綠電驅(qū)動的電解水制氫是一種清潔的氫氣制備技術(shù).與堿性電解水制氫技術(shù)(AWE)相比,質(zhì)子交換膜電解水制氫技術(shù)(PEMWE)具有化學(xué)性質(zhì)穩(wěn)定、質(zhì)子導(dǎo)電率高、無孔隔絕氣體等優(yōu)點.但陽極析氧反應(yīng)(OER)酸性環(huán)境苛刻,且涉及四電子轉(zhuǎn)移步驟,動力學(xué)過程緩慢,因此需要高活性和耐酸耐腐蝕的電催化劑材料.貴金屬納米功能材料由于其高活性和良好的選擇性,作為高性能酸性O(shè)ER電催化劑,發(fā)揮著至關(guān)重要的作用.目前,Ir基、Ru基材料組成的催化劑已經(jīng)被設(shè)計并應(yīng)用于酸性O(shè)ER.綜述近年酸性O(shè)ER貴金屬電催化劑的研究進(jìn)展,首先闡述吸附質(zhì)演化機(jī)制和晶格氧氧化機(jī)制2種主流的OER反應(yīng)機(jī)制,然后以Ir基、Ru基貴金屬材料總結(jié)最近報道的酸性O(shè)ER電催化劑,最后對酸性析氧反應(yīng)貴金屬催化劑的反應(yīng)機(jī)制以及結(jié)構(gòu)設(shè)計等發(fā)展方向進(jìn)行展望.
酸性析氧反應(yīng)(OER); 貴金屬; 電催化
O611
A
0327-14
03.003
能源是人類生存和發(fā)展的重要物質(zhì)基礎(chǔ).隨著世界人口的不斷增長、人類對提高生活水平的不斷追求、全球環(huán)境污染和化石燃料枯竭,開發(fā)可持續(xù)能源已成為當(dāng)務(wù)之急[1].氫能作為一種可再生、清潔高效的二次能源,具有資源豐富、來源廣泛、燃燒熱值高、清潔無污染、利用形式多樣、可作為儲能介質(zhì)及安全性好等諸多優(yōu)點,是實現(xiàn)能源轉(zhuǎn)型與碳中和的重要能源[2].化石燃料轉(zhuǎn)化是當(dāng)前最常見、生產(chǎn)成本低、技術(shù)成熟的制氫方式,但存在不可避免的碳排放問題.
綠電驅(qū)動電解水制氫是實現(xiàn)低碳高效的氫能源利用技術(shù),受到了普遍重視.在各種電解水技術(shù)中應(yīng)用最為廣泛的為堿性電解水制氫技術(shù)(alkaline water electrolysis,AWE).然而,AWE在結(jié)構(gòu)上存在一些局限性,如工作電壓低、電流密度低、產(chǎn)生的氫純度低以及氣體分離困難等[3].相比之下,質(zhì)子交換膜電解水制氫技術(shù)(proton exchange membrane water electrolysis,PEMWE)具有AWE的各種優(yōu)勢,因此作為最有前途的氫能生產(chǎn)技術(shù)而備受關(guān)注.PEMWE設(shè)備集成化程度高,設(shè)計緊湊.相比于其他隔膜,質(zhì)子交換膜化學(xué)性質(zhì)穩(wěn)定、歐姆損耗更低、動態(tài)響應(yīng)速度更快、質(zhì)子導(dǎo)電率高以及無孔隔絕氣體,可實現(xiàn)較高的工作電流密度和提高氫氣純度.此外,與堿性環(huán)境不同,高質(zhì)子濃度可促進(jìn)PEMWE系統(tǒng)陰極的析氫反應(yīng)(hydrogen evolution reaction,HER)[4].
PEMWE的陽極反應(yīng)環(huán)境苛刻,并且析氧反應(yīng)(oxygen evolution reaction,OER)涉及四電子轉(zhuǎn)移步驟,動力學(xué)過程緩慢[5],因此需要高活性和耐腐蝕性的電催化劑材料.在過去的幾年中,人們一直致力于開發(fā)高效的酸性O(shè)ER電催化劑,貴金屬材料雖然價格昂貴,但是在反應(yīng)環(huán)境苛刻的酸性O(shè)ER條件下依然保持著高活性和穩(wěn)定性,貴金屬基特別是銥(Ir)和釕(Ru)基金屬及其氧化物是目前最優(yōu)的酸性O(shè)ER催化劑,Ir基、Ru基催化劑分類如圖 1 所示.
本文將對酸性O(shè)ER貴金屬基電催化劑的最新研究進(jìn)展進(jìn)行綜述.首先介紹酸性O(shè)ER的反應(yīng)機(jī)制;接下來重點介紹貴金屬Ir基、Ru基催化劑的研究進(jìn)展,包括金屬、氧化物和合金等.最后對貴金屬基酸性O(shè)ER電催化劑的發(fā)展進(jìn)行展望.
1 酸性O(shè)ER機(jī)制
OER動力學(xué)反應(yīng)緩慢,涉及多電子轉(zhuǎn)移過程,是限制整個電解水裝置效率的關(guān)鍵因素,對其反應(yīng)機(jī)制的研究有助于從理論上設(shè)計出更高效的催化劑材料[6].基于氧分子中氧的來源,OER機(jī)制大致可分為以下2種:吸附質(zhì)演化機(jī)制(adsorbate evolution mechanism,AEM)、晶格氧氧化機(jī)制(lattice oxygen oxidation mechanism,LOM)[7-8].其中AEM假設(shè)生成的氧分子來自于電解質(zhì)中的水,LOM則假設(shè)氧分子部分來自于金屬氧化物中的晶格氧.如圖2所示,*、OL和VO分別代表反應(yīng)所涉及的活性位點、晶格氧和表面氧空位.
1.1 吸附質(zhì)演化機(jī)制
在AEM機(jī)制中,以Ⅰ→Ⅳ均發(fā)生在單個位點上為例.Ⅰ:水分子首先通過單電子氧化過程吸附在氧配位金屬(M)表面上,在M位點上生成吸附的 *OH中間體.Ⅱ:*OH中間體進(jìn)一步被氧化形成 *O中間體.Ⅲ:另一個親核水分子參與并吸附在 *O中間體上形成 *OOH中間體.Ⅳ:吸附在M位點上的 *OOH通過單電子轉(zhuǎn)移過程氧化釋放出氧分子,M恢復(fù)為最初的活性位點.根據(jù)Sabatier原理[9],活性位點與含氧中間體之間的鍵合作用強(qiáng)度適中時,催化劑的活性理論最大.整個反應(yīng)的吉布斯自由能(ΔG)等于每個反應(yīng)步驟的吉布斯自由能(ΔGⅠ~Ⅳ)之和,在4個反應(yīng)過程中,ΔGⅠ~Ⅳ最大的步驟對應(yīng)于整個反應(yīng)的熱力學(xué)瓶頸.由密度泛函理論(DFT)計算可知,標(biāo)準(zhǔn)條件下整個反應(yīng)的吉布斯自由能(ΔG)為 4.92 eV,理想情況下,如果所有基本步驟的自由能差都相同,即 ΔGⅠ~Ⅳ均等于1.23 eV,則可以獲得最優(yōu)越的催化性能[10].然而,由于催化劑表面對氧中間體 *OH、*O、*OOH三者的吸附自由能存在差異,各反應(yīng)的ΔG各不相同,這實際上是不可能實現(xiàn)的,在反應(yīng)過程中,ΔGⅠ~Ⅳ為最大值的步驟需要額外的電勢,即電位決定步驟(PDS),PDS也被認(rèn)為是動力學(xué)瓶頸[11].由Rossmeisl等[12]實驗計算證明,ΔG*OH和ΔG*OOH存在正相關(guān)關(guān)系,差值約為3.2 eV,即ΔG*OH=ΔG*OOH+3.2 eV,這種關(guān)系使得ΔG*O-ΔG*OH與OER活性呈現(xiàn)火山型關(guān)系.與理想情況相比,當(dāng)ΔG*O為1.6 eV時,ΔG*OH和ΔG*OOH之間的OER最小理論超電勢為0.37 V,但這在現(xiàn)實中依舊是難以實現(xiàn)的.
1.2 晶格氧氧化機(jī)制
在LOM機(jī)制中,只有*OH、*O兩種中間體,Ⅰ、Ⅱ與AEM基本相同,均為形成*O中間體.Ⅲ:*O是一種氧化氧態(tài),可以與晶格氧離子偶聯(lián)釋放氧分子,同時在金屬表面結(jié)構(gòu)中形成空位.Ⅳ:形成的空位通過生成*OH中間體被水分子占據(jù).Ⅴ:質(zhì)子通過一個單電子氧化過程去除,M恢復(fù)為初始活性位點.
與AEM相比,LOM通過相鄰的晶格氧原子耦合而形成O—O鍵而不是以*OOH作為中間體參與.由于*OOH不作為中間體參與,LOM可以表現(xiàn)出超過理論最小超電勢(0.37 V)極限的動力學(xué),擁有更高的理論活性,但僅根據(jù)LOM在理論活性上的優(yōu)點并不能斷定LOM優(yōu)于AEM[13].相比較于AEM在活性方面具有的局限性,LOM的過程涉及晶格氧遷移及空位的形成等反應(yīng)機(jī)制,也會使表面金屬易溶解,結(jié)構(gòu)變得不穩(wěn)定,并且在酸性O(shè)ER金屬催化劑中,大多數(shù)情況下AEM和LOM兩種機(jī)制存在競爭關(guān)系[14-15].對兩種不同機(jī)制探究,探明這兩種機(jī)制之間的相關(guān)性,并使用各種調(diào)制工程優(yōu)化,是提高催化劑活性和穩(wěn)定性的重要途徑.除了上述兩種具有代表性的機(jī)制外,部分文獻(xiàn)對OER機(jī)制進(jìn)行了更詳細(xì)的分類和解釋,感興趣的讀者可以進(jìn)一步閱讀參考.
2 貴金屬基OER催化劑
貴金屬基催化劑具有高活性、優(yōu)良的電催化性能、穩(wěn)定性、選擇性和電子傳遞效率高等優(yōu)點,在酸性O(shè)ER電催化劑的研發(fā)中占據(jù)著關(guān)鍵地位.由于貴金屬材料制備成本較高、資源有限等問題,在實際應(yīng)用中需要權(quán)衡.因此,用部分資源豐富、成本低、不代償催化劑性能且穩(wěn)定的材料來替代貴金屬進(jìn)而降低貴金屬占比的方法,成為降低成本最直觀最有效的方法之一[16].在眾多貴金屬基催化劑中,Ir基和Ru基催化劑具有相對平衡的活性和穩(wěn)定性,在酸性O(shè)ER電催化領(lǐng)域內(nèi)得到了廣泛的研究,貴金屬催化活性[17]依次為Ru>Ir>Rh>Pd>Pt>Au,耐久性為Pd>Pt>Rh>Ir>Au>Ru,近年Ir基、Ru基的催化劑性能總結(jié)如表1[18-42]和表2[43-62]所示.
2.1 Ir基催化劑
2.1.1Ir基原子催化劑
Ir納米結(jié)構(gòu)有著優(yōu)異的催化活性和穩(wěn)定性,通過設(shè)計不同形貌和結(jié)構(gòu)的Ir納米材料,可以實現(xiàn)更高的電催化活性和穩(wěn)定性[63].目前已經(jīng)開發(fā)出了包括納米粒子(NPs)、納米團(tuán)簇(NCs)、單原子(SAs)以及納米空腔等不同尺寸的催化材料.最近,Jo等[64]用單鍋溶熱法,合成了具有原子厚度的獨(dú)立超薄銥納米片.在一氧化碳流動條件下,通過熱分解銥和長鏈胺的復(fù)合物制備出由2至4個原子層組成的Ir納米片,形成機(jī)制及煅燒后的樣品TEM圖像如圖3所示.與商用Ir催化劑以及已報道的基于Ir納米顆粒、Ir氧化物和Ir納米片的催化劑相比,原子級二維超薄結(jié)構(gòu)使其在酸性O(shè)ER下性能得到了極大的提高(η10:272.2 mV;Tafel斜率:54.5 mV/dec).Ir納米片的質(zhì)量活性為476.8 A/g,具有高原子效率、比表面積大且活性位點豐富.其2D貴金屬納米結(jié)構(gòu)對于開發(fā)高效的電催化劑具有潛在價值.Li等[65]通過在準(zhǔn)室溫(50 ℃)高壓H2氣體環(huán)境(1 MPa)下還原Ir(IV)前驅(qū)體成功制備了低Ir負(fù)載(質(zhì)量分?jǐn)?shù)5.1%的Ir)的碳支撐非晶態(tài)Ir納米團(tuán)簇(Ir NCs),所得的非晶態(tài)Ir NCs催化劑在酸性電解質(zhì)中具有較高的OER性能(η10:290 mV;Tafel斜率:55 mV/dec).超小尺寸的非晶態(tài)Ir NCs相比晶體Ir NPs[66]暴露出更多的低配位原子,這使其具有更高的反應(yīng)活性、更高的表面積比、體積比和更高的原子利用率,優(yōu)于Ir納米粒子(Ir NPs)和商用Ir催化劑(η10:340 mV;Tafel斜率:77 mV/dec).Pi等[67]通過高效的軟模板法得到一種三維結(jié)構(gòu)的超薄Ir 納米片,得益于超薄的片狀結(jié)構(gòu),該納米片暴露出更多的活性位點,具有更高的活性比表面積,在酸性O(shè)ER下η10:240 mV、Tafel斜率40.8 mV/dec,表現(xiàn)出優(yōu)異的電催化活性和更長時間的穩(wěn)定性.三維結(jié)構(gòu)的超薄Ir納米片因其獨(dú)特的結(jié)構(gòu)有著廣泛的應(yīng)用前景.
除了改變Ir納米材料形狀形態(tài)等來調(diào)節(jié)材料催化性能外,還有通過調(diào)控Ir的負(fù)載方式,穩(wěn)定Ir位點來提高電催化活性的策略.Wang等[28]構(gòu)建了一種由Ir納米粒子沉積在Te納米棒上組成的新型催化劑(Ir/Te NRs),其中Ir位點為主要活性位點,Te促進(jìn)電荷遷移以電子改變界面結(jié)構(gòu),Ir和Te的高效耦合優(yōu)化了催化劑表面對H*和*OOH的吸附,Ir/Te NRs表現(xiàn)出更合適的吸附能力.Ir/Te NRs催化劑在酸性O(shè)ER中具有優(yōu)越的催化活性和長期穩(wěn)定性(η10:281 mV;Tafel斜率:41 mV/dec).Jung等[32]合成了一種低Ir摻雜的單晶氫化鈦酸鹽(H2Ti3O7)所構(gòu)成的Ir-HTO納米片,Ir-HTO具有獨(dú)特的納米管結(jié)構(gòu)、表面積大.開放層狀的HTO晶體結(jié)構(gòu)提高了Ir活性位點的反應(yīng)可能性,并且HTO具有明確的單晶特性和大面積外露面,便于電荷轉(zhuǎn)移并為電化學(xué)反應(yīng)提供額外的活性位點.Ir-HTO在酸性O(shè)ER下具有良好的電催化活性和耐久性(η10:260 mV;Tafel斜率:41 mV/dec),優(yōu)于商業(yè)基準(zhǔn)的IrO2催化劑,在原子尺度下,Ir-HTO納米片有較高的質(zhì)量活性,其Ir的質(zhì)量分?jǐn)?shù)僅為3.35%.
在氧化物中引入微量的Ir原子有利于通過大量的電子分布來增強(qiáng)金屬-氧鍵,同時為OER提供高活性的Ir位點,Ir與氧化物中過渡金屬位點的協(xié)同效應(yīng)可以調(diào)節(jié)金屬原子的d帶和局域電子結(jié)構(gòu),通過加速電子轉(zhuǎn)移來優(yōu)化中間體的結(jié)合強(qiáng)度.Chen等[23]通過調(diào)節(jié)原子界面和重建表面結(jié)構(gòu)改變Co3O4載體中Ir的摻入方式,穩(wěn)定Ir位點,制備出高效電解水的Irlat@Co3O4催化劑.通過摻雜Ir,部分Co原子在Co3O4中被Ir原子替代,激活晶格氧,并在Ir-O-Co界面的存在下控制重構(gòu)效應(yīng),降低Ir溶解,實現(xiàn)提高酸性O(shè)ER活性和穩(wěn)定性(η10:260 mV;Tafel斜率:41 mV/dec),Irlat@Co3O4具有低Ir負(fù)載率(Ir質(zhì)量分?jǐn)?shù)3.67%).總之,納米材料的合成和應(yīng)用備受關(guān)注.
2.1.2Ir氧化物
Ir氧化物的種類多種多樣,包括無定形氧化銥、金紅石型氧化銥(IrO2)、鈣鈦礦型氧化銥(如RIrO3、R2IrO4、A2BIrO6)和焦綠石型氧化銥(R2Ir2O7).Ir氧化物因其卓越的催化性能成為
研究最為廣泛的酸性O(shè)ER催化劑之一.IrO2比RuO2具有更高的穩(wěn)定性,而RuO2具有更高的活性,但其活性高度依賴于制備方法和實驗條件,穩(wěn)定性較差.關(guān)于這兩類氧化物的策略一般為提高IrO2材料的活性與增強(qiáng)RuO2材料的穩(wěn)定性[68].Ir氧化物催化性能由于晶體結(jié)構(gòu)、元素組成、表面性質(zhì)和形態(tài)的差異而各不相同.在這些因素中,晶體結(jié)構(gòu)對于調(diào)節(jié)Ir氧化物的內(nèi)在催化活性和結(jié)構(gòu)穩(wěn)定性起著至關(guān)重要的作用.
為了提高Ir氧化物的催化活性和穩(wěn)定性,降低貴金屬氧化物催化劑的成本,各種方法如摻雜原子的引入、晶體缺陷、氧化物表面浸出、均勻分散至載體等層出不斷.最近,Han等[33]將超小的IrO2納米顆粒均勻分散在Co3O4-CoMoO4納米籠上以形成IrO2@Co3O4CoMoO4催化劑.空心Co3O4-CoMoO4作為有效負(fù)載,提供了豐富的錨定位點和異質(zhì)界面,使催化劑暴露更多活性位點并加速電荷轉(zhuǎn)移.研究發(fā)現(xiàn)引入Mo元素可以有效改變電子結(jié)構(gòu)并降低氧中間體的吸附能壘,增強(qiáng)OER催化活性.與大多數(shù)報道的催化劑相比,IrO2@Co3O4CoMoO4催化劑展現(xiàn)出出色的酸性O(shè)ER活性,在0.5 mol/L H2SO4下10 mA/cm2過電位僅為236 mV.Liu等[69]通過一種簡便的方法合成了一種具有無定形結(jié)構(gòu)、高表面積比和高濃度表面氧空位的Ta2O5載體,將IrRuOx錨定在Ta2O5載體(IrRuOx/Ta2O5)上,如圖4所示.IrRuOx和Ta2O5發(fā)揮協(xié)同作用,為酸性O(shè)ER提供了出色的催化性能,在0.5 mol/L H2SO4條件下,η10:235 mV;Tafel斜率:32.3 mV/dec.表征結(jié)果表明,在RuOx中摻入Ir能顯著提高RuOx穩(wěn)定性以及電化學(xué)活性表面積.在IrRuOx/Ta2O5中,IrRuOx通過富含更多電子的Ir與Ta2O5相互作用,催化劑與載體之間具有很強(qiáng)的協(xié)同作用.金屬氧化物載體使得催化劑均勻分布,同時優(yōu)化了電子結(jié)構(gòu),促進(jìn)了大規(guī)模運(yùn)輸,并穩(wěn)定了活性位點.Zhu等[35]通過在a位點上利用Zn2+取代部分Lu3+或Pr3+,來調(diào)整M2Ir2O7(M=Lu,Pr)的電子態(tài),進(jìn)而優(yōu)化催化性能.通過調(diào)整Zn的占比合成不同的焦綠石型氧化銥,其中Pr1.8Zn0.2Ir2O7和Lu1.8Zn0.2Ir2O7兩種催化劑展現(xiàn)出了優(yōu)越的酸性O(shè)ER催化性能,DFT計算揭示了鋅摻雜引起的焦綠石合金電子結(jié)構(gòu)的變化,具體來說,M1.8Zn0.2Ir2O7(M=Lu,Pr)中氧空位的減少導(dǎo)致了氧2p帶中心更靠近費(fèi)米能級,并增強(qiáng)了Ir—O鍵共價.金屬-氧雜化的增強(qiáng)促進(jìn)了能帶中心之間能隙的減少,并提高了OER動力學(xué).
晶格畸變(IrO6八面體)和良好的催化劑/底物界面(IrNiOx/ATO、IrO2/ATO)是同時提高酸性電解質(zhì)中催化活性和耐久性的兩種有效方法[70-72].例如,Zhou等[73]報道了一種通過將IrO2負(fù)載到MnO2上來增強(qiáng)酸性O(shè)ER催化性能的有效策略.通過這種方式,降低了IrO2/MnO2中Ir的占比,IrO2晶體被很好地分散并在八面體結(jié)構(gòu)中產(chǎn)生z軸Jahn-Teller畸變,與二氧化錳耦合后eg軌道被部分填充.與IrO2相比,IrO2/MnO2的質(zhì)量活性和固有活性大幅提高.Gou等[74]開發(fā)出了一種簡便、易擴(kuò)展且經(jīng)濟(jì)高效的方法,制備出了納米級無定形IrOx/CeO2二元催化劑,一種具有高活性和耐久性的OER電催化劑,可在酸性電解質(zhì)中連續(xù)工作300 h.DFT計算和對照實驗表明,CeO2可作為電子緩沖器,加速動力學(xué)速率決定步驟,顯著提高活性,抑制Ir物種的過氧化及其溶解,提高實際條件下的穩(wěn)定性.除了介紹的IrOx/CeO2電催化劑之外,引入電子緩沖的策略還可應(yīng)用于其他酸性O(shè)ER電催化劑,包括RuOx以及其他Ir/Ru化合物.
2.1.3 Ir合金催化劑
合金化能提高對酸性O(shè)ER的催化性能,減少貴金屬的消耗,提高貴金屬利用效率.近年來,為了減少Ir負(fù)載率,各種優(yōu)化策略層出不斷,其中應(yīng)用最廣泛的策略是將Ir與其他金屬進(jìn)行結(jié)合,如Pd、Pt、Ru、Fe、Ni、Co、Mn和W等.
最近,新型多相IrOx/SrIrO3、金屬-金屬氧化物異質(zhì)結(jié)Ru@IrOx、金屬間IrGa/IrOx等材料被報道具有較高活性但在酸性O(shè)ER的穩(wěn)定性相對較差.受此啟發(fā),Zhang等[25]引入一種更耐酸的過渡金屬氧化物二氧化鉻(CrO2)與IrO2合金化合成Ir0.3Cr0.7O2,以調(diào)節(jié)Ir位點的電子結(jié)構(gòu).與IrO2相比,Ir0.3Cr0.7O2的Ir含量較低,在10 mA/cm2的電流密度下實現(xiàn)255 mV的低過電位和保持200 h的超長穩(wěn)定性,超過了大多數(shù)已報道的酸性O(shè)ER催化劑.值得一提的是,Ir0.3Cr0.7O2在1.50 V vs.RHE電位下的質(zhì)量活性是IrO2的47倍,顯著提高了Ir的原子利用率.CrO2具有與IrO2相似的金紅石晶體結(jié)構(gòu),是一種具有高耐酸腐蝕性的氧化物,與CrO2進(jìn)行合金化,使Cr離子浸出,生成高價態(tài)的Ir氧化物.Cr位點與Ir位點之間的強(qiáng)相互作用以及氧空位的顯著增加,可提高IrO2穩(wěn)定性與酸性電解質(zhì)中的活性,同時CrO2的部分替代減少了催化劑中Ir的含量.Ir和Cr的均勻分布通過2-aminoterephthalic acid(NH2-BDC)實現(xiàn),NH2-BDC常用于合成金屬有機(jī)框架(MOF)材料,其中的多叉羧酸有機(jī)連接體(—COO—)有利于形成多樣化的拓?fù)浣Y(jié)構(gòu),并可根據(jù)HSAB原理與多種金屬離子(如M3)配位.
合金中催化劑載體既能保持貴金屬的催化活性,又能減少貴金屬的用量,節(jié)約成本.具體來說,載體不僅可以促進(jìn)活性物質(zhì)的均勻分散,提高催化劑的活性,還可以抑制納米顆粒的團(tuán)聚,提高催化劑的穩(wěn)定性.作為催化劑體系的關(guān)鍵組成部分,載體對整體電化學(xué)性能有重要影響.在正常情況下,所需的載體應(yīng)具有以下特點:高比表面積、高導(dǎo)電性、在反應(yīng)條件下具有良好的電化學(xué)穩(wěn)定性、適合大量輸送的缺陷結(jié)構(gòu),以及低成本.Yang等[44]通過在酸性介質(zhì)中進(jìn)行水熱預(yù)催化劑陰離子配體交換,成功合成RuIrOx/BSS(Ru3.5Ir1Ox/BaSrSO4),一種新型的催化載體化合物.RuIrOx/BSS具有很強(qiáng)的耐酸性和耐氯腐蝕性,通過XPS和XAS分析表明,二元Ru3.5Ir1Ox與BaSrSO4支持物之間存在明顯的電荷轉(zhuǎn)移相互作用,這導(dǎo)致Ru和Ir的d軌道被賦予更多的電子,從而使價態(tài)低于傳統(tǒng)的+4價.更為重要的是,RuIrOx/BSS在傳統(tǒng)酸性介質(zhì)和梯度濃度鹽水中保持著較高的OER活性(η10:244 mV;Tafel斜率:56 mV/dec).由于催化劑與載體之間的電荷轉(zhuǎn)移效應(yīng),Ru和Ir的d軌道電子結(jié)構(gòu)發(fā)生了變化,所進(jìn)行的DFT計算顯示了部分被占據(jù)的eg軌道,尤其是Ir位點.與Ru3.5Ir1Ox相比,RuIrOx/BSS具有更高的OER本征活性.
2.2 Ru基催化劑
2.2.1Ru基原子催化劑
Ru單原子(SACs)催化劑有著較高的原子利用率和催化活性,已成為催化界的一個熱門研究前沿.Ru是酸性壞境OER中活性最強(qiáng)的金屬,但是其穩(wěn)定性遠(yuǎn)低于Ir.
單原子Ru的配位環(huán)境可以通過優(yōu)化氧中間體的鍵能來調(diào)控,Cao等[75]報道了錨定在氮碳載體(M-N-C)上的單原子Ru催化劑(Ru-N-C).這種單原子Ru-N-C催化劑具有極高的內(nèi)在活性,在10 mA/cm2的電流密度下,其質(zhì)量活性高達(dá)3 571 A/g,過電位低至267 mV.催化劑在酸性環(huán)境中工作30 h后,沒有出現(xiàn)明顯的失活或分解現(xiàn)象.原位同步輻射和紅外光譜結(jié)果表明,工作電位下單個氧原子在Ru位點上動態(tài)吸附,理論計算證明O-Ru1-N4位點是產(chǎn)生高OER活性和穩(wěn)定性的原因.基于金屬-氮-碳(M-N-C)的單原子催化劑具有完美原子效用的優(yōu)點,顯示出卓越的電催化活性.通過形成強(qiáng)Ru—N鍵將單原子Ru嵌入耐酸的N-C配位環(huán)境中,有助于提高Ru的穩(wěn)定性,同時賦予其高活性.此外,對于單原子催化劑來說,結(jié)構(gòu)均一且活性位點明確的催化劑更容易作為模型系統(tǒng),從原子層面深入了解催化反應(yīng)機(jī)制.
設(shè)計高效、耐溶解的Ru基原子酸性O(shè)ER催化劑,一個合理的方法是將O2主要生成機(jī)制從LOM轉(zhuǎn)換到AEM,從而降低LOM對Ru溶解的影響.Yao等[15]通過酸刻蝕和電化學(xué)浸出的方法合成了耐酸的Ru摻雜PtCu/Pts,最后通過伏安法處理得到Ru1-Pt3Cu/Pts,在10 mA/cm2的過電位為220 mV,表現(xiàn)出了優(yōu)異的催化活性和穩(wěn)定性.原位同步輻射圖譜顯示,呈現(xiàn)的Ru原子高度分散,實現(xiàn)了PtCux/Pts核殼結(jié)構(gòu).原位XAFS研究表明,在OER催化電位范圍內(nèi),Ru1的氧化態(tài)幾乎保持不變.通過Pts殼層的壓縮應(yīng)變對單個Ru位點的電子結(jié)構(gòu)進(jìn)行工程設(shè)計,優(yōu)化其與含氧物種的結(jié)合,有效防止電子從Ru向含氧配體的過度轉(zhuǎn)移,更好地抵抗Ru的過度氧化和溶解,從而提高OER活性.
2.2.2Ru氧化物催化劑
釕氧化物對反應(yīng)中間體(*OH、*O和*OOH)具有較好的結(jié)合能,具有較高的OER活性.釕氧化物有多種不同的晶體結(jié)構(gòu),如金紅石型氧化釕(RuO2)、鈣鈦礦型氧化釕(ABO3)和焦綠石型氧化釕(A2B2O7),分別展現(xiàn)出了良好的酸性O(shè)ER催化活性.
RuO2是少數(shù)高活性酸性O(shè)ER材料之一,然而最先進(jìn)的RuO2電催化劑在酸性溶液中的OER活性和穩(wěn)定性遠(yuǎn)不如在堿性溶液中.考慮到商業(yè)應(yīng)用,提高釕基電催化劑在酸性電解質(zhì)中的固有活性和長期穩(wěn)定性勢在必行,Zheng等[76]通過熔鹽法合成Mn-RuO2-120(NaNO3)催化劑,該催化劑以Mn-hexamethylenetetramine金屬有機(jī)框架為前驅(qū)體,富含氧空位缺陷,如圖5所示.
同步輻射等物理表征方法表明,氧空位的存在降低了Ru/O配位比,提高了催化劑的電荷轉(zhuǎn)移效率.理論計算表明,錳摻雜和氧空位的協(xié)同效應(yīng)可以調(diào)節(jié)*OOH在Ru-CUS上的結(jié)合能,有效降低OER中間產(chǎn)物的能壘,從而促進(jìn)電化學(xué)OER過程.優(yōu)化后的催化劑在電流密度為10 mA/cm2時的過電位為189 mV.同時,Mn-RuO2-120(NaNO3)催化劑能夠在鈦片上工作200 h,并能在PEM電解槽中保持穩(wěn)定性能90 h.對Mn-RuO2-120(NaNO3)在PEM電解槽中的活性進(jìn)行評估后發(fā)現(xiàn),當(dāng)電流密度為1 A/cm2時,其電位達(dá)到1.69 V.商用RuO2本征催化活性低、耐酸性差,限制了其進(jìn)一步發(fā)展,而構(gòu)建異質(zhì)界面結(jié)構(gòu)是突破電催化劑本征活性限制的最有前途的策略.最近Guan等[77]利用形貌控制合成了球形且富含氧空位的異質(zhì)界面MnO2/RuO2,如圖6所示,通過氧空位與氧化物異質(zhì)界面之間的相互作用促進(jìn)了氧演化反應(yīng)的動力學(xué).
MnO2/RuO2充分利用了球形結(jié)構(gòu)的形貌優(yōu)勢,使活性位點充分暴露,其在0.5 mol/L H2SO4溶液10 mA/cm2的電流密度下的過電位僅為181 mV,具有優(yōu)異的電催化活性和超長的OER穩(wěn)定性(gt;140 h@10 mA/cm2),以及高達(dá)858.9 A/g@1.5 V的質(zhì)量活性和優(yōu)異的本征活性,遠(yuǎn)遠(yuǎn)超過了商用RuO2和已報道的單組分電催化劑.表征實驗結(jié)果表明,更多的氧空位和錳釕氧化物的異質(zhì)界面效應(yīng)打破了內(nèi)在活性限制,為OER提供了更多的活性位點,加速了反應(yīng)動力學(xué),并提高了催化劑的穩(wěn)定性.
研究表明,摻雜原子雜化、構(gòu)建多原子異質(zhì)結(jié)構(gòu)可以同時優(yōu)化活性位點的固有活性和穩(wěn)定性.電催化劑的組成決定了催化位點的固有性質(zhì),是實現(xiàn)高活性和穩(wěn)定性的前提.Li等[47]通過嘗試在RuO2中引入Sn和Ce的方式以優(yōu)化Ru位點的固有特性,采用高溫煅燒法合成了Ru0.4Sn0.3Ce0.3O2(RSCO).RSCO表現(xiàn)出優(yōu)異的OER性能(η10:587 mV)并且具有突出的長期穩(wěn)定性,超過了C-RuO2.XPS和XAFS分析表明,在RuO2中引入Sn和Ce會改變Ru位點的化學(xué)狀態(tài)和配位環(huán)境.DFT計算表明,異質(zhì)界面上的氧原子有效地加強(qiáng)了不同金屬原子之間的相互作用,Sn和Ce通過向異質(zhì)結(jié)界面上附近的氧原子提供電子來調(diào)節(jié)RSCO中Ru位點的局部環(huán)境,從而使酸性O(shè)ER的能壘低至1.90 eV.進(jìn)一步的實驗表明通過控制煅燒溫度能有效調(diào)節(jié)其形貌和結(jié)構(gòu)特性,并最終獲得更高活性的RSCO-400(η10:482 mV),這表明這種氧原子橋接的Ru基電催化劑具有巨大的潛力.
Liu等[51]通過在RuO2晶格中摻入高價鈮(Nb)來調(diào)節(jié)Ru-O-Nb的吸附行為和局部結(jié)構(gòu),通過典型的合成方法制備了Nb0.1Ru0.9O2.摻雜Nb不僅降低了OER勢壘,還防止了Ru位點在高電流密度下的過度氧化,Nb0.1Ru0.9O2具有較低的過電位(η10:204 mV),在200 mA/cm2測試下降解率極低(25 μV/h),耐久性表現(xiàn)超過360 h,僅為其他Ru基催化劑在10 mA/cm2下測量的降解率的1/100.Nb-RuO2中的Ru位點通過橋氧將電子從Nb轉(zhuǎn)移給Ru來增加電子密度.在OER過程中,RuO2中Nb5+的形成抑制了Ru的溶解,同時加強(qiáng)了RuO2中的M—O鍵防止形成可溶性的高價Ruxgt;4+.Xia等[55]通過采用溶膠-凝膠法合成了釕基雙鈣鈦礦SrRu0.5Ir0.5O3催化劑,SrRu0.5Ir0.5O3(Ru∶Ir=1∶1)在10 mA/cm2條件下過電位185 mV,表現(xiàn)出長達(dá)50 h的穩(wěn)定性.特別在1.5 vs.RHE條件下,SrRu0.5Ir0.5O3的質(zhì)量活性達(dá)到137 A/g,是商用RuO2的15.3倍.通過以Ir4+替代Ru4+摻雜B位,有效地抑制了晶格氧在反應(yīng)中的參與,防止了雙鈣鈦礦結(jié)構(gòu)的坍塌,增強(qiáng)其在酸性溶液中的耐腐蝕性.同時,對電子結(jié)構(gòu)的進(jìn)一步研究發(fā)現(xiàn),B位點的摻雜存在對Ir和Ru之間潛在的協(xié)同效應(yīng),在OER過程中形成Ruxgt;4+,促進(jìn)了OER動力學(xué)的發(fā)展.
2.2.3Ru合金催化劑
與單金屬催化劑相比,具有納米級獨(dú)特結(jié)構(gòu)的雙金屬合金可以更好調(diào)控活性位點的固有電子結(jié)構(gòu)、獲得更大的比表面積以及加速催化動力學(xué),釕基合金為調(diào)控內(nèi)在催化活性和結(jié)構(gòu)穩(wěn)定性提供了更多機(jī)會.
過渡金屬合金化可以明顯改變OER關(guān)鍵氧中間體(*OH、*O和*OOH)的電子結(jié)構(gòu)和吸附,提高OER活性和穩(wěn)定性.由于Ru含量相對較低的Ru基催化劑具有穩(wěn)定和高活性的特性,摻雜Ru或?qū)u與含量豐富的其他金屬構(gòu)成合金,成為開發(fā)具有成本效益和高效OER催化劑的一種極具吸引力的方法.前不久,Jeong等[48]通過采用電紡絲和熱退火工藝合成了雙金屬Ru1-xVxO2和三金屬Ru1-x-yVxCryO2納米纖維.Ru1-xVxO2和Ru1-x-yVxCryO2納米纖維都呈現(xiàn)出四方晶體結(jié)構(gòu),Ru、V和Cr離子由于離子尺寸相似而隨機(jī)分布在四方晶格位點上.與RuO2納米纖維和商業(yè)RuO2相比,Ru0.48V0.52O2和Ru0.45V0.50Cr0.05O2納米纖維在酸性和堿性條件下都表現(xiàn)出更高的OER活性,過電位更低,塔菲爾斜率更?。?.1 mol/L H2SO4;η10:1.475 V,Tafel斜率:37.6 mV/dec;η10:1.471 V,Tafel斜率:33.8 mV/dec).在Ru0.48V0.52O2納米纖維的四方晶格中摻入適量的Cr4+離子有效地提高了材料在OER中的穩(wěn)定性.Li等[78]通過電化學(xué)置換方法,設(shè)計出了一種基于雙金屬Ru-Cu的具有超薄外殼的新型環(huán)狀納米合金.RuCu合金電極在0.5 mol/L H2SO4溶液中具有出色的OER性能(η10:270 mV).實驗和理論分析共同表明,通過RuCu內(nèi)部強(qiáng)大的Ru—Cu鍵進(jìn)行強(qiáng)表面電子轉(zhuǎn)移可以有效地促進(jìn)整個環(huán)狀RuCu納米合金出現(xiàn)活躍且穩(wěn)定的Ru2+,從而在OER過程中與金屬Ru0納米粒子相比,更有利于H2O的吸附和*OOH的形成.這種方法為合理設(shè)計高活性、高效的酸性O(shè)ER電催化劑開辟一條新途徑.
3 總結(jié)與展望
PEMWE作為最有前途的氫能生產(chǎn)技術(shù)而備受關(guān)注,但其陽極苛刻的強(qiáng)酸易腐蝕環(huán)境以及使用的電催化劑幾乎無法避免的依賴于貴金屬及其合金的設(shè)備成本問題一直困擾著我們.因此,有效降低催化劑貴金屬含量的同時提高催化劑的催化活性和穩(wěn)定性成為當(dāng)前酸性O(shè)ER領(lǐng)域突破的重點.本文首先介紹了當(dāng)前2種主流的酸性O(shè)ER機(jī)制,之后對貴金屬Ir和Ru單原子、氧化物和合金等最近的報道進(jìn)行了介紹和整理.盡管在酸性O(shè)ER催化劑的開發(fā)方面取得了富有成效的成就,Ir、Ru基催化劑的研發(fā)取得較大進(jìn)展,但仍面臨許多挑戰(zhàn).
1) 酸性O(shè)ER的催化機(jī)制仍需深入研究,以合理指導(dǎo)催化劑的設(shè)計與開發(fā).OER涉及四電子轉(zhuǎn)移步驟,動力學(xué)過程緩慢,過去十幾年來人們一直致力于闡明其機(jī)制,AEM和LOM是目前被認(rèn)為是最具代表性的2種酸性O(shè)ER途徑,探討AEM和LOM的特點和局限性對于開發(fā)卓越的電催化劑至關(guān)重要.
2) 催化劑的調(diào)控策略仍需進(jìn)一步完善,以實現(xiàn)組成、結(jié)構(gòu)和功能的多元化設(shè)計.活性、穩(wěn)定性和成本是開發(fā)電催化劑的3個關(guān)鍵因素,通過形貌、電子結(jié)構(gòu)的調(diào)控以及催化劑與載體之間的相互作用,提高每個活性位點的內(nèi)在活性或增加暴露的活性位點數(shù)量從而提高催化劑活性.
3) 為了更可靠地體現(xiàn)合成的催化材料的電化學(xué)OER性能,應(yīng)根據(jù)明確的評價標(biāo)準(zhǔn)進(jìn)行分析.如果忽略太多的變量,只提供過電位和Tafel斜率作為比較催化活性的數(shù)據(jù)是十分有限的.根據(jù)研究的目的,有必要使用各種參數(shù)(如ECSA、質(zhì)量活度、法拉第效率和EIS等)來更徹底地解釋分析結(jié)果.
參考文獻(xiàn)
[1]ANANTHARAJ S, EDE S R, KARTHICK K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy amp; Environmental Science,2018,11(4):744-771.
[2] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy,2019,44(29):15072-15086.
[3] SRIRAM G, DHANABALAN K, AJEYA K V, et al. Recent progress in anion exchange membranes (AEMs) in water electrolysis: synthesis, physio-chemical analysis, properties, and applications[J]. Journal of Materials Chemistry A,2023,11(39):20886-21008.
[4] CHATENET M, POLLET B G, DEKEL D R, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews,2022,51(11):4583-4762.
[5] YOON H, JU B, KIM D W. Perspectives on the development of highly active, stable, and cost-effective OER electrocatalysts in acid[J]. Battery Energy,2023,2(5):20230017.
[6] YANG J, SHEN Y, SUN Y M, et al. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions[J]. Angewandte Chemie (International Ed in English),2023,62(17): e202302220.
[7] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and futureperspectives[J]. Chemical Society Reviews,2017,46(2):337-365.
[8] SHAN J Q, ZHENG Y, SHI B Y, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters,2019,4(11):2719-2730.
[9] FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science amp; Technology,2014,4(11):3800-3821.
[10]DAU H, LIMBERG C, REIER T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J].ChemCatChem,2010,2(7):724-761.
[11] LI L G, SHAO Q, HUANG X Q. Amorphous oxide nanostructures for advanced electrocatalysis[J]. Chemistry,2020,26(18):3943-3960.
[12] ROSSMEISL J, LOGADOTTIR A, NRSKOV J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chemical Physics,2005,319(1/2/3):178-184.
[13] MAN I C, SU H Y, CALLE-VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J].ChemCatChem,2011,3(7):1159-1165.
[14] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews,2020,49(7):2196-2214.
[15] YAO Y C. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[M]//Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts. Singapore: Springer,2022:55-92.
[16] LEDENDECKER M, GEIGER S, HENGGE K, et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction[J]. Nano Research,2019,12(9):2275-2280.
[17] DAMJANOVIC A, DEY A, BOCKRIS J O. Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt-Rh alloy electrodes[J]. Journal of the Electrochemical Society,1966,113(7):739.
[18] YUE L C, GUO H, HUA J J, et al. An N-defective graphitic carbon nitride-supported Ir/Fe catalyst with low Ir-content as highly efficient oxygen evolution reaction catalyst for acidic water splitting[J]. Electrochimica Acta,2024,476:143677.
[19] SUN C Y, GE J W, LI M Y, et al. Ultrafine iridium nanoparticles grown on sea urchin-like PdCu with boosted activity toward acidic oxygen evolution[J]. Materials Today Energy,2024,39:101480.
[20] MA X P, ZHANG X M, HUANG J M, et al.In situ synthesis of self-supported Ir/IrO2 heterostructures via Ar-H2 plasma as efficient bifunctional catalyst for overall water splitting in acidic media[J]. Applied Surface Science,2024,642:158558.
[21] LI W, ZHAO Y, LV D, et al. A highly dispersed amorphous iridium nanoclusters electrocatalyst synthesized at a quasi-room temperature for efficient oxygen evolution reaction[J].Electrochimica Acta,2024,473:143458.
[22] JUN W T, HWANG J Y, LIM H K, et al. Enhancing the electrocatalytic oxygen evolution performance of iridium oxide in acidic media by inducing a lower valence state using CeO2 support[J]. Applied Surface Science,2024,647:158960.
[23] CHEN W B, SONG Y H, LI L, et al. Stabilizing iridium sites via interface and reconstruction regulations for water oxidation in alkaline and acidic media[J]. Journal of Energy Chemistry,2024,89:355-363.
[24] ZHANG N, DU J Y, ZHOU N, et al. High-valence metal-doped amorphous IrOx as active and stable electrocatalyst for acidic oxygen evolution reaction[J]. Chinese Journal of Catalysis,2023,53:134-142.
[25] ZHANG K Y, DU Y J, WU Y, et al. Organic ligand-assisted synthesis of Ir0.3Cr0.7O2 solid solution oxides for efficient oxygen evolution in acidic media[J]. International Journal of Hydrogen Energy,2023,48(14):5402-5412.
[26] YAN T Q, CHEN S Y, SUN W D, et al. IrO2 nanoparticle-decorated Ir-doped W18O49 nanowires with high mass specific OER activity for proton exchange membrane electrolysis[J]. ACS Applied Materials amp; Interfaces,2023,15(5):6912-6922.
[27] XIE Y S, SU YY, QIN H R, et al. Ir-doped Co3O4 as efficient electrocatalyst for acidic oxygen evolution reaction[J]. International Journal of Hydrogen Energy,2023,48(39):14642-14649.
[28]WANG C Y, YANG F L, FENG L G. An efficient bi-functional Ir-based catalyst for the acidic overall water splitting reaction[J]. Chemical Communications,2023,59(66):9984-9987.
[29] LIU G Y, HOU F G, WANG X D, et al. Ir-IrO2 with heterogeneous interfaces and oxygen vacancies-rich surfaces for highly efficient oxygen evolution reaction[J]. Applied Surface Science,2023,615:156333.
[30] LIN Y C, WU B, CHEN A Y, et al. Iridium-titanium oxides for efficient oxygen evolution reaction in acidic media[J]. International Journal of Hydrogen Energy,2023,48(28):10368-10376.
[31] KUANG J R, LI Z, LI W Q, et al. Achieving high activity and long-term stability towards oxygen evolution in acid by phase coupling between CeO2-Ir[J]. Materials,2023,16(21):7000.
[32] JUNG S Y, KIM K M, RYU J H, et al. Low-iridium doped single-crystalline hydrogenated titanates (H2Ti3O7) with large exposed {100} facets for enhanced oxygen evolution reaction under acidic conditions[J]. Journal of Alloys and Compounds,2023,946:169466.
[33] HAN W W, QIAN Y, ZHANG F, et al. Ultrasmall IrO2 nanoparticles anchored on hollow Co-Mo multi-oxide heterostructure nanocages for efficient oxygen evolution in acid[J]. Chemical Engineering Journal,2023,473:145353.
[34] BAIK C, CHO J, CHA J I, et al. Electron-rich Ir nanostructure supported on mesoporous Ta2O5 for enhanced activity and stability of oxygen evolution reaction[J]. Journal of Power Sources,2023,575:233174.
[35] ZHU L, MA C L, WANG Z Q, et al. Tuning the hybridization state of Ir-O to improve the OER activity and stability of iridium pyrochlore via Zn doping[J]. Applied Surface Science,2022,576:151840.
[36] ZHANG Z Q, XIA Y, YE M, et al. Low Ir-content Ir/Fe@NCNT bifunctional catalyst for efficient water splitting[J]. International Journal of Hydrogen Energy,2022,47(27):13371-13385.
[37] SUN J Y, ZHAO R, NIU X P, et al. In-situ reconstructed hollow iridium-cobalt oxide nanosphere for boosting electrocatalytic oxygen evolution in acid[J]. Electrochimica Acta,2022,432:141199.
[38] GU F W, ZHENG L F, WEI H L, et al. Tuning amorphous Ir-IrOx oxygen evolution catalyst via precursor complexation for efficient and durable water electrolysis[J]. Applied Surface Science,2022,606:155008.
[39] ZHUANG L Z, XU F, WANG K Y, et al.Porous structure engineering of iridium oxide nanoclusters on atomic scale for efficient pH-universal overall water splitting[J]. Small,2021,17(20): e2100121.
[40] YI L Y, FENG B M, CHEN N, et al.Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media[J]. Chemical Engineering Journal,2021,415:129034.
[41] SHI Z P, WANG Y, LI J, et al. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis[J]. Joule,2021,5(8):2164-2176.
[42]KIM E J, SHIN J, BAK J, et al. Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction[J]. Applied Catalysis B: Environmental,2021,280:119433.
[43] ZENG J S, QIAN Z X, ZHENG Q N, et al. Regulating Ru-O bonding interactions by Ir doping boosts the acid oxygen evolution performance[J]. ChemCatChem,2024,16(5):e202301222.
[44] YANG Y F, ZHOU T X, ZENG Z, et al. Novel sulfate solid supported binary Ru-Ir oxides for superior electrocatalytic activity towards OER and CER[J]. Journal of Colloid and Interface Science,2024,659:191-202.
[45] WU J Y, QIU Z J, ZHANG J X, et al. Stabilizing highly active Ru sites by electron reservoir in acidic oxygen evolution[J]. Molecules,2024,29(4):785.
[46] LONG X, ZHAO B, ZHAO Q Q, et al. Ru-RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction[J]. Applied Catalysis B: Environmental,2024,343:123559.
[47] LI Q, ZENG C, XIAN Y, et al. Oxygen-atom-bridged Ru-Sn-Ce heterojunction for enhanced oxygen evolution reaction in acidic media[J]. International Journal of Hydrogen Energy,2024,49:498-505.
[48] JEONG S, KWON T, KIM Y, et al. Bimetallic Ru1-x Vx O2 and trimetallic Ru1-x-y Vx Cry O2 alloy nanofibers for efficient, stable and pH-independent oxygen evolution reaction catalysis[J]. Journal of Alloys and Compounds,2023,968:171916.
[49]QIN Y, CAO B, ZHOU X Y, et al. Orthorhombic (Ru, Mn)2O3: a superior electrocatalyst for acidic oxygen evolution reaction[J]. Nano Energy,2023,115:108727.
[50] QIN Y, ZHAO R, SUN J Y, et al. Self-supported iridium-ruthenium oxides catalysts with enriched phase interfaces for boosting oxygen evolution reaction in acid[J]. Applied Surface Science,2023,622:156945.
[51] LIU H, ZHANG Z, FANG J J, et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media[J]. Joule,2023,7(3):558-573.
[52] FENG T L, YU J K, YUE D, et al. Defect-rich ruthenium dioxide electrocatalyst enabled by electronic reservoir effect of carbonized polymer dot for remarkable pH-universal oxygen evolution[J]. Applied Catalysis B: Environmental,2023,328:122546.
[53] LIU Z, LIU Y X, HE H W, et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting[J]. Electrochimica Acta,2023,443:141920.
[54]LIU T T, GUO H Y, CHEN Y N, et al. Role of MoOx surficial modification in enhancing the OER performance of Ru-pyrochlore[J]. Small,2023,19(10): e2206698.
[55] XIA T X, LIU C B, LU Y, et al. Regulating Ru-based double perovskite against lattice oxygen oxidation by incorporating Ir for efficient and stable acidic oxygen evolution reaction[J]. Applied Surface Science,2022,605:154727.
[56] RAVICHANDRAN S, BHUVANENDRAN N, XU Q, et al. Ordered mesoporous Pt-Ru-Ir nanostructures as superior bifunctional electrocatalyst for oxygen reduction/oxygen evolution reactions[J]. Journal of Colloid and Interface Science,2022,608:207-218.
[57] AI L H, WANG Y, LUO Y, et al. Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media[J]. Journal of Alloys and Compounds,2022,902:163787.
[58] HAN T R, WU JJ, LU X L, et al. Study of OER electrocatalysts performance of Fe/Mn doped pyrochlorestructure[J]. Journal of Solid State Chemistry,2021,303:122457.
[59] HE J, LI W Q, XU P, et al. Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media[J]. Applied Catalysis B: Environmental,2021,298:120528.
[60] HU J, FU Y H, YANG P G, et al. The construction of stable Ru/RuO2 porous reticular heterostructure with highly efficient electrocatalytic activity for oxygen evolution reaction[J]. Materials Characterization,2021,177:111201.
[61] NIU S Q, KONG X P, LI S W, et al. Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid[J]. Applied Catalysis B: Environmental,2021,297:120442.
[62] YAO Q, HUANG B L, XU Y, et al. A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution[J]. Nano Energy,2021,84:105909.
[63] CHEN Z J, DUAN X G, WEI W, et al. Boride-based electrocatalysts: Emerging candidates for water splitting[J]. Nano Research,2020,13(2):293-314.
[64] JO H, WY Y, AHN H, et al. Atomically thin iridium nanosheets for oxygen evolution electrocatalysis[J]. Nanoscale,2024,16(24):11524-11529.
[65] LI L M, WANG Y, NAZMUTDINOV R R, et al. Magnetic field enhanced cobalt iridium alloy catalyst for acidic oxygen evolution reaction[J]. Nano Letters,2024,24(20):6148-6157.
[66] FU L H, ZENG X, HUANG C Z, et al. Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting[J]. Inorganic Chemistry Frontiers,2018,5(5):1121-1125.
[67] PI Y C, ZHANG N, GUO S J, et al. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range[J]. Nano Letters,2016,16(7):4424-4430.
[68]SCHWEINAR K, GAULT B, MOUTON I, et al. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction[J].The Journal of Physical Chemistry Letters,2020,11(13):5008-5014.
[69] LIU Y R, ZHANG M Q, ZHANG C, et al. An IrRuOx catalyst supported by oxygen-vacant Ta oxide for the oxygen evolution reaction and proton exchange membrane water electrolysis[J]. Nanoscale,2024,16(19):9382-9391.
[70] SUN W, LIU J Y, GONG X Q, et al. OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates[J]. Scientific Reports,2016,6:38429.
[71] NONG H N, OH H S, REIER T, et al. Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting[J]. Angewandte Chemie (International Ed in English),2015,54(10):2975-2979.
[72] OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society,2016,138(38):12552-12563.
[73] ZHOU Z H, ZAMAN W Q, SUN W, et al. Cultivating crystal lattice distortion in IrO2 via coupling with MnO2 to boost the oxygen evolution reaction with high intrinsic activity[J]. Chemical Communications,2018,54(39):4959-4962.
[74]GOU W Y, XIA Z M, TAN X H, et al. Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution[J]. Nano Energy,2022,104:107960.
[75] CAO L L, LUO Q Q, CHEN J J, et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nature Communications,2019,10(1):4849.
[76] ZHENG C X, HUANG B, LIU X W, et al. Mn-doped RuO2 nanocrystals with abundant oxygen vacancies for enhanced oxygen evolution in acidic media[J]. Inorganic Chemistry Frontiers,2024,11(6):1912-1922.
[77] GUAN Z M, CHEN Q, LIU L, et al. Heterointerface MnO2/RuO2 with rich oxygen vacancies for enhanced oxygen evolution in acidic media[J]. Nanoscale,2024,16(21):10325-10332.
[78] LI Y L, ZHOU W L, ZHAO X, et al. Donutlike RuCu nanoalloy with ultrahigh mass activity for efficient and robust oxygen evolution in acid solution[J]. ACS Applied Energy Materials,2019,2(10):7483-7489.
Research Progress of Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction
LI Yibing, ZHOU Menghao
(School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610097, Sichuan)
Hydrogen production by water electrolysis is a clean production technology. Compared with alkaline water electrolysis (AWE), proton exchange membrane water electrolysis (PEMWE) has the advantages of chemical stability, high proton conductivity, and non-porous gas isolation. However, the oxygen extraction reaction (OER) has a harsh acidic environment and involves a four-electron-transfer step with a slow kinetic process, which requires highly active, acid-resistant and corrosion-resistant electrocatalyst materials. Noble metal materials play a crucial role as high-performance acidic OER electrocatalysts due to their high activity and good selectivity. So far, several catalysts composed of Ir-based and Ru-based materials have been designed and applied to acidic OER. This paper reviews the research progress of noble metal materials electrocatalysts for acidic OER in recent years. Firstly, two mainstream OER mechanisms, namely, adsorbate evolution mechanism and lattice oxygen oxidation mechanism, are described, and then the recently reported acidic OER electrocatalysts are summarized in terms of Ir-based and Ru-based noble metal materials. Finally, the development direction of" noble metal catalysts in the acidic oxygen-oxidation reaction, such as reaction mechanism and structural design, is anticipated.
acidic oxygen evolution reaction; noble metal materials; electrocatalysis(編輯 陶志寧)