調(diào)節(jié)至3.0時,原芬頓反應(yīng)拋光液中存在大量Fe3+,NaCl和Na2SO4電解質(zhì)的加入也會帶來大量的Na+,使拋光液中金屬陽離子增多,金剛石磨粒表面吸附的金屬陽離子也逐漸增多,而磨粒表面的吸附位點是有限的,當(dāng)其對陽離子的電荷吸附達到飽和時,多余的金屬陽離子會流入擴散層并對擴散層進行擠壓,導(dǎo)致雙電層模型中的擴散層厚度減小、雙電層力減小,從而使靜電斥力也減小,使得拋光液的抗沉降能力下降[11]。圖4為雙電層重疊示意圖。
STPP由于能與芬頓反應(yīng)中的Fe2+作用生成Fe2+-STPP絡(luò)合物,很大程度上降低了拋光液中游離態(tài)Fe2+的含量,其原理如式(2)所示。拋光液中陽離子濃度降低,減緩了多余的金屬陽離子流入擴散層而導(dǎo)致的Zeta電位絕對值降低,從而提高了拋光液的抗沉降能力。
Fe2++STPP---!Fe2+-STPP(2)
圖5為STPP下不同pH值拋光液的Zeta電位。如圖5所示:將拋光液稀釋1 000倍后,外加STPP下pH為5.0~9.0的1~5拋光液,伴隨酸性或堿性調(diào)節(jié)劑的加入,拋光液的Zeta電位絕對值也都降低,且堿性物質(zhì)的加入對拋光液Zeta電位絕對值降低的效果較酸性物質(zhì)的更加明顯,即拋光液在偏中性環(huán)境中有較好的穩(wěn)定性。伴隨著電解質(zhì)濃度的增加,拋光液的抗沉降能力有減弱的趨勢,最優(yōu)的Zeta電位絕對值為pH=8.0時的?41.6 mV,其結(jié)果與對應(yīng)的圖2沉降結(jié)果一致。
圖6顯示了不同電解質(zhì)及pH下拋光液中金剛石磨粒平均粒徑大小,圖中的紅色基線表示金剛石磨粒的原始平均粒徑為180.0 nm。
從圖6可以看出:純金剛石拋光液F出現(xiàn)磨粒輕微團聚現(xiàn)象,拋光液中磨粒的平均粒徑為214.4 nm;此外,原始芬頓反應(yīng)拋光液A中磨粒的平均粒徑最大,為629.5 nm;而加入NaCl和加入Na2SO4電解質(zhì)的拋光液B和C的磨粒平均粒徑有所降低,分別為524.9 nm及584.7 nm,但平均粒徑仍較大。這表明金剛石磨粒發(fā)生了嚴重團聚,NaCl和Na2SO4電解質(zhì)的加入對團聚現(xiàn)象的改善并不明顯。但在加入STPP電解質(zhì)的pH值為3.0的D拋光液中,拋光液中磨粒的平均粒徑降至262.9 nm;而在加入STPP電解質(zhì)的pH值為8.0的拋光液4中,磨粒的平均粒徑降至最低,為193.5 nm,比純金剛石磨粒的原始平均粒徑稍大。因此,相比其他種類的電解質(zhì),STPP電解質(zhì)的加入極大程度上改善了金剛石磨粒在芬頓反應(yīng)拋光液中的團聚現(xiàn)象,使原始平均粒徑為180.0 nm的金剛石磨粒在拋光液中穩(wěn)定在193.5 nm。
2.2 STPP對金剛石磨粒拋光GaN性能的影響
圖7為A、B、C、D 4種拋光液ECMP GaN后對其表面形貌及拋光效果的影響。
圖7a~圖7d的GaN表面形貌表明:加入STPP的拋光液加工GaN后,其表面幾乎沒有出現(xiàn)其他對比組中因磨粒團聚而出現(xiàn)的較深的劃痕現(xiàn)象,表面質(zhì)量最好,表面粗糙度最低。如圖7e所示:原始芬頓反應(yīng)拋光液A拋光后的GaN RMRR僅為286.3 nm/h,表面Ra為0.909 nm;含NaCl和Na2SO4電解質(zhì)的B和C拋光液拋光后的RMRR較為接近,分別為363.8 nm/h和373.6 nm/h,表面Ra分別為0.647 nm和0.724 nm;而加入STPP的拋光液D的RMRR高達705.3 nm/h,約為拋光液A的2.5倍,表面Ra為0.449 nm。所以,拋光液D的RMRR遠高于其他3組的,且材料表面的Ra最低。
圖8是編號為1~5的拋光液ECMP GaN后對其拋光效果及表面形貌的影響。
圖8a~圖8e的GaN表面形貌表明:加入STPP后,pH為7.0的拋光液3加工的GaN表面幾乎沒有明顯劃痕,其表面質(zhì)量最好,表面粗糙度最低。如圖8f所示:加入STPP的1~5拋光液拋光后的GaN RMRR分別為670.3、730.4、912.0、813.6和550.4 nm/h,材料表面的Ra分別為0.640、0.482、0.321、0.620和0.753 nm,表明拋光液3(pH為7.0)的RMRR高于其他4組的,且材料表面的Ra最低。其結(jié)果并不完全與圖6所示的平均粒徑變化趨勢一致,即決定GaN拋光效果的因素,除了磨粒的分散性外還與不同pH下拋光液的氧化效果、Fe2+的利用率等因素有關(guān)。
2.3 STPP下電芬頓液ECMP原理
芬頓反應(yīng)可利用Fe2+與H2O2反應(yīng)生成具有強氧化性的羥基自由基(·OH),伴隨著STPP的加入,溶液中的Fe2+與STPP形成較為穩(wěn)定的絡(luò)合物Fe2+-STPP,且在H2O2通入后迅速與其反應(yīng)生成Fe3+-STPP并產(chǎn)生·OH,有效避免了大量游離態(tài)Fe3+的存在而產(chǎn)生Fe(OH)3沉淀;此外由于電場的加入,生成的Fe3+-STPP在陰極部分會被還原成Fe2+-STPP,并伴隨拋光液的流動,陰極產(chǎn)生的Fe2+-STPP會與陽極新產(chǎn)生的H2O2反應(yīng)再次生成·OH[5]。STPP作用下的ECMP原理[12]如圖9所示,其化學(xué)反應(yīng)如式(3)~式(8)所示。
3結(jié)論
(1)在以金剛石為磨粒的芬頓反應(yīng)拋光液中添加STPP,拓寬芬頓反應(yīng)拋光液pH值,打破其pH值≤3.0的限制,使拋光液在偏中性環(huán)境下不會產(chǎn)生鐵絮狀物沉淀。
(2)分散實驗結(jié)果表明,STPP能夠在偏中性環(huán)境中提高芬頓反應(yīng)拋光液中金剛石磨粒的抗沉降能力,且堿性pH調(diào)節(jié)劑比酸性pH調(diào)節(jié)劑對拋光液中金剛石磨??钩聊芰Φ南魅醺鼮轱@著。
(3)Zeta電位測量結(jié)果顯示,STPP的加入極大程度上提升了芬頓反應(yīng)拋光液中金剛石磨粒的分散穩(wěn)定性。在pH調(diào)節(jié)至3.0后,拋光液的穩(wěn)定性有所下降。粒徑測量結(jié)果顯示,當(dāng)STPP電解質(zhì)拋光液pH=8.0偏中性時,拋光液中的磨粒粒徑降至最低,為193.5 nm。
(4)在pH為3.0時,不同電解質(zhì)拋光液在芬頓反應(yīng)條件下ECMP GaN的結(jié)果顯示,STPP拋光液加工的GaN的RMRR比原芬頓拋光液的提高了約2.5倍,且材料表面的Ra值最低為0.449 nm。STPP拋光液在不同pH值下ECMP GaN的結(jié)果顯示,在拋光液pH為7.0時,加工GaN的RMRR最高為912.0 nm/h,材料表面的Ra值最低為0.321 nm。
參考文獻:
[1]唐林江,陳滔,張寶林,等.GaN基半導(dǎo)體技術(shù)的空間應(yīng)用研究與展望[J].空間電子技術(shù),2018,15(2):60-67.
TANG Linjiang,CHEN Tao,ZHANG Baolin,et al.Space application research and prospect of GaN-based semiconductor technology[J].Space Electronics Technology,2018,15(2):60-67.
[2]顧雨萍,李向江,吳秀梅.第三代半導(dǎo)體材料發(fā)展前景分析[J].中國集成電路,2023,32(3):22-25.
GU Yuping,LI Xiangjiang,WU Xiumei.Development prospect of third generation semiconductor materials[J].China Integrated Circuits,2023,32(3):22-25.
[3]ARJUNAN A C,SINGH D,WANG H T,et al.Improved free-standing GaN schottky diode characteristics using chemical mechanical polishing[J].Applied Surface Science,2008,255(5):3085-3089.
[4]GAO P L,ZHANG Z Y,WANG D,et al.Research progress of green chemical mechanical polishing slurry[J].Acta Physica Sinica,2021,70(6):234130440.
[5]楊軍,陳澤鵬,郭雅茹,等.電芬頓降解抗生素廢水研究進展[J].當(dāng)代化工,2023,52(10):2427-2433.
YANG Jun,CHEN Zepeng,GUO Yaru,et al.Research progress on the degradation of antibiotic wastewater by electrofenton[J].Contemporary Chemical Industry,2023,52(10):2427-2433.
[6]馬成新,史小華.淺談金剛石工具的現(xiàn)狀與發(fā)展趨勢[J].超硬材料工程,2015,27(5):45-48.
MA Chengxin,SHI Xiaohua.A brief discussion on the current status and development trends of diamond tools[J].Journal of Superhard Materials Engineering,2015,27(4):45-28.
[7]董彥輝,牛風(fēng)麗,任澤.金剛石磁性磨料與SiC磁性磨料的研磨加工性能分析[J].金剛石與磨料磨具工程,2023,43(3):379-385.
DONG Yanhui,NIU Fengli,REN Ze.Analysis of abrasive performance of diamond magnetic abrasives and SiC magnetic abrasives[J].Diamond and Abrasive Tools Engineering,2023,43(3):379-385.
[8]DERJAGUIN B,LANDAU L.Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles insolutions of electrolytes[J].Progress in Surface Science,1993,43(1/2/3/4):30-59.
[9]ZHU Y,QIU S,DENG F,et al.Enhanced degradation of sulfathiazole by electro-Fenton process using a novel carbon nitride modified electrode[J].Carbon,2019,145:321-332.
[10]朱蒙.氯化鈉電解質(zhì)在電催化氧化體系降解有機污染物的作用研究[D].南昌:南昌航空大學(xué),2022.
ZHU Meng.Study on the degradation of organic pollutants by sodium chloride electrolyte in electrocatalytic oxidation system[D].Nanchang:Nanchang Hangkong University,2022.
[11]程磊.基于電解質(zhì)調(diào)控的熔石英磁流變拋光機理研究[D].綿陽:西南科技大學(xué),2023.
CHENG Lei.Research on magnetorheological polishing mechanism of fused quartz based on electrolyte regulation[D].Mianyang:Southwest University of Science and Technology,2023.
[12]鄧鳳霞.三聚磷酸鈉電芬頓體系氧化效能強化及作用機制[D].哈爾濱:哈爾濱工業(yè)大學(xué),2020.
DENG Fengxia.Enhancement of oxidation efficiency of sodium tripolyphosphate electrofenton system and its mechanism[D].Harbin:Harbin Institute of Technology,2020.
[13]DO T M,BYUN J Y,KIM S H.An electro-Fenton system using magnetite coated metallic foams as cathode for dye degradation[J].Catalysis Today,2017,295:48-55.
[14]張碧波,陳劍,冉啟洋,等.檸檬酸改性芬頓對土壤中石油烴的去除效果[J].湖南農(nóng)業(yè)科學(xué),2019(12):38-41.
ZHANG Bibo,CHEN Jian,RAN Qiyang,et al.Removal effect of citric acid modified Fenton on petroleum hydrocarbon in soil[J].Hunan Agricultural Sciences,2019(12):38-41.
作者簡介
通信作者:王永光,男,1981年生,教授。主要研究方向:機械摩擦/磨損與潤滑、材料表面工程、超精密加工智能制造。
E-mail:Wangyg@suda.edu.cn
(編輯:周萬里)
Study on dispersion of abrasive particles in electro Fenton CMP slurry and design"of green polishing fluid in neutral environment
CHENG Feng,WANG Zirui,ZHU Rui,WANG Yongguang,PENG Yang,ZHANG Tianyu,"ZHAO Dong,F(xiàn)AN Cheng
(School of Mechanical and Electrical Engineering,Soochow University,Suzhou 215021,Jiangsu,China)
Abstract Objectives:In the process of GaN ultra-precision polishing,diamond abrasives tend to agglomerate,lead-ing to an increase in the average particle size of abrasives in the polishing slurry,which negatively impacts the surface precision of GaN.The addition of Fe2+in the Fenton reaction exacerbates this phenomenon.To address this issue,adding electrolytes to the polishing slurry has proven effective in mitigating the agglomeration and sedimentation of ab-rasives.To compare the effects of STPP,NaCl,and Na2SO4 on the dispersion stability of diamond abrasives during the Fenton reaction,the citric acid and the sodium hydroxide are used as pH regulators to investigate the Fenton reaction of green polishing solution at different pH values.The effects on the anti-settling ability of diamond abrasive particles,the Zeta potential of polishing slurry,and the polishing solution abrasive particle size are studied,and the polishing effect on the GaN wafer is verified.Methods:Nano-diamond abrasive particles with an average particle size of 180 nm were added to deionized water,and H2O2 with a mass fraction of 5%and FeSO4·7H2O with a mass of 0.2 g were added as the original reactants of the Fenton reaction.Then,NaCl,Na2SO4 and STPP electrolytes with a mass fraction of 1%were added to prepare three groups of Fenton reaction polishing slurry,which were compared with the original Fenton reac-tion polishing slurry without any additional electrolyte.After thorough stirring for 5 minutes and ultrasonic dispersion for 10 minutes,citric acid and sodium hydroxide were used to adjust the pH values of all four slurries to 3.At the same time,the polishing slurry with STPP electrolyte at a pH value of 6 was prepared,and the influence of pH value on the anti-settling effect of diamond abrasive particles under STPP electrolyte was preliminarily investigated as the control group.The above five groups of polishing slurries were added to glass bottles for particle settling experiments,and the dispersion stability of diamond abrasive particles in different groups of polishing slurry was observed.The Zetasizer Nano ZS90 nanometer particle size potential analyzer was used to measure the Zeta potential and the particle size of the five groups of polishing slurries before and after the addition of a pH regulator.Finally,the ECMP experiment was car-ried out to study the effects of green polishing slurries on material removal rate and surface roughness at different pH values.Results:(1)When the pH value is 3,the original Fenton polishing slurry and the polishing slurries with NaCl and Na2SO4 electrolytes have weaker anti-settling ability compared to the polishing slurry with STPP added,and the ef-fect of improving the anti-settling ability of diamond abrasives is not obvious.The first three groups of polishing slur-ries exhibit an obvious delamination phenomenon at the bottom within the first 10 minutes.This indicates that STPP can improve the anti-settling ability of diamond abrasives in Fenton reaction polishing slurry.Furthermore,comparing the polishing slurry samples with STPP added at pH values of 3 and 6,it is found that the anti-settling ability of diamond in the polishing slurry with a pH value of 3 is significantly lower than that in the sample with a pH value of 6,indicating that STPP can improve the anti-settling ability of diamond abrasives in an environment with a pH value of 6.(2)The ad-dition of NaCl and Na2SO4 electrolytes results in a smaller absolute Zeta potential and poorer stability of the polishing slurry,while the addition of STPP greatly increases the dispersion stability of diamond abrasives in the Fenton reaction polishing slurry.At the same time,after adjusting the pH value to 3,the absolute values of the Zeta potential of all pol-ishing slurries slightly decrease compared to before pH adjustment,indicating a decrease in the stability of the polishing"slurry.That is,the addition of acidic electrolytes may reduce the stability of the polishing slurry.(3)When the surface of GaN is processed with the polishing slurry containing STPP,there are almost no deep scratches caused by abrasive ag-glomeration compared with other comparison groups.The surface quality of the processed GaN is the best,with a sur-face roughness Ra as low as 0.449 nm,and the material removal rate is much higher than that of the control group,reach-ing up to 705.3 nm/h.Conclusions:The Fenton reaction utilizes Fe2+to react with H2O2 to generate hydroxyl radicals(·OH)with strong oxidizing properties.With the addition of STPP,F(xiàn)e2+in the solution forms a relatively stable complex Fe2+-STPP with STPP,and which quickly reacts with H2O2 to form Fe3+-STPP and·OH after the addition of H2O2,ef-fectively avoiding the presence of a large amount of free Fe3+and the precipitation of Fe(OH)3.Adding STPP to the Fenton reaction polishing slurry with diamond as abrasive particles can broaden the pH range of the Fenton reaction pol-ishing slurry,breaking the limit of pH≤3,and preventing the precipitation of iron flocs in the polishing slurry in a neut-ral environment.Meanwhile,STPP can enhance the anti-settling ability of diamond abrasives in the Fenton reaction pol-ishing slurry in a neutral environment,and the alkaline pH regulator weakens the anti-settling ability of diamond abras-ives in polishing slurry more significantly than the acidic pH regulator.
Key words Fenton reaction;electrochemical mechanical polishing(ECMP);diamond particle dispersion;sodium tri-polyphosphate(STPP);GaN