[摘要]"受體相互作用蛋白1(receptor"interacting"protein"1,RIP1)是一種在多個(gè)病理生理過程中發(fā)揮關(guān)鍵信號(hào)作用的蛋白激酶,其作為多種受體的下游信號(hào)分子,可介導(dǎo)細(xì)胞存活、炎癥、凋亡等不同過程。RIP1與炎癥反應(yīng)、神經(jīng)退行性疾病、免疫性疾病和腫瘤性疾病等有較大相關(guān)性。RIP1既可促進(jìn)腫瘤發(fā)生發(fā)展,也可抑制腫瘤活性,RIP1或可成為治療腫瘤性疾病的重要突破口。本文主要就RIP1在細(xì)胞死亡中多重作用的具體機(jī)制及其與相關(guān)腫瘤的關(guān)系展開論述。
[關(guān)鍵詞]"受體相互作用蛋白1;細(xì)胞程序性死亡;壞死性凋亡;腫瘤
[中圖分類號(hào)]"R730.1""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.07.028
1""受體相互作用蛋白1的基礎(chǔ)結(jié)構(gòu)
受體相互作用蛋白(receptor"interacting"protein,RIP)家族被認(rèn)為在炎癥反應(yīng)和細(xì)胞程序性死亡等病理生理過程中扮演重要的調(diào)控和信號(hào)傳導(dǎo)角色[1]。RIP家族成員共享同一同源激酶結(jié)構(gòu)域,并通過各自不同的功能域參與特定生物學(xué)過程。RIP1包含RIP同型相互作用基序結(jié)構(gòu)域(RIP"homotypic"interaction"motif"domain,RHIM)、死亡結(jié)構(gòu)域和激酶結(jié)構(gòu)域等多個(gè)結(jié)構(gòu)域[2-3]。RIP1通過相關(guān)結(jié)構(gòu)域與多種分子相互作用形成相關(guān)分子復(fù)合體,啟動(dòng)相關(guān)下游效應(yīng)。
2""RIP1對細(xì)胞命運(yùn)的調(diào)控
RIP1是腫瘤壞死因子受體(tumor"necrosis"factor"receptor,TNFR)、Toll樣受體(Toll-like"receptor,TLR)、視黃酸誘導(dǎo)基因-Ⅰ(retinoic"acid-inducible"gene-Ⅰ,RIG-Ⅰ)、Z-DNA結(jié)合蛋白1(Z-DNA"binding"protein"1,ZBP1)等多種受體的重要下游調(diào)控因子[4-6]。在這些受體介導(dǎo)的生物學(xué)效應(yīng)中,RIP1的功能屬性主要受翻譯后修飾(如泛素化、磷酸化修飾)與自身激酶活性和蛋白相互作用調(diào)節(jié),繼而調(diào)控不同通路的表達(dá)及基因轉(zhuǎn)錄翻譯。
2.1""RIP1在TNFR相關(guān)通路中的多重效應(yīng)
TNFR及其介導(dǎo)的核因子κB(nuclear"factor-κB,NF-κB)信號(hào)通路等已被證實(shí)在腫瘤發(fā)生和侵襲過程中具有重要作用[7]。在TNFR1信號(hào)通路中,腫瘤壞死因子(tumor"necrosis"factor,TNF)與TNFR1結(jié)合,觸發(fā)TNFR1三聚化并引發(fā)復(fù)合體Ⅰ的組裝。復(fù)合體Ⅰ是一種由RIP1、TNFR相關(guān)死亡結(jié)構(gòu)域蛋白(TNFR-associated"death"domain"protein,TRADD)、TNFR相關(guān)因子(TNFR-associated"factor,TRAF)2、細(xì)胞凋亡抑制蛋白(cellular"inhibitor"of"apoptosis"protein,cIAP)1/2構(gòu)成的瞬時(shí)復(fù)合體,主要介導(dǎo)促存活途徑。反應(yīng)的起始環(huán)節(jié)是cIAP1/2泛素化,并使RIP1多聚泛素化。泛素化的RIP1招募轉(zhuǎn)化生長因子-"β-活化激酶1(transforming"growth"factor-β-"activated"kinase"1,TAK1)和IκB激酶α/β(IκB"kinase"α/β,IKKα/β)兩種激酶,并招募對應(yīng)配體TAK1結(jié)合蛋白2/3和NF-κB必需調(diào)節(jié)因子(NF-κB"essential"modulator,NEMO);而cIAP1/2通過自身泛素鏈連接線性泛素鏈組裝復(fù)合體(linear"ubiquitin"chain"assembly"complex,LUBAC)將多聚泛素鏈連接在RIP1上,使RIP1保持在復(fù)合體Ⅰ中,并進(jìn)一步線性泛素化RIP1,使其進(jìn)一步招募NEMO和IKKα/β[8]。其中,NEMO和TAK1分別激活NF-κB和絲裂原活化蛋白激酶(mitogen-activated"protein"kinase,MAPK)通路,誘導(dǎo)編碼細(xì)胞型Fas相關(guān)死亡區(qū)域蛋白樣白細(xì)胞介素-1β轉(zhuǎn)換酶抑制蛋白(cellular"Fas-"associated"death"domain-like"interleukin-1β-converting"enzyme-like"inhibitory"protein,cFLIP)、去泛素化酶A20、cIAP2的凋亡,負(fù)性調(diào)控基因轉(zhuǎn)錄。RIP1通過兩條途徑負(fù)向調(diào)控后續(xù)蛋白水解酶胱天蛋白酶(cysteinyl"aspartate"specific"proteinase,caspase)-8的激活,并抑制細(xì)胞死亡,促進(jìn)細(xì)胞存活。
被多種泛素化修飾的RIP1的支架作用是穩(wěn)定復(fù)合體Ⅰ的關(guān)鍵。在復(fù)合體Ⅰ中,RIP1被IKKα/β和TAK1磷酸化,胞質(zhì)中的RIP1被MAPK活化蛋白激酶2(MAPK-activated"protein"kinase"2,MK2)磷酸化[9]。RIP1的泛素化或磷酸化可抑制其自身磷酸化[10]。當(dāng)多種因素引起微環(huán)境發(fā)生變化,如去泛素化酶A20、圓柱瘤蛋白水解復(fù)合體Ⅰ中的泛素鏈或RIP1磷酸化相關(guān)酶受到抑制,導(dǎo)致RIP1去泛素化及去磷酸化,RIP1更易發(fā)生自身磷酸化,進(jìn)而使自身構(gòu)象發(fā)生改變。不穩(wěn)定的復(fù)合體Ⅰ內(nèi)化到細(xì)胞質(zhì)中,形成誘導(dǎo)死亡的復(fù)合體Ⅱ。RIP1和TRADD從TNFR1上脫離,并招募Fas相關(guān)死亡結(jié)構(gòu)域(Fas-associated"death"domain,F(xiàn)ADD)和caspase-8前體構(gòu)成復(fù)合體Ⅱa。RIP3的加入導(dǎo)致復(fù)合體Ⅱb的形成。FADD招募caspase-8,后者寡聚并發(fā)生自身蛋白切割和活化?;罨腸aspase-8二聚體被釋放至胞質(zhì),同時(shí)切割RIP1和RIP3,啟動(dòng)caspase級(jí)聯(lián)反應(yīng),最終導(dǎo)致細(xì)胞發(fā)生RIP1依賴性凋亡[11]。
在一些研究中,研究者用TNF聯(lián)合轉(zhuǎn)錄翻譯抑制劑(如放線菌素D、放線菌亞胺CHX)處理細(xì)胞,模擬凋亡負(fù)性調(diào)控因子缺失觸發(fā)細(xì)胞死亡的機(jī)制[12]。此時(shí)TRADD替代RIP1作為凋亡執(zhí)行分子招募FADD,F(xiàn)ADD反向招募caspase-8并觸發(fā)其活化,引起RIP1非依賴性細(xì)胞凋亡。
當(dāng)藥物或基因突變導(dǎo)致caspase-8缺乏或激活受阻時(shí),RIP1發(fā)生自身磷酸化并寡聚,同時(shí)啟動(dòng)自身磷酸化RIP3的同源寡聚,二者相互作用并構(gòu)成壞死小體。其中,RIP3磷酸化混合譜系激酶結(jié)構(gòu)域樣蛋白并使其轉(zhuǎn)移到質(zhì)膜形成孔洞,細(xì)胞發(fā)生壞死性凋亡。此路徑中,RIP1的自身磷酸化對引導(dǎo)RIP3以正確排列方式同源齊聚并形成有功能的RIP1-RIP3復(fù)合體發(fā)揮必不可少的作用,且尚未發(fā)現(xiàn)其他RIP家族成員可替代這一功能[13]。
RIP1上調(diào)細(xì)胞內(nèi)小分子cFLIP的表達(dá)對細(xì)胞存活有重要作用[14]。cFLIP與caspase-8結(jié)構(gòu)類似但無催化活性,其包含長、短兩種亞型(long"cFLIP,cFLIPL/short"cFLIP,cFLIPS)。一方面,cFLIP在RIP1非依賴性凋亡途徑中通過抑制caspase-8的同源二聚化抑制凋亡并促進(jìn)存活。另一方面,cFLIPL可與caspase-8形成具有蛋白分解活性的異源二聚體。RIP1被caspase-8/FLIP復(fù)合體切割是造成復(fù)合體Ⅱ解離的關(guān)鍵,這一過程可在不誘導(dǎo)凋亡的情況下抑制TNFR通路中RIP3依賴的壞死性凋亡,使細(xì)胞存活[15]。而cFLIPS與FADD結(jié)合可阻止caspase-8的募集與激活,在阻止細(xì)胞凋亡的同時(shí)誘導(dǎo)壞死小體的生成與壞死性凋亡的發(fā)生。
2.2""RIP1在其他受體相關(guān)通路中的調(diào)控作用
TLR是先天性和適應(yīng)性免疫系統(tǒng)的重要組成部分。一方面,TLR相關(guān)信號(hào)通路可激活抗腫瘤免疫,誘導(dǎo)腫瘤細(xì)胞死亡;另一方面,TLR也可促進(jìn)腫瘤的發(fā)生發(fā)展。TLR信號(hào)通路中,配體與TLR結(jié)合并招募β干擾素誘導(dǎo)的含TIR結(jié)構(gòu)域銜接蛋白(TIR-"domain-containing"adaptor"inducing"interferon-β,TRIF),后者通過RHIM招募RIP1,并通過招募TRAF6、LUBAC等對RIP1進(jìn)行泛素化修飾。此外,一些病毒感受器如單鏈RNA識(shí)別受體、RIG-Ⅰ可通過招募RIP1與TRADD、FADD、TRAF3、caspase-8復(fù)合體誘導(dǎo)NF-κB信號(hào)通路。在病毒DNA識(shí)別受體ZBP1相關(guān)通路中,ZBP1通過RHIM招募RIP1、RIP3,激活NF-κB信號(hào)通路。因此,在這些受體介導(dǎo)的信號(hào)通路中,缺少RIP1可激活RIP3依賴的壞死性凋亡,導(dǎo)致細(xì)胞死亡。
RIP1與ZBP1相互作用也可誘導(dǎo)細(xì)胞死亡。研究發(fā)現(xiàn)在假結(jié)核耶爾森菌和脂多糖引起的細(xì)胞死亡中,RIP1與FADD、caspase-8共同參與一種基于TRIF而不依賴于TNFR的死亡誘導(dǎo)復(fù)合物TRIFosome的構(gòu)成[16]。ZBP1通過RIP同型相互作用基序與RIP1相互作用并結(jié)合是調(diào)控TRIFosome形成的關(guān)鍵環(huán)節(jié)。RIP1和caspase-8被招募到TRIFosome上,并引發(fā)炎癥小體激活和白細(xì)胞介素-1β釋放,最終導(dǎo)致caspase-8介導(dǎo)的快速性細(xì)胞死亡。
2.3""RIP1在非凋亡性細(xì)胞死亡中的作用
近年來研究認(rèn)為細(xì)胞外基質(zhì)(extracellular"matrix,ECM)脫離是腫瘤細(xì)胞轉(zhuǎn)移中的必要過程[17]。ECM脫離期間,腫瘤細(xì)胞失巢凋亡或因氧化還原代謝中活性氧的產(chǎn)生發(fā)生非凋亡性細(xì)胞死亡。在ECM脫離期間,RIPK1的激活可通過依賴于線粒體磷酸酶PGAM5的機(jī)制誘導(dǎo)線粒體自噬[18]。后者導(dǎo)致ECM分離的細(xì)胞線粒體中還原型煙酰胺腺嘌呤二核苷酸磷酸的產(chǎn)生減少,繼而導(dǎo)致活性氧水平升高,發(fā)生非凋亡性死亡;拮抗RIP1/PGAM5可增強(qiáng)體內(nèi)腫瘤的形成。綜上,可通過激活RIP1介導(dǎo)的線粒體自噬靶向消除ECM脫離的轉(zhuǎn)移性腫瘤細(xì)胞。
3""RIP1與相關(guān)腫瘤的相關(guān)性
3.1""頭頸部鱗狀細(xì)胞癌
研究發(fā)現(xiàn)轉(zhuǎn)移性頭頸部鱗狀細(xì)胞癌患者中常出現(xiàn)RIP1啟動(dòng)子甲基化增強(qiáng)而導(dǎo)致的RIP1表達(dá)水平下調(diào)[19]。人工合成的雙鏈RNA可與TLR3結(jié)合介導(dǎo)凋亡。RIP1表達(dá)水平下降可促進(jìn)TLR3通路介導(dǎo)的細(xì)胞死亡。因此研究者提出或可通過轉(zhuǎn)移性頭頸部鱗狀細(xì)胞癌中RIP1下調(diào)這一特性,利用雙鏈RNA靶向治療轉(zhuǎn)移性腫瘤。
3.2""宮頸癌
轉(zhuǎn)錄報(bào)告因子活性再激活因子(reactivation"of"transcriptional"reporter"activity,RETRA)是一種在突變型p53細(xì)胞中誘導(dǎo)p53調(diào)控基因表達(dá)的小分子[20]。在宮頸癌治療中,RIP1、RIP3被RETRA磷酸化,并在p53突變的宮頸癌細(xì)胞中選擇性誘導(dǎo)壞死,發(fā)揮抗腫瘤作用。
3.3""腸癌
研究發(fā)現(xiàn)在腸道上皮細(xì)胞中,RIP1通過拮抗凋亡維持腸道穩(wěn)態(tài),RIP1缺失可導(dǎo)致細(xì)胞凋亡及炎癥[21]。RIP1在結(jié)腸癌中也起抑制腫瘤生長的作用。研究發(fā)現(xiàn)人結(jié)腸癌組織中的RIP1和RIP3表達(dá)水平較正常組織顯著降低[22]。脆性X智力障礙蛋白(fragile"X"mental"retardation"protein,F(xiàn)MRP)是一種調(diào)節(jié)信使RNA代謝的蛋白質(zhì),可促進(jìn)結(jié)腸癌細(xì)胞生長。RIP1與FMRP結(jié)合可激活細(xì)胞死亡途徑,導(dǎo)致結(jié)腸癌細(xì)胞死亡[23]。研究者通過建立TNF敏感和TNF耐藥兩種結(jié)腸癌細(xì)胞系體外模型并進(jìn)行伊立替康活性產(chǎn)物SN38誘導(dǎo)實(shí)驗(yàn),證實(shí)RIP1而非RIP3在與SN38活性有關(guān)的DNA損傷及細(xì)胞死亡誘導(dǎo)方面發(fā)揮決定性作用,RIP1是TNF和SN38聯(lián)合誘導(dǎo)細(xì)胞毒性反應(yīng)的必需因素[24]。
3.4""肝癌
在肝實(shí)質(zhì)細(xì)胞中,過度凋亡可導(dǎo)致肝細(xì)胞代償性增殖,繼而引發(fā)炎癥和肝癌。其中,RIP1是凋亡發(fā)生的重要調(diào)控因素。研究發(fā)現(xiàn)肝細(xì)胞癌組織中的RIP1表達(dá)水平顯著高于相鄰肝組織,且其與乙型肝炎病毒感染、腫瘤分期和門靜脈侵犯等因素相關(guān)。RIP1的過表達(dá)與預(yù)后不良有關(guān)。Verboom等[25]研究發(fā)現(xiàn)在去泛素化酶缺失小鼠中,RIP1通過與FADD相互作用誘導(dǎo)過度凋亡,并最終引發(fā)肝癌。在此過程中,NEMO可通過抑制RIP1活性防止肝癌的發(fā)生。而當(dāng)NEMO缺失時(shí),可通過壞死抑素-1抑制RIP1激酶活性[26]。盡管這一過程無法避免DNA損傷誘導(dǎo)的肝癌發(fā)生,但可挽救性降低DNA損傷誘導(dǎo)的c-Jun氨基端激酶(c-Jun"N-terminal"kinase,JNK)通路活性,抑制肝癌發(fā)展。
另有研究提出,RIP1缺失可導(dǎo)致肝細(xì)胞預(yù)后不良。在細(xì)胞代償性增殖過程中,RIP1構(gòu)成的復(fù)合體Ⅱ可在有絲分裂過程中確保染色體正常排列,保證DNA的完整性[27]。在DNA損傷修復(fù)過程中,細(xì)胞遭遇外源性低水平DNA損傷時(shí),共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變(ataxia-telangiectasia"mutated,ATM)激酶被激活。ATM激酶促進(jìn)NF-κB通路的早期激活,從而誘導(dǎo)促生存基因表達(dá),使損傷細(xì)胞得以修復(fù)。高水平DNA損傷時(shí),NF-κB的激活受到抑制,ATM激酶自分泌TNF-α信號(hào),促進(jìn)RIP1的自動(dòng)磷酸化,NEMO和RIP1啟動(dòng)細(xì)胞因子的產(chǎn)生并激活caspase定向清除DNA損傷細(xì)胞。同時(shí),RIP1缺失可導(dǎo)致其泛素化依賴的關(guān)鍵介導(dǎo)蛋白酶體TRAF2以不依賴激酶的方式降解,并導(dǎo)致肝損傷。RIP1和TRAF2聯(lián)合低水平表達(dá)的肝細(xì)胞癌患者的預(yù)后更差[28]。二者聯(lián)合高表達(dá)則可抑制細(xì)胞過度凋亡,抑制代償性增殖。
3.5""膽管細(xì)胞癌
臨床研究發(fā)現(xiàn)RIP1在膽管癌組織中表達(dá)上調(diào),且與腫瘤大小、淋巴轉(zhuǎn)移和預(yù)后不良有關(guān)[29]。RIP1可促進(jìn)膽管癌細(xì)胞增殖,并通過激活JNK和p38MAPK信號(hào)通路促進(jìn)活化蛋白-1的激活,提高腫瘤細(xì)胞的侵襲和轉(zhuǎn)移能力。研究者通過隨后的動(dòng)物實(shí)驗(yàn)進(jìn)一步證實(shí)RIP1在淋巴管生成中具有正向功能。然而,研究通過對比膽管癌患者TLR3和RIP1表達(dá)水平的臨床數(shù)據(jù),提出盡管膽管癌患者腫瘤組織中RIP1普遍過表達(dá),但高水平TLR3和高水平RIP1亞組患者的無病生存期更長[30]。RIP1缺失可導(dǎo)致TLR3配體誘導(dǎo)體外細(xì)胞侵襲和胞外信號(hào)調(diào)節(jié)激酶激活。由此,研究者提出激活RIP1依賴的TLR3通路可為膽管癌患者提供治療益處。
3.6""胰腺癌
現(xiàn)有研究普遍認(rèn)為,胰腺細(xì)胞癌變的主要表現(xiàn)是正常凋亡受阻。而RIP1和RIP3是促凋亡壞死小體的主要組分,二者在胰腺癌細(xì)胞中普遍高表達(dá)。胰腺癌治療中,化療藥物CD95L和吉西他濱主要通過下調(diào)抗凋亡蛋白cFLIP和Mcl-1,上調(diào)RIP1和RIP3表達(dá),促進(jìn)凋亡和壞死性凋亡,發(fā)揮抗腫瘤效應(yīng)[31]。其中,吉西他濱可通過RIP1調(diào)節(jié)的CD95L誘導(dǎo)細(xì)胞壞死。caspase-3缺失腫瘤細(xì)胞則通過RIP1依賴的壞死對遺傳毒性應(yīng)激敏感。靶向抑制RIP1激酶活性可導(dǎo)致T細(xì)胞分化為腫瘤抑制表型,在小鼠和人胰腺癌模型中產(chǎn)生腫瘤免疫,并使腫瘤對免疫檢查點(diǎn)抑制敏感[32]。RIP1激酶活性抑制劑GSK3145095在小鼠胰腺癌模型中顯示出良好的抗腫瘤活性和免疫調(diào)節(jié)作用,并進(jìn)入Ⅰ期臨床研究[33]。
4""小結(jié)與展望
通過細(xì)胞程序性死亡促進(jìn)惡性細(xì)胞死亡、輔助增強(qiáng)現(xiàn)有腫瘤治療療效是當(dāng)今腫瘤治療領(lǐng)域的熱點(diǎn)話題,RIP1無疑是其中最具意義的調(diào)控位點(diǎn)之一。目前可通過對RIP1的翻譯后修飾或調(diào)節(jié)其激酶活性,利用其改變細(xì)胞死亡相關(guān)效應(yīng)調(diào)控腫瘤生長;也可通過調(diào)控RIP1引起腫瘤微環(huán)境變化,提高化療、免疫治療效果。盡管關(guān)于RIP1的研究日益增多,但目前大部分研究仍局限于小鼠模型及體外腫瘤細(xì)胞株。有關(guān)RIP1在人體內(nèi)腫瘤微環(huán)境下的作用機(jī)制等研究仍有待進(jìn)一步拓展。同時(shí),由于RIP1調(diào)控功能的復(fù)雜性和多面性,針對RIP1及其相關(guān)通路的治療藥物常因一些不可避免的毒副作用而無法進(jìn)入臨床應(yīng)用[34]。未來仍需持續(xù)關(guān)注RIP1的功能屬性并將其精準(zhǔn)應(yīng)用于臨床腫瘤研究及治療。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] CUNY"G"D,"DEGTEREV"A."RIPK"protein"kinase"family:"Atypical"lives"of"typical"kinases[J]."Semin"Cell"Dev"Biol,"2021,"109:"96–105.
[2] CHIRIELEISON"S"M,"KERTESY"S"B,"ABBOTT"D"W."Synthetic"biology"reveals"the"uniqueness"of"the"RIP"kinase"domain[J]."J"Immunol,"2016,"196(10):"4291–4297.
[3] SHI"K,"ZHANG"J,"ZHOU"E,"et"al."Small-molecule"receptor-interacting"protein"1"(RIP1)"inhibitors"as"therapeutic"agents"for"multifaceted"diseases:"Current"medicinal"chemistry"insights"and"emerging"opportunities[J]."J"Med"Chem,"2022,"65(22):"14971–14999.
[4] TOMINARI"T,"MATSUMOTO"C,"TANAKA"Y,"et"al."Roles"of"Toll-like"receptor"signaling"in"inflammatory"bone"resorption[J]."Biology"(Basel),"2024,"13(9):"692.
[5] PARK"G"B,"HUR"D"Y,"KIM"Y"S,"et"al."TLR3/TRIF"signalling"pathway"regulates"IL-32"and"IFN-β"secretion"through"activation"of"RIP-1"and"TRAF"in"the"human"cornea[J]."J"Cell"Mol"Med,"2015,"19(5):"1042–1054.
[6] NAGATA"M,"CARVALHO"SCH?FER"Y,"WACHSMUTH"L,"et"al."A"shorter"splicing"isoform"antagonizes"ZBP1"to"modulate"cell"death"and"inflammatory"responses[J]."EMBO"J,"2024,"43(21):"5037–5056.
[7] YAO"X,"CADWELL"K."Tumor"necrosis"factor-α-"induced"apoptosis"in"the"intestinal"epithelium"due"to"chronic"nuclear"factor"kappaB"signaling"is"mediatednbsp;by"receptor"interacting"serine/threonine"kinase"1[J]."Cell"Mol"Gastroenterol"Hepatol,"2020,"9(2):"337–338.
[8] PARK"S,"KIM"D,"LEE"W,"et"al."Discovery"of"pan-IAP"degraders"via"a"CRBN"recruiting"mechanism[J]."Eur"J"Med"Chem,"2023,"245(Pt"2):"114910.
[9] DENG"Q,"YANG"S,"HUANG"K,"et"al."NLRP6"induces"RIP1"kinase-dependent"necroptosis"via"TAK1-mediated"p38MAPK/MK2"phosphorylation"in"S."typhimurium"infection[J]."iScience,"2024,"27(4):"109339.
[10] DU"J,"XIANG"Y,"LIU"H,"et"al."RIPK1"dephosphorylation"and"kinase"activation"by"PPP1R3G/PP1γ"promote"apoptosis"and"necroptosis[J]."Nat"Commun,"2021,"12(1):"7067.
[11] TUMMERS"B,"MARI"L,"GUY"C"S,"et"al."Caspase-8-"dependent"inflammatory"responses"are"controlled"by"its"adaptor,"FADD,"and"necroptosis[J]."Immunity,"2020,"52(6):"994–1006.
[12] ANDERTON"H,"BANDALA-SANCHEZ"E,"SIMPSON"D"S,"et"al."RIPK1"prevents"TRADD-driven,"but"TNFR1"independent,"apoptosis"during"development[J]."Cell"Death"Differ,"2019,"26(5):"877–889.
[13] CHEN"X,"ZHU"R,"ZHONG"J,"et"al."Mosaic"composition"of"RIP1-RIP3"signalling"hub"and"its"role"in"regulating"cell"death[J]."Nat"Cell"Biol,"2022,"24(4):"471–482.
[14] SMYTH"P,"SESSLER"T,"SCOTT"C"J,"et"al."FLIP(L):"The"pseudo-caspase[J]."FEBS"J,"2020,"287(19):"4246–4260.
[15] NEWTON"K,"WICKLIFFE"K"E,"DUGGER"D"L,"et"al."Cleavage"of"RIPK1"by"caspase-8"is"crucial"for"limiting"apoptosis"and"necroptosis[J]."Nature,"2019,"574(7778):"428–431.
[16] MUENDLEIN"H"I,"CONNOLLY"W"M,"MAGRI"Z,"etnbsp;al."ZBP1"promotes"LPS-induced"cell"death"and"IL-1β"release"via"RHIM-mediated"interactions"with"RIPK1[J]."Nat"Commun,"2021,"12(1):"86.
[17] HAWK"M"A,"SCHAFER"Z"T."Mechanisms"of"redox"metabolism"and"cancer"cell"survival"during"extracellular"matrix"detachment[J]."J"Biol"Chem,"2018,"293(20):"7531–7537.
[18] HAWK"M"A,"GORSUCH"C"L,"FAGAN"P,"et"al."RIPK1-"mediated"induction"of"mitophagy"compromises"the"viability"of"extracellular-matrix-detached"cells[J]."Nat"Cell"Biol,"2018,"20(3):"272–284.
[19] MCCORMICK"K"D,"GHOSH"A,"TRIVEDI"S,"et"al."Innate"immune"signaling"through"differential"RIPK1"expression"promote"tumor"progression"in"head"and"neck"squamous"cell"carcinoma[J]."Carcinogenesis,"2016,"37(5):"522–529.
[20] MOHANTY"S,"YADAV"P,"LAKSHMINARAYANAN"H,"et"al."RETRA"induces"necroptosis"in"cervical"cancer"cells"through"RIPK1,"RIPK3,"MLKL"and"increased"ROS"production[J]."Eur"J"Pharmacol,"2022,"920:"174840.
[21] NEGRONI"A,"COLANTONI"E,"CUCCHIARA"S,"et"al."Necroptosis"in"intestinal"inflammation"and"cancer:"New"concepts"and"therapeutic"perspectives[J]."Biomolecules,"2020,"10(10):"1431.
[22] MORIWAKI"K,"BERTIN"J,"GOUGH"P"J,"et"al."Differential"roles"of"RIPK1"and"RIPK3"in"TNF-induced"necroptosis"and"chemotherapeutic"agent-induced"cell"death[J]."Cell"Death"Dis,"2015,"6(2):"e1636.
[23] DI"GRAZIA"A,"MARAFINI"I,"PEDINI"G,"et"al."The"fragile"X"mental"retardation"protein"regulates"RIPK1"and"colorectal"cancer"resistance"to"necroptosis[J]."Cell"Mol"Gastroenterol"Hepatol,"2021,"11(2):"639–658.
[24] TANZER"M"C,"KHAN"N,"RICKARD"J"A,"et"al."Combination"of"IAP"antagonist"and"IFNγ"activates"novel"caspase-10-"and"RIPK1-dependent"cell"death"pathways[J]."Cell"Death"Differ,"2017,"24(3):"481–491.
[25] VERBOOM"L,"MARTENS"A,"PRIEM"D,"et"al."OTULIN"prevents"liver"inflammation"and"hepatocellular"carcinoma"by"inhibiting"FADD-"and"RIPK1"kinase-"mediated"hepatocyte"apoptosis[J]."Cell"Rep,"2020,"30(7):"2237–2247.
[26] ZHANG"Y"F,"HE"W,"ZHANG"C,"et"al."Role"of"receptor"interacting"protein"(RIP)1"on"apoptosis-inducing"factor-"mediated"necroptosis"during"acetaminophen-evoked"acute"liver"failure"in"mice[J]."Toxicol"Lett,"2014,"225(3):"445–453.
[27] BITON"S,"ASHKENAZI"A."NEMO"and"RIP1"control"cell"fate"in"response"to"extensive"DNA"damage"via"TNF-α"feedforward"signaling[J]."Cell,"2011,"145(1):"92–103.
[28] SCHNEIDER"A"T,"GAUTHERON"J,"FEOKTISTOVA"M,"et"al."RIPK1"suppresses"a"TRAF2-dependent"pathway"to"liver"cancer[J].nbsp;Cancer"Cell,"2017,"31(1):"94–109.
[29] LI"C"Z,"LIN"Y"X,"HUANG"T"C,"et"al."Receptor-"interacting"protein"kinase"1"promotes"cholangiocarcinoma"proliferation"and"lymphangiogenesis"through"the"activation"protein"1"pathway[J]."Onco"Targets"Ther,"2019,"12:"9029–9040.
[30] LOMPHITHAK"T,"CHOKSI"S,"MUTIRANGURA"A,""et"al."Receptor-interacting"protein"kinase"1"is"a"key"mediator"in"TLR3"ligand"and"Smac"mimetic-induced"cell"death"and"suppresses"TLR3"ligand-promoted"invasion"in"cholangiocarcinoma[J]."Cell"Commun"Signal,"2020,"18(1):"161.
[31] PIETKIEWICZ"S,"EILS"R,"KRAMMER"P"H,"et"al."Combinatorial"treatment"of"CD95L"and"gemcitabine"in"pancreatic"cancer"cells"induces"apoptotic"and"RIP1-"mediated"necroptotic"cell"death"network[J]."Exp"Cell"Res,"2015,"339(1):"1–9.
[32] WANG"W,"MARINIS"J"M,"BEAL"A"M,"et"al."RIP1"kinase"drives"macrophage-mediated"adaptive"immune"tolerance"in"pancreatic"cancer[J]."Cancer"Cell,"2018,"34(5):"757–774.
[33] HARRIS"P"A,"MARINIS"J"M,"LICH"J"D,"et"al."Identification"of"a"RIP1"kinase"inhibitor"clinical"candidate"(GSK3145095)"for"the"treatment"of"pancreatic"cancer[J]."ACS"Med"Chem"Lett,"2019,"10(6):"857–862.
[34] ZHOU"T,"WANG"Q,"PHAN"N,"et"al."Identification"of"a"novel"class"of"RIP1/RIP3"dual"inhibitors"thatnbsp;impede"cell"death"and"inflammation"in"mouse"abdominal"aortic"aneurysm"models[J]."Cell"Death"Dis,"2019,"10(3):"226.
(收稿日期:2024–11–04)
(修回日期:2025–02–16)
(上接第106頁)
[46] 徐競男."基于腸道菌群-免疫網(wǎng)絡(luò)的銀萊湯治療胃腸積熱合并肺炎的機(jī)制研究[D]."北京:"北京中醫(yī)藥大學(xué),"2019.
[47] 黃羚."基于腸道菌群和免疫探討銀萊湯治療胃腸積熱合并肺炎的作用機(jī)制[D]."北京:"北京中醫(yī)藥大學(xué),"2020.
[48] 劉鐵鋼."基于肺與胃腸相關(guān)理論探討銀萊湯對食積肺炎動(dòng)物模型腸黏膜屏障作用機(jī)制[D]."北京:"北京中醫(yī)藥大學(xué),"2013.
[49] 胡莉,"白辰,"龍超君,"等."基于TNF-α/NF-κB信號(hào)通路探討銀萊湯治療肺炎的作用機(jī)制[J]."環(huán)球中醫(yī)藥,"2022,"15(3):"363–369.
[50] 李鶴仙."柴葛芩連湯治療小兒肺炎喘嗽濕熱閉肺證的臨床療效及其對腸道菌群和腸道黏膜屏障功能影響的研究[D]."天津:"天津中醫(yī)藥大學(xué),"2022.
[51] 喬晉麗,"孫丹,"李新民."基于網(wǎng)絡(luò)藥理學(xué)和分子對接探討柴葛芩連湯治療兒童肺炎支原體肺炎作用機(jī)制[J]."中醫(yī)臨床研究,"2024,"16(15):"49–55.
[52] DENG"L,"SHI"Y"C,"LIU"P,"et"al."Gegen"Qinlian"decoction"alleviate"influenza"virus"infectious"pneumonia"through"intestinal"flora[J]."Biomed"Pharmacother,"2021,"141:"111896.
(收稿日期:2024–11–13)
(修回日期:2025–02–18)