摘要:應用環(huán)境DNA宏條形碼(eDNA metabarcoding)檢測三峽水庫變動回水區(qū)魚類多樣性,為區(qū)域魚類多樣性監(jiān)測和保護提供新方法。2021年8月在三峽水庫變動回水區(qū)5個典型江段共26個采樣區(qū)域進行水樣采集,應用eDNA宏條形碼標準化分析流程共檢測分析出魚類68種,隸屬于8目18科56屬,包括國家一級重點保護魚類1種,國家二級重點保護魚類3種,長江上游特有魚類15種,重慶市重點保護魚類3種,外來魚類1種,鯉(Cyprinus carpio)、草魚(Ctenopharyngodon idella)、鲇(Silurus asotus)、鳙(Aristichthys nobilis)、波氏吻蝦虎魚(Rhinogobius cliffordpopei)等為優(yōu)勢種且具有較高的操作分類單元(OTU)序列數(shù)。5個典型江段的魚類組成存在差異,且在平綏壩—絲瓜磧等重點淤積的江段檢測出較高的魚類豐度,庫區(qū)新形成的邊灘生境可能是魚類重要的育幼場。研究結(jié)果表明eDNA宏條形碼可用于快速檢測三峽水庫變動回水區(qū)魚類多樣性及其空間分布,可作為關(guān)鍵技術(shù)組建無損傷性的魚類資源監(jiān)測體系。
關(guān)鍵詞:環(huán)境DNA宏條形碼;魚類多樣性;變動回水區(qū);三峽水庫
中圖分類號:S932.4" " " " 文獻標志碼:A" " " " 文章編號:1674-3075(2025)02-0122-12
魚類多樣性是評價三峽水庫變動回水區(qū)水生態(tài)系統(tǒng)健康的關(guān)鍵指標(Zou et al,2020),保護魚類多樣性有利于水生態(tài)系統(tǒng)的健康與穩(wěn)定。2007—2021年,許多學者在江津(高天珩等,2013;熊飛等,2014)、木洞(楊少榮等,2010;Lin et al,2020)、洛磧(王珂等,2013)、涪陵(楊志等,2015;董純等,2019)和豐都(王紅麗等,2015;趙雯等,2021)江段采用傳統(tǒng)魚類資源調(diào)查方法有效評估了區(qū)域性環(huán)境變化對長江魚類多樣性造成的影響。但隨著2020年長江全面禁漁和2021年長江保護法的出臺,以網(wǎng)捕、電捕和刺網(wǎng)等方法為主的傳統(tǒng)方法因?qū)﹂L江魚類及其生境造成損害而受到限制(Jerde et al,2011;沈梅等,2022a)。此外,因三峽水庫變動回水區(qū)具有水文情勢復雜和水下地形多變等特點,傳統(tǒng)的調(diào)查方法對珍稀特有魚類的監(jiān)測也存在不足。環(huán)境DNA宏條形碼(eDNA metabarcoding)能有效避免上述問題。
eDNA宏條形碼是通過從水、土壤、空氣和冰芯等環(huán)境樣品中直接提取生物體經(jīng)由皮膚、尿液、黏液等釋放到環(huán)境中的胞內(nèi)DNA或者細胞死亡后裂解釋放到環(huán)境中的胞外DNA(Balasingham et al,2018),通過高通量測序和生物信息學分析,一次性識別多個DNA序列的新型技術(shù)(Ruppert et al,2019)。eDNA技術(shù)首次應用于水生生物監(jiān)測是2008年Ficetola等(2008)用于追蹤入侵生物美國牛蛙(Rana catesbeiana),此后 eDNA 技術(shù)在該領(lǐng)域的應用迅速發(fā)展;Thomsen等(2012)利用從湖泊、溪流等生境中提取的eDNA來檢測魚類等多種生物的多樣性,開創(chuàng)了應用eDNA監(jiān)測魚類多樣性的先河;之后eDNA技術(shù)被廣泛應用于魚類監(jiān)測,應用領(lǐng)域涉及到生物多樣性監(jiān)測(Yamamoto et al,2017)、入侵物種監(jiān)測(Larson et al,2020)、瀕危珍稀物種監(jiān)測(Schmelzle amp; Kinziger,2016)、生物量估計(Tillotson et al,2018)等方面。目前,基于eDNA宏條形碼的魚類監(jiān)測研究整體處于技術(shù)驗證向技術(shù)標準化過渡的階段(楊海樂等,2023),但依然存在不少問題有待解決(Loeza-Quintana et al,2020)。鑒于eDNA監(jiān)測技術(shù)可以實現(xiàn)非接觸、無損傷、高靈敏度、低人力物力時間成本消耗的多物種監(jiān)測的應用特點(Stat et al,2017;李晗溪等,2019;李萌等,2019;王夢等,2022),在長江魚類資源調(diào)查上逐漸受到重視。
三峽水庫變動回水區(qū)是指從三峽水庫常年庫區(qū)至庫尾之間的江段(肖毅等,2019),是長江上游珍稀特有魚類和四大家魚等經(jīng)濟性魚類的重要分布區(qū)域,其魚類種質(zhì)資源及生存環(huán)境具有很高的保護價值(Lin et al,2020)。受三峽水庫運行影響,來水來沙條件的變化導致變動回水區(qū)的河流形態(tài)和水文過程均有一定程度的改變(雷雅文,2018;蘇麗等,2018),致使庫區(qū)水生生物群落結(jié)構(gòu)發(fā)生演替(趙莎莎等,2015),國內(nèi)外研究者對三峽變動回水區(qū)魚類多樣性保護(Lin et al,2019)、喜急流魚類的遷徙與適應行為(Xia et al,2016)和產(chǎn)漂流性卵魚類的繁殖過程(張先炳等,2021)等問題一直予以重點關(guān)注。本研究應用eDNA宏條形碼于2021年8月開展三峽水庫變動回水區(qū)的魚類資源調(diào)查,也是首次應用eDNA宏條形碼監(jiān)測該江段的魚類多樣性。研究旨在探索適合三峽水庫變動回水區(qū)魚類多樣性監(jiān)測的新方法,分析不同區(qū)域魚類分布的差異及其形成原因,為長江生物多樣性保護和水生態(tài)系統(tǒng)健康評估提供新的技術(shù)手段。
1" "材料與方法
1.1" "采樣時間和采樣區(qū)域設(shè)置
采樣于2021年8月進行,研究江段囊括三峽水庫變動回水區(qū)間的長江干流水域,共計402 km。根據(jù)研究江段水文情勢、地形地貌差異將其分為5個典型江段(肖毅等,2019),順水流方向依次為:天然江段(A段)、三峽水庫變動回水區(qū)上段(B段)、三峽水庫變動回水區(qū)中段(C段)、三峽水庫變動回水區(qū)下段(D段)和三峽水庫常年回水區(qū)江段(E段),結(jié)合魚類棲息地歷史調(diào)查資料(王紅麗等,2015;楊志等,2015;董純等,2019;張先炳等,2021;趙雯等,2021),在每個江段設(shè)4~6個采樣斷面(共計26個),具體分布見圖1。
1.2" "水樣采集及處理
各采樣斷面長400 m,并沿水流方向按200 m間距布設(shè)采樣點,每個斷面共3個采樣點,每個采樣點用采水器采集1 L表層水樣(水深約0.3 m),3個采樣點的水樣充分混合后選用直徑50 mm,孔徑0.22 μm的混合纖維素濾膜(MCE)于24 h之內(nèi)完成抽濾(Zhang et al,2020a;王晨等,2022),濾膜置于5 mL無菌凍存管內(nèi)于-20 ℃冷凍保存。每次抽濾時設(shè)置1個陰性對照用以鑒定有無外源DNA污染(舒璐等,2020),所有實驗器材在使用前后用10%漂白粉溶液浸泡消毒30 min去除殘留的DNA,并用無菌水(ddH2O)充分漂洗。
1.3" "eDNA提取
用無菌剪刀將濾膜剪成約3 mm2的小片,采用PowerWater DNA Isolation Kits(Qiagen公司)試劑盒按操作獨立提取每份DNA樣品(Zhang et al,2020a)。將每份DNA提取液分別溶于100 μL AE緩沖液中,洗脫DNA。最后將DNA提取液置于-20 ℃冷凍保存。使用空白濾膜作為陰性對照以評估DNA的提取過程是否存在污染。
1.4" "PCR擴增及高通量測序
利用Miya等(2015)開發(fā)的魚類通用引物MiFish-U(MiFish-U-F:5'-GTCGGTAAAACTCGTGCCAGC-3';MiFish-U-R:5'-CATAGTGGGGTATCTAATCCCAGTTTG-3')對樣品進行PCR擴增,該引物以魚類線粒體12S rRNA基因高變異區(qū)域為靶點,擴增片段長度約為163~185 bp。25 μL的擴增體系包括:5 μL 5×reaction buffer,5 μL 5×GC buffer,2 μL dNTP(2.5 mmol/L),正反向引物各1 μL(10 μmol/L),2 μL模板DNA,0.25 μL Q5 DNA聚合酶,8.75 μL ddH2O。PCR反應程序:98 ℃預變性2 min;30個循環(huán)包括:98 ℃變性15 s,55 ℃退火30 s,72 ℃延伸30 s;72 ℃最后延伸5 min,于10 ℃保存。每次PCR擴增使用無菌水為模板作PCR陰性對照。PCR產(chǎn)物經(jīng)2%瓊脂糖凝膠電泳檢測和純化后,送往上海凌恩生物科技有限公司采用Illumina MiSeq平臺進行高通量測序。
1.5" "數(shù)據(jù)處理及分析
數(shù)據(jù)經(jīng)過濾、拼接和篩除后,按序列間堿基相似性(≥97%)將序列聚類為操作分類單元(operational taxonomic unit,OTU),獲得OTU代表序列。再將OTU代表序列與MitoFish(http://mitofish.aori.u-tokyo.ac.jp/)和NCBI(https://blast.ncbi.nlm.nih.gov/)數(shù)據(jù)庫進行比對(Identitygt;97%,Covergt;90%,E-valuelt;10-5),匹配魚類物種信息,再通過人工篩除校正,得到魚類物種注釋結(jié)果(楊海樂等,2021)。統(tǒng)計魚類物種數(shù)量、OTU序列數(shù)量和OTU序列相對豐度;應用R語言vegan包與ggplot2包計算Chao1指數(shù)(Chao1 index)、ACE指數(shù)(ACE index)、香農(nóng)指數(shù)(Shannon index)、辛普森指數(shù)(Simpson index)及覆蓋度指數(shù)(Coverage index)進行Alpha多樣性分析;計算Bray-Curtis距離矩陣進行PCoA分析(principal coordinates analysis)。并利用優(yōu)勢度指數(shù)Y(Y≥0.02定義為優(yōu)勢種)識別優(yōu)勢魚種(沈梅等,2022b)。
2" "結(jié)果與分析
2.1" "物種組成
應用eDNA宏條形碼檢測三峽水庫變動回水區(qū)5個典型江段魚類多樣性,共得到有效拼接序列263 691條,平均序列長度174 bp。通過聚類分析得到OTU聚類291個,不同江段OTU聚類數(shù)量及差異見圖2。
通過對OTU進行注釋,共檢測出68種魚(表1),隸屬于8目18科56屬,其中,鯉形目(Cypriniformes)魚類3科38屬46種,占魚類總數(shù)的67.65%;鱸形目(Perciformes)7科8屬12種,占魚類總數(shù)的17.65%;鲇形目(Siluriformes)3科3屬3種,占魚類總數(shù)的4.41%。檢測得到國家一級重點保護魚類1種(達氏鱘,Acipenser dabryanus);國家二級重點保護魚類3種(鳤,Ochetobius elongatus;多鱗白甲魚,Onychostoma macrolepis;重口裂腹魚,Schizothorax davidi);長江上游特有魚類15種;重慶市重點保護魚類3種(鳤;中華金沙鰍,Jinshaia sinensis;四川華吸鰍,Sinogastromyzon szechuanensis);外來魚類1種(莫桑比克羅非魚,Oreochromis mossambicus)。
各江段魚類OTU序列相對豐度情況見圖3。其中鯉形目、鱸形目、鲇形目序列數(shù)分別占魚類總序列數(shù)的71.30%、12.83%、8.89%;鯉(Cyprinus carpio)、草魚(Ctenonpharyngodon idellus)、鲇(Silurus asotus)、鳙(Aristichthys nobilis)、波氏吻蝦虎魚(R. cliffordpopei)、馬口魚(Opsariichthys bidens)和西昌華吸鰍(S. sichuangensis)為優(yōu)勢種且具有較高的OTU序列數(shù),其優(yōu)勢度指數(shù)Y分別為0.17、0.16、0.07、0.04、0.04、0.02和0.02。各江段魚類物種組成情況存在明顯差異,鯉、鯽(Carassius auratus)、馬口魚、短體副鰍、鳙、斑鱖(Siniperca scherzeri)、波氏吻蝦虎魚等16種魚類在各江段廣泛分布,達氏鱘、寬鰭鱲(Zacco platypus)、鳡(Elopichthys bambusa)、寡鱗飄魚(Pseudoleubuca engraulis)、銅魚(Corieus heterodon)等在個別江段檢測到。
2.2" "Alpha多樣性
通過豐富度指數(shù)Chao1和ACE、多樣性指數(shù)Shannon和Simpson以及覆蓋度指數(shù)Coverage分析研究江段魚類群落的Alpha多樣性(表2)。5個典型江段魚類群落Alpha多樣性指數(shù)存在較大差異,其中三峽水庫變動回水區(qū)下段(D段)和三峽水庫常年回水區(qū)江段(E段)的多樣性指數(shù)明顯高于其他江段。各江段Coverage指數(shù)為0.999 7~0.999 8,表明測序基本覆蓋到了全部的OTU序列,能反映樣本的真實情況。
2.3" "Beta多樣性
本研究基于計算Bray-Curtis距離矩陣進行PCoA分析(圖4),揭示不同江段間魚類群落的相似性與差異性。由圖4可見,不同江段間魚類群落結(jié)構(gòu)均存在差異,其中天然江段(A段)、三峽水庫變動回水區(qū)上段(B段)和三峽水庫變動回水區(qū)中段(C段)的魚類群落差異顯著;而三峽水庫變動回水區(qū)下段(D段)和三峽水庫常年回水區(qū)江段(E段)間具有相似的魚類群落結(jié)構(gòu)。
3" "討論
3.1" "魚類分布的多樣性及其原因
統(tǒng)計研究江段基于傳統(tǒng)調(diào)查方法的漁獲物歷史調(diào)查結(jié)果,不同研究人員分別采集魚類40~74種(表3),共計111種(王紅麗等,2015;楊志等,2015;董純等,2019;張先炳等,2021;趙雯等,2021),其中鯉、鰱(Hypophthalmichthys molitrix)、鳙、草魚、銅魚、?(Hemiculter leucisculus)、鲇、長吻鮠(Leiocassis longirostris)、黃顙魚(Pelteobagrus fulvidraco)、太湖新銀魚(Neosalanx taihuensis)等為優(yōu)勢種。在本次的調(diào)查中,共檢測出魚類68種,其中鯉、草魚、鲇、鳙、波氏吻蝦虎魚、西昌華吸鰍和馬口魚為優(yōu)勢種,與傳統(tǒng)調(diào)查結(jié)果相比,魚類的數(shù)量和優(yōu)勢種的類型均具有一定的相似性;本次調(diào)查檢測出達氏鱘、多鱗白甲魚、重口裂腹魚等傳統(tǒng)調(diào)查方法難以捕獲的魚類,原因為eDNA宏條形碼主要采集細胞死亡后裂解釋放到環(huán)境中的胞外DNA,故針對珍稀保護魚類仍具有較高的檢測率(Balasingham et al,2018)。
魚類群落的Alpha多樣性分析結(jié)果和基于Bray-Curtis距離矩陣的PCoA分析結(jié)果顯示河流型江段(天然江段A段、三峽水庫變動回水區(qū)上段B段、變動回水區(qū)中段C段)和庫區(qū)型江段(變動回水區(qū)下段D段和常年回水區(qū)E段)的魚類多樣性存在差異,D、E江段的魚類多樣性要高于A、B、C江段。研究認為三峽水庫在汛期壩前水位低、上游來流不大的情況下形成特殊的“河-庫”復合生態(tài)系統(tǒng),A、B、C江段水面寬度與水深減小,水流湍急,基本恢復天然河流生境;D、E江段其相對流速變緩,呈現(xiàn)庫區(qū)生境,但因深沱、江心洲等復雜地形的存在而具有較高的生境異質(zhì)性。這種“河-庫”復合生態(tài)系統(tǒng)與“河流-泛濫平原”復合生態(tài)系統(tǒng)(如長江中下游的“江-湖”復合生態(tài)系統(tǒng))對魚類群落的補充具有相似的功能(王震等,2019)。因三峽水庫變動回水區(qū)分布的魚類多于春季洄游到庫區(qū)上游天然河流生境進行產(chǎn)卵活動,其卵苗隨水流漂流至下游庫區(qū)緩流生境完成早期生活史(王珂等,2012),上游流水進入庫區(qū)緩流區(qū)域后,攜帶的有機顆粒物在該區(qū)懸浮和沉積,導致庫區(qū)緩流區(qū)域餌料資源豐富,成為魚類優(yōu)良的育幼場(林鵬程等,2018)。研究采樣期間,寬鰭鱲、銅魚、西昌華吸鰍等喜急流魚類在D、E江段中被檢測到且具有較高的序列豐度,也可能是長江上游干流與三峽水庫形成的“河-庫”復合生態(tài)系統(tǒng)功能的反映。
值得注意的是,河床地形地貌改變可能形成新的生境進而影響魚類資源的分布。通過現(xiàn)場調(diào)研并結(jié)合研究江段自2008年試驗性蓄水以來的河道地形地貌的原觀資料(胡江等,2013;李文杰等,2015;肖毅等,2019;戴卓等,2020):D、E江段呈現(xiàn)斑狀淤積的特點,細顆粒泥沙淤積于寬谷的的邊灘、深槽和分汊(E5最大淤積深度達60 m)從而新形成大面積邊灘,這些邊灘可能是魚類育幼的重要區(qū)域,如在幾個重點淤積的江段如平綏壩—絲瓜磧(D5~D6)、蘭竹壩(E2~E4)和黃花城(E4~E6)等均檢測出較高的魚類豐度。推測研究江段魚類的育幼場可能已囊括至常年回水區(qū)的忠縣江段,今后應進一步加強該段生態(tài)系統(tǒng)的功能研究。
3.2" "eDNA監(jiān)測的標準化與可信度
從環(huán)境監(jiān)測的視角,魚類eDNA可視為一種在水體中呈非均勻分布且可降解的有機物,因此將eDNA監(jiān)測技術(shù)劃分成兩個階段,前端流程為eDNA的排放、遷移、降解和采集;后端流程為樣品的處理、分析和注釋。近年來國內(nèi)外研究者對eDNA樣品處理與保存(李苗等,2019;Inui et al,2021)、擴增引物選擇(Miya et al,2020;Zhang et al,2020b)、樣品提取-擴增-測序-分析程序(李萌等,2019;Dopheide et al,2019)、序列比對注釋(Andersen et al,2019)等后端流程做了大量的技術(shù)驗證,并已逐步實現(xiàn)技術(shù)的標準化。但前端流程依然是eDNA監(jiān)測體系標準化的難點,尤其是針對長江上游等生境異質(zhì)性高、水流條件十分復雜的流動水體,魚類eDNA監(jiān)測的現(xiàn)場采樣設(shè)計直接影響監(jiān)測結(jié)果。本研究在采樣地點設(shè)計上篩選歷史文獻記載和前期調(diào)查的魚類棲息地,并考慮水流的遷徙作用,避免原位上的eDNA不可檢出或上下游檢測到的是同一信號來源(Fremier et al,2019);采樣時間設(shè)計上盡量縮短eDNA的降解時間,避免eDNA降解至短于擴增片段的長度而不可檢出(Wei et al,2018);在每個典型江段采集12~18個樣本,主要考慮了eDNA可能被水流稀釋至低于檢出限的濃度從而需要大量的樣品采集才能反應魚類的真實分布等(Klymus et al,2020;楊海樂等,2021)。
針對利用eDNA監(jiān)測結(jié)果評估河流魚類多樣性的可信度問題,有學者提出用基于水文學的模型,考慮eDNA降解速率以及各環(huán)境因子,通過模型模擬計算來設(shè)計eDNA監(jiān)測的最適采樣方案(Carraro et al,2021),但這種方案因影響因子和動力學參數(shù)過于復雜而難以實現(xiàn)eDNA輸移降解過程的模型化。楊海樂等(2023)提出通過對eDNA 輸入端和輸出端關(guān)聯(lián)性量化分析的“黑箱式”監(jiān)測方案,即在各具體區(qū)域針對各具體目標類群在各具體環(huán)境條件范圍內(nèi)開展實驗積累數(shù)據(jù),并建立標準數(shù)據(jù)庫。具體操作中通過查閱數(shù)據(jù)庫,根據(jù)相應監(jiān)測空間有效度確定監(jiān)測樣點,根據(jù)相應監(jiān)測時間有效度確定監(jiān)測采樣時間間隔,并根據(jù)樣品重復數(shù)與目標檢出度之間的關(guān)系測算樣品重復度。本研究同樣采用這種基于流域生物信息流分析框架的處理方式,認為其可以極大地提升目標水域eDNA魚類監(jiān)測結(jié)果的可信度(楊海樂等,2021)。
3.3" "eDNA宏條形碼的應用前景
eDNA宏條形碼僅通過在研究區(qū)域采集少量的水樣,就可以實現(xiàn)魚類多樣性的監(jiān)測。與傳統(tǒng)調(diào)查方法相比,其研究成本顯著降低(Evans et al,2017),且不會危害魚類及其生境,特別是針對傳統(tǒng)調(diào)查方法難以捕獲的魚類仍具有較高的檢測率(Yamamoto et al,2017;Harper et al,2019)。本次調(diào)查共檢測出魚類68種,與傳統(tǒng)調(diào)查結(jié)果具有一定的相似性。在三峽水庫常年回水區(qū)E2采樣點檢測到國家二級重點保護動物鳤,2022年1月在E1、E2、E5和E6采樣點同樣檢測到鳤的eDNA(數(shù)據(jù)未發(fā)表),而這個結(jié)論于2022年10月的重慶市長江流域水生生物資源秋季監(jiān)測中得到證實,這也是三峽水庫成庫以來首次采集到該物種。
流水生境中eDNA宏條形碼技術(shù)標準化仍處于過渡階段,現(xiàn)并不能完全取代傳統(tǒng)調(diào)查方法,可作為傳統(tǒng)漁業(yè)資源調(diào)查方法的補充方案(舒璐等,2020)。同時,eDNA宏條形碼不能鑒定魚類的生長發(fā)育情況,也需要傳統(tǒng)捕撈或者其他監(jiān)測手段加以輔助。
在長江實行全面禁漁的背景下,研究者將逐步完善無損傷性的魚類資源監(jiān)測體系,通過結(jié)合回聲探測(徐觀兵等,2021)等技術(shù)監(jiān)測魚類密度和魚類體長;采用eDNA宏條形碼法監(jiān)測魚類多樣性;應用水下攝像(杜浩等,2015)和水下聲吶成像(荊丹翔等,2019)等技術(shù)監(jiān)測魚類生境,最后綜合少量的傳統(tǒng)捕撈驗證監(jiān)測結(jié)果,實現(xiàn)對長江魚類資源的監(jiān)控保護。eDNA宏條形碼作為無損傷性的魚類資源監(jiān)測體系的關(guān)鍵組成,對揭示魚類的結(jié)構(gòu)組成和資源分布具有良好的現(xiàn)實意義和發(fā)展前景。
參考文獻
戴卓, 李文杰, 楊勝發(fā), 等, 2020. 三峽水庫泥沙淤積對氮磷污染物的影響[J]. 人民長江, 51(2):23-27.
DAI Z, LI W J, YANG S F, et al, 2020. Influence of sediment deposition on nitrogen and phosphorus pollutants in Three Gorges Reservoir area[J]. Yangtze River, 51(2):23-27.
董純, 楊志, 龔云, 等, 2019. 三峽庫區(qū)干流魚類資源現(xiàn)狀與物種多樣性保護[J]. 水生態(tài)學雜志, 40(1):15-21.
DONG C, YANG Z, GONG Y, et al, 2019. Fish resource status and biodiversity conservation in the main channel of Three Gorges Reservoir[J]. Journal of Hydroecology, 40(1):15-21.
杜浩, 危起偉, 張輝, 等, 2015. 三峽蓄水以來葛洲壩下中華鱘產(chǎn)卵場河床質(zhì)特征變化[J]. 生態(tài)學報, 35(9):3124-3131.
DU H, WEI Q W, ZHANG H, et al, 2015. Changes of bottom substrate characteristics in spawning ground of Chinese sturgeon downstream the Gezhouba Dam from impounding of Three Gorge Reservoir[J]. Acta Ecologica Sinica, 35(9):3124-3131.
高天珩, 田輝伍, 葉超, 等, 2013. 長江上游珍稀特有魚類國家級自然保護區(qū)干流段魚類組成及其多樣性[J]. 淡水漁業(yè), 43(2):36-42.
GAO T H, TIAN H W, YE C, et al, 2013. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River[J]. Freshwater Fisheries, 43(2):36-42.
胡江, 楊勝發(fā), 王興奎, 2013. 三峽水庫2003年蓄水以來庫區(qū)干流泥沙淤積初步分析[J]. 泥沙研究, (1):39-44.
HU J, YANG S F, WANG X K, et al, 2013. Sedimentation in Yangtze River above Three Gorges project since 2003[J]. Journal of Sediment Research, (1):39-44.
荊丹翔, 周晗昀, 韓軍, 等, 2019. 基于成像聲吶DIDSON的水域內(nèi)魚群數(shù)量估計方法[J]. 應用聲學, 38(4):705-711.
JING D X, ZHOU H Y, HAN J, et al, 2019. Fish abundance estimation based on an imaging sonar[J]. Journal of Applied Acoustics, 38(4):705-711.
雷雅文, 2018. 三峽水庫變動回水區(qū)整體泥沙沖淤研究[J]. 人民長江, 49(增刊2):1-5.
LEI Y W, 2018. Study on scour and siltation of sediment in entire fluctuating backwater area of Three Gorges Reservoir[J]. Yangtze River, 49(Suppl.2):1-5.
李晗溪, 黃雪娜, 李世國, 等, 2019. 基于環(huán)境DNA宏條形碼技術(shù)的水生生態(tài)系統(tǒng)入侵生物的早期監(jiān)測與預警[J]. 生物多樣性, 27(5):491-504.
LI H X, HUANG X N, LI S G, et al, 2019. Environmental DNA(eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems[J]. Biodiversity Science, 27(5):491-504.
李萌, 尉婷婷, 史博洋, 等, 2019. 環(huán)境DNA技術(shù)在淡水底棲大型無脊椎動物多樣性監(jiān)測中的應用[J]. 生物多樣性, 27(5):480-490.
LI M, WEI T T, SHI B Y, et al, 2019. Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA[J]. Biodiversity Science, 27(5):480-490.
李苗, 單秀娟, 王偉繼, 等, 2019. 中國對蝦生物量評估的環(huán)境DNA檢測技術(shù)的建立及優(yōu)化[J]. 漁業(yè)科學進展, 40(1):12-19.
LI M, SHAN X J, WANG W J, et al, 2019. Establishment and optimization of environmental DNA detection techniques for assessment of Fenneropenaeus chinensis biomass[J]. Progress in Fishery Sciences, 40(1):12-19.
李文杰, 楊勝發(fā), 付旭輝, 等, 2015. 三峽水庫運行初期的泥沙淤積特點[J]. 水科學進展, 26(5):676-685.
LI W J, YANG S F, FU X H, et al, 2015. Sedimentation characteristics in the Three Gorges Reservoir during the initial operation stage[J]. Advances in Water Science, 26(5):676-685.
林鵬程, 劉飛, 黎明政, 等, 2018. 三峽水庫蓄水后長江上游魚類群聚沿河流—水庫梯度的空間格局[J]. 水生生物學報, 42(6):1124-1134.
LIN P C, LIU F, LI M Z, et al, 2018. Spatial pattern of fish assemblages along the river-reservoir gradient caused by the Three Gorge Reservoir(tgr)[J]. Acta Hydrobiologica Sinica, 42(6):1124-1134.
沈梅, 郭寧寧, 羅遵蘭, 等, 2022b. 基于eDNA metabarcoding探究北京市主要河流魚類分布及影響因素[J]. 生物多樣性, 30(7):134-145.
SHEN M, GUO N N, LUO Z L, et al, 2022b. Explore the distribution and influencing factors of fish in major rivers in Beijing with eDNA metabarcoding technology[J]. Biodiversity Science, 30(7):134-145.
沈梅, 肖能文, 盧林, 等, 2022a. 環(huán)境DNA技術(shù)及在魚類監(jiān)測中的應用[J]. 水生態(tài)學雜志, 43(2):133-141.
SHEN M, XIAO N W, LU L, et al, 2022a. Review of environmental DNA detection methods and their application to fish monitoring[J]. Journal of Hydroecology, 43(2):133-141.
舒璐, 林佳艷, 徐源, 等, 2020. 基于環(huán)境DNA宏條形碼的洱海魚類多樣性研究[J]. 水生生物學報, 44(5):1080-1086.
SHU L, LIN J Y, XU Y, et al, 2020. Investigating the fish diversity in Erhai lake based on environmental DNA metabarcoding[J]. Acta Hydrobiologica Sinica, 44(5):1080-1086.
蘇麗, 劉辛愉, 汪劍橋, 等, 2018. 三峽水庫變動回水區(qū)洛磧河段年內(nèi)沖淤變化過程[J]. 水運工程, (4):115-121.
SU L, LIU X Y, WANG J Q, et al, 2018. Annual fluvial sedimentation process in Luoqi reach of fluctuating backwater zone in the Three Gorges Reservoir[J]. Port amp; Waterway Engineering, (4):115-121.
王晨, 陶孟, 李愛民, 等, 2022. 基于環(huán)境DNA宏條形碼技術(shù)的秦淮河生物多樣性探究[J]. 生態(tài)學報, 42(2):611-624.
WANG C, TAO M, LI A M, et al, 2022. Research on the biodiversity of Qinhuai river based on environmental DNA metabacroding[J]. Acta Ecologica Sinica, 42(2):611-624.
王紅麗, 黎明政, 高欣, 等, 2015. 三峽庫區(qū)豐都江段魚類早期資源現(xiàn)狀[J]. 水生生物學報, 39(5):954-964.
WANG H L, LI M Z, GAO X, et al, 2015. The status of the early stage fish resources in the Fengdu section of the Three Gorges Reservoir[J]. Acta Hydrobiologica Sinica, 39(5):954-964.
王珂, 李翀, 段辛斌, 等, 2012. 三峽水庫175 m蓄水前魚類分布特征研究[J]. 淡水漁業(yè), 42(3):23-27.
WANG K, LI C, DUAN X B, et al, 2012. Study on the fish distribution characteristic of the Three Gorges Reservoir before 175 m[J]. Freshwater Fisheries, 42(3):23-27.
王珂, 李翀, 段辛斌, 等, 2013. 三峽庫區(qū)春季魚類組成及分布特征[J]. 淡水漁業(yè), 43(3):44-48.
WANG K, LI C, DUAN X B, et al, 2013. Composition and distribution of fish in spring in the Three Gorges Reservoir[J]. Freshwater Fisheries, 43(3):44-48.
王夢, 楊鑫, 王維, 等, 2022. 基于eDNA技術(shù)的長江上游珍稀特有魚類國家級自然保護區(qū)重慶段魚類多樣性研究[J]. 水生生物學報, 46(1):2-16.
WANG M, YANG X, WANG W, et al, 2022. Fish diversity in Chongqing section of the national nature reserve for rare and endemic fish in the upper Yangtze River based on eDNA technology[J]. Acta Hydrobiologica Sinica, 46(1):2-16.
王震, ARUNJITH T S, 謝松光, 等, 2019. 金沙江梯級大壩運行和三峽水庫運行水位增高對長江上游干流寡鱗飄魚仔魚豐度和分布的影響[J]. 水生生物學報, 43(3):606-611.
WANG Z, ARUNJITH T S, XIE S G, et al, 2019. Effect of the impoundment of dam cascade in Jinsha river and increased water level of the Three Gorges Reservoir on the distribution and abundance of Pseudolaubuca engraulis (Nichols) larvae in the upper mainstem of the Yangtze River[J]. Acta Hydrobiologica Sinica, 43(3):606-611.
肖毅, 楊勝發(fā), 王濤, 等, 2019. 三峽水庫蓄水初期庫區(qū)航道條件分析[J]. 水運工程, (11):92-99,138.
XIAO Y, YANG S F, WANG T, et al, 2019. Analysis on navigation condition of the Three Gorges Reservoir at initial stage of water storage[J]. Port amp; Waterway Engineering, (11):92-99,138.
熊飛, 劉紅艷, 段辛斌, 等, 2014. 長江上游江津江段魚類群落結(jié)構(gòu)及資源利用[J]. 安徽大學學報(自然科學版), 38(3):94-102.
XIONG F, LIU H Y, DUAN X B, et al, 2014. Community structure of fish and resources utilization in Jiangjin section of the upper Yangtze River[J]. Journal of Anhui University (Natural Science), 38(3):94-102.
徐觀兵, 王麗, 楊勝發(fā), 等, 2021. 三峽水庫變動回水區(qū)蓄水期魚群空間分布及生境特征[J]. 長江科學院院報, 38(12):46-52.
XU G B, WANG L, YANG S F, et al, 2021. Spatial distribution and habitat characteristics of fish swarm in fluctuating backwater zone of Three Gorges Reservoir in impoundment period[J]. Journal of Yangtze River Scientific Research Institute, 38(12):46-52.
楊海樂, 吳金明, 張輝, 等, 2021. 大型河流中魚類組成的eDNA監(jiān)測效率:以長江武漢江段為例[J]. 中國水產(chǎn)科學, 28(6):796-807.
YANG H L, WU J M, ZHANG H, et al, 2021. Environmental DNA metabarcoding utilization efficiency in monitoring large river fish species composition: a case study in the Wuhan transect of the Yangtze River[J]. Journal of Fishery Sciences of China, 28(6):796-807.
楊海樂, 張輝, 杜浩, 2023. eDNA監(jiān)測方法標準化框架及未來圖景[J]. 湖泊科學, 35(1):12-31.
YANG H L, ZHANG H, DU H, et al, 2023. A framework for standardizing the processes of eDNA monitoring and an accessible vision of the future[J]. Journal of Lake Sciences, 35(1):12-31.
楊少榮, 高欣, 馬寶珊, 等, 2010. 三峽庫區(qū)木洞江段魚類群落結(jié)構(gòu)的季節(jié)變化[J]. 應用與環(huán)境生物學報, 16(4):555-560.
YANG S R, GAO X, MA B S, et al, 2010. Seasonal dynamics of fish community in Mudong section of the Three Gorges Reservoir of the Yangtze River, China[J]. Chinese Journal of Applied amp; Environmental Biology, 16(4):555-560.
楊志, 唐會元, 朱迪, 等, 2015. 三峽水庫175 m試驗性蓄水期庫區(qū)及其上游江段魚類群落結(jié)構(gòu)時空分布格局[J]. 生態(tài)學報, 35(15):5064-5075.
YANG Z, TANG H Y, ZHU D, et al, 2015. Spatiotemporal patterns of fish community structures in the Three Gorges Reservoir and its upstream during the 175-m-deep impoundment[J]. Acta Ecologica Sinica, 35(15):5064-5075.
張先炳, 楊勝發(fā), 楊威, 等, 2021. 長江上游宜賓—江津與涪陵—豐都江段魚類早期資源分布研究[J]. 淡水漁業(yè), 51(5):51-59.
ZHANG X B, YANG S F, YANG W, et al, 2021. The distribution of the early-stage fish resources between Yibin-Jiangjin and Fuling-Fengdu in the upper reaches of the Yangtze River[J]. Freshwater Fisheries, 51(5):51-59.
趙莎莎, 葉少文, 謝松光, 等, 2015. 三峽水庫香溪河魚類資源現(xiàn)狀及漁業(yè)管理建議[J]. 水生生物學報, 39(5):973-982.
ZHAO S S, YE S W, XIE S G, et al, 2015. The current situation of fishery resources in the Xiangxi river of the Three Gorges Reservoir and advices on the management[J]. Acta Hydrobiologica Sinica, 39(5):973-982.
趙雯, 高雷, 段辛斌, 等, 2021. 三峽庫區(qū)豐都江段魚類早期資源現(xiàn)狀研究[J]. 水生態(tài)學雜志, 42(2):49-55.
ZHAO W, GAO L, DUAN X B, et al, 2021. Status of early stage fish resources in Fengdu section of the Three Gorges Reservoir area[J]. Journal of Hydroecology, 42(2):49-55.
ANDERSEN J C, OBOYSKI P, DAVIES N, et al, 2019. Categorization of species as native or nonnative using DNA sequence signatures without a complete reference library[J]. Ecological Applications, 29(5):e01914.
BALASINGHAM K D, WALTER R P, MANDRAK N E, et al, 2018. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries[J]. Molecular Ecology, 27(1):112-127.
CARRARO L, STAUFFER J B, ALTERMATT F, 2021. How to design optimal eDNA sampling strategies for biomonitoring in river networks[J]. Environmental DNA, 3(1):157-172.
DOPHEIDE A, XIE D, BUCKLEY T R, et al, 2019. Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity[J]. Methods in Ecology and Evolution, 10(1):120-133.
EVANS N T, SHIREY P D, WIERINGA J G, et a1, 2017. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing[J]. Fisheries, 42(2):90-99.
FICETOLA G F, MIAUD C, POMPANON F, et al, 2008. Species detection using environmental DNA from water samples[J]. Biology Letters, 4(4):423-425.
FREMIER A K, STRICKLER K M, PARZYCH J, et al, 2019. Stream transport and retention of environmental DNA pulse releases in relation to hydrogeomorphic scaling factors[J]. Environmental Science and Technology, 53(12):6640-6649.
HARPER L R, GRIFFITHS N P, HANDLEY L L, et al, 2019. Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius) [J]. Freshwater Biology, 64(1):93-107.
INUI R, AKAMATSU Y, KONO T, et al, 2021. Spatiotemporal changes of the environmental DNA concentrations of amphidromous fish Plecoglossus altivelis altivelis in the spawning grounds in the Takatsu River, western Japan[J]. Frontiers in Ecology and Evolution, (9):622149.
JERDE C L, MAHON A R, CHADDERTON W L, et al, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA[J]. Conservation Letters, 4(2):150-157.
KLYMUS K E, MERKES C M, ALLISON M J, et al, 2020. Reporting the limits of detection and quantification for environmental DNA assays[J]. Environmental DNA, 2(3):271-282.
LARSON E R, GRAHAM B M, ACHURY R, et al, 2020. From eDNA to citizen science: emerging tools for the early detection of invasive species[J]. Frontiers in Ecology and the Environment, 18(4):194-202.
LIN P C, CHEN L, GAO X C, et al, 2020. Spatiotemporal distribution and species composition of fish assemblages in the transitional zone of the Three Gorges Reservoir, China[J]. Water, 12(12):3514.
LIN P C, GAO X, LIU F, et al, 2019. Long-term monitoring revealed fish assemblage zonation in the Three Gorges Reservoir[J]. Journal of Oceanology and Limnology, 37(4):1258-1267.
LOEZA-QUINTANA T, ABBOTT C L, HEATH D D, et al, 2020. Pathway to increase standards and competency of eDNA surveys (PISCeS)-advancing collaboration and standardization efforts in the field of eDNA[J]. Environmental DNA, 2(3):255-260.
MIYA M, GOTOH R O, SADO T, et al, 2020. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples[J]. Fisheries Science, 86(6):939-970.
MIYA M, SATO Y, FUKUNAGA T, et al, 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society Open Science, 2(7):150088.
RUPPERT K M, KLINE R J, RAHMAN M S, 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA[J]. Global Ecology and Conservation, (17):e00547.
SCHMELZLE M C, KINZIGER A P, 2016. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species[J]. Molecular Ecology Resources, 16(4):895-908.
STAT M, HUGGETT M J, BERNASCONI R, et al, 2017. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment[J]. Scientific Reports, 7(1):12240.
THOMSEN P F, KIELGAST J, IVERSEN L L, et al, 2012. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 21(11):2565-2573.
TILLOTSON M D, KELLY R P, DUDA J J, et al, 2018. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales[J]. Biological Conservation, 220:1-11.
WEI N, NAKAJIMA F, TOBINO T, 2018. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison[J]. Environmental Science and Technology, 52(21):12428-12435.
XIA Y G, LLORET J, LI Z J, et al, 2016. Status of two Coreius species in the Three Gorges Reservoir, China[J]. Chinese Journal of Oceanology and Limnology, 34(1):19-33.
YAMAMOTO S, MASUDA R, SATO Y, et al, 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea[J]. Scientific Reports, (7):40368.
ZHANG S, LU Q, WANG Y, et al, 2020a. Assessment of fish communities using environmental DNA: effect of spatial sampling design in lentic systems of different sizes[J]. Molecular Ecology Resources, 20(1):242-255.
ZHANG S, ZHAO J, YAO M, et al, 2020b. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods in Ecology and Evolution, 11(12):1609-1625.
ZOU K, CHEN J, RUAN H, et al, 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling[J]. Science of the Total Environment, 702:134704.
(責任編輯" "熊美華)
Fish Diversity in the Backwater Area of Three Gorges Reservoir Based on eDNA Metabarcoding
YANG Wei, SHU Zhengbo, ZHANG Xianbing, WANG Li, YANG Shengfa, LI Wenjie
(National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing 400074, P.R. China)
Abstract:Fish diversity is a key indicator of aquatic ecosystem health. In August 2021, we conducted a survey of fish resources in the fluctuating backwater of Three Gorges Reservoir using eDNA metabarcoding. Based on the survey results, we analyzed fish diversity and differences in fish distribution in different sections of the backwater area. Our aim was to employ this new method to monitor fish diversity and provide data to support biodiversity conservation and evaluate aquatic ecosystem health in the Yangtze River. A total of 26 sampling sites were set in five typical river sections within the backwater area, including the natural river section (A), the upper, middle and lower fluctuating backwater areas (B, C, D), and the permanent backwater area (E). Surface water samples were collected in triplicate at each sampling site for DNA extraction and sequencing. A total of 68 fish species belonging to 56 genera, 18 families and 8 orders were identified using the standard method for eDNA metabarcoding. Among the species, there was 1 national first class key protected fish species, 3 national second class key protected fish species, 15 rare species endemic to the upper reaches of the Yangtze River, 3 key protected fish species in Chongqing City, and 1 exotic fish species. Cyprinus carpio, Ctenopharyngodon idella, Silurus asotus, Aristichthys nobilis and Rhinogobius cliffordpopei were the dominant species as indicated by the high number of OTU sequences. There were differences in fish composition among the five river sections, and higher fish abundance was found in the heavily silted Pingsuiba-Siguaqi section, indicating that the newly formed beach has become an important nursery ground for fish. Our research shows that eDNA metabarcoding can rapidly identify fish diversity and spatial distribution in the fluctuating backwaters of Three Gorges Reservoir, and will be a key technology for establishing a non-invasive fish resource monitoring system.
Key words: eDNA metabarcoding; fish diversity; fluctuating backwater area; Three Gorges Reservoir
基金項目:國家自然科學基金項目(42007213;52279058)。
作者簡介:楊威,1985年生,男,副教授,主要從事長江上游水生態(tài)保護與生境修復研究。E-mail:cqjtuyw@qq.com
通信作者:張先炳,1985年生,男,教授,主要從事長江上游生態(tài)航道建設(shè)理論與技術(shù)研究。E-mail:zhangxb11@qq.com