關(guān)鍵詞:非線性約束;分岔;多參數(shù)協(xié)同;吸引子共存
0 引言
由于加工水平的影響,在機(jī)械設(shè)備中都會(huì)存在間隙及約束,在使用過(guò)程中設(shè)備內(nèi)部相互作用導(dǎo)致碰撞振動(dòng),對(duì)機(jī)械設(shè)備的正常使用造成損害,這種現(xiàn)象的持續(xù)發(fā)生會(huì)影響使用壽命。因此,研究含間隙與約束的非線性動(dòng)力學(xué)行為具有重要應(yīng)用價(jià)值。國(guó)內(nèi)外有大量學(xué)者對(duì)碰振系統(tǒng)進(jìn)行了各種研究。羅冠煒等[1]研究了兩自由度含間隙振動(dòng)系統(tǒng)的對(duì)稱周期碰撞運(yùn)動(dòng),分析了不動(dòng)點(diǎn)的穩(wěn)定性與局部分岔,通過(guò)數(shù)值仿真揭示了系統(tǒng)的全局分岔過(guò)程,包括叉式、倍化與奇異性分岔。吳少培等[2]研究了一種基于“接觸-分離”兩狀態(tài)的含間隙運(yùn)動(dòng)副動(dòng)力學(xué)模型,給出了運(yùn)動(dòng)副接觸與分離的條件,得到了系統(tǒng)Poincaré映射的線性化矩陣,發(fā)現(xiàn)了柔性桿件振幅跳躍時(shí)會(huì)出現(xiàn)兩種穩(wěn)態(tài)響應(yīng),引發(fā)鞍結(jié)分岔,在通向混沌的過(guò)程中系統(tǒng)出現(xiàn)叉式和倍化分岔,倍化分岔序列因擦邊分岔的出現(xiàn)而中斷,最終通過(guò)Feigenbaum倍周期序列達(dá)到混沌狀態(tài)。朱喜鋒等[3-4]研究了彈性和剛性約束的含間隙碰撞振動(dòng)系統(tǒng)在低頻中的動(dòng)力學(xué)特性,揭示了隨著激振頻率的降低,p/1運(yùn)動(dòng)中碰撞次數(shù)p因擦邊分岔而不斷增加,當(dāng)碰撞次數(shù)足夠大時(shí),系統(tǒng)轉(zhuǎn)變?yōu)轭澟鲞\(yùn)動(dòng),描述了1/1周期運(yùn)動(dòng)到顫碰運(yùn)動(dòng)的轉(zhuǎn)變規(guī)律。何波等[5]240-246設(shè)計(jì)了一種拉伸式準(zhǔn)零剛度隔振器,采用正負(fù)剛度并聯(lián)原理對(duì)低頻隔振進(jìn)行處理,確定了使系統(tǒng)在平衡位置實(shí)現(xiàn)準(zhǔn)零剛度的參數(shù)條件,研究了系統(tǒng)在簡(jiǎn)諧力作用下的幅頻響應(yīng)和多穩(wěn)態(tài)區(qū)域。李國(guó)芳等[6-10]通過(guò)計(jì)算機(jī)數(shù)值仿真對(duì)碰撞振動(dòng)系統(tǒng)的動(dòng)力學(xué)特性、系統(tǒng)的穩(wěn)定性、多吸引子共存,混沌控制等問(wèn)題進(jìn)行了研究。DAI等[11]105234對(duì)比了線性約束與準(zhǔn)零剛度非線性約束的沖擊振子的振動(dòng)傳遞和功率流特性,通過(guò)應(yīng)用諧波平衡近似和數(shù)值積分方法,獲得了系統(tǒng)在諧波激勵(lì)下的穩(wěn)態(tài)響應(yīng)。這一研究為了解線性和非線性約束對(duì)振動(dòng)傳遞中剛度和阻尼特性的影響提供了有益的參考,提出了幾類新型非線性約束,為本文研究提供了參考約束模型。
目前,大多數(shù)國(guó)內(nèi)外學(xué)者對(duì)于同時(shí)含有非線性項(xiàng)、非線性約束以及間隙的碰撞振動(dòng)系統(tǒng)的顫碰運(yùn)動(dòng)和轉(zhuǎn)遷規(guī)律的研究較少??紤]非線性項(xiàng)及非線性約束使得該研究更加貼合實(shí)際情況,本文通過(guò)建立單自由度含非線性項(xiàng)以及非線性約束的動(dòng)力學(xué)模型,通過(guò)Poincaré映射方法以及胞映射法,分析了該碰撞振動(dòng)系統(tǒng)各周期運(yùn)動(dòng)的轉(zhuǎn)遷規(guī)律,吸引子共存現(xiàn)象以及間隙對(duì)周期共存區(qū)的影響。
1 力學(xué)模型
首先,建立了一類單自由度含單側(cè)非線性約束振動(dòng)系統(tǒng)的力學(xué)模型,如圖1所示;其次,分析其運(yùn)動(dòng)過(guò)程,建立該系統(tǒng)的運(yùn)動(dòng)微分方程,最后利用數(shù)值仿真討論單自由度含單側(cè)非線性約束振動(dòng)系統(tǒng)的動(dòng)力學(xué)行為。
質(zhì)量為M的物塊通過(guò)非線性彈簧和非線性阻尼連接固定在墻面上,非線性彈簧的線性與非線性系數(shù)分別為K1、K2,非線性阻尼的線性與非線性系數(shù)分別為C1、C2。物塊受到簡(jiǎn)諧激振力Psin(ΩT+τ),僅沿水平方向做直線運(yùn)動(dòng)。當(dāng)激振小時(shí)屬于簡(jiǎn)單線性振子,激振力較大時(shí),物塊位移等于B時(shí),物塊M1與非線性約束開始發(fā)生碰撞。
與線性約束相比,該非線性約束多一對(duì)剛度為Kv的橫向彈簧,且剛度系數(shù)為Kh的彈簧與阻尼系數(shù)為Ch的阻尼器耦合,可忽略它們的質(zhì)量,并連接在一起,如圖2所示。文獻(xiàn)[5]240-246、文獻(xiàn)[11]105234中將這種非線性約束用于隔振器中,與線性約束進(jìn)行了對(duì)比。文獻(xiàn)[5]240-246中關(guān)于該約束得到的結(jié)論如下:該非線性約束比線性約束起始隔振頻率降低50%左右,實(shí)現(xiàn)低頻隔振,隔振性能更優(yōu)。文獻(xiàn)[11]105234關(guān)于該約束得到的結(jié)論如下:該非線性約束便于在峰值頻率附近調(diào)節(jié)力傳遞率和振動(dòng)功率的水平。彈性碰撞使簡(jiǎn)單的系統(tǒng)變成了具有復(fù)雜動(dòng)力學(xué)行為的碰撞沖擊運(yùn)動(dòng)。橫向彈簧未變形長(zhǎng)度為l0,剛度系數(shù)為Kv。當(dāng)B點(diǎn)處于平衡位置時(shí),彈簧進(jìn)行壓縮后其長(zhǎng)度變?yōu)閘。當(dāng)物塊位移大于間隙δ時(shí),橫向約束開始變形。
結(jié)果表明,側(cè)向彈簧對(duì)的使用增加了1個(gè)線性項(xiàng)和1個(gè)非線性項(xiàng),因此非線性約束可能具有所謂的準(zhǔn)零剛度(Quasi-zerostiffness)特性。
2 周期運(yùn)動(dòng)的參數(shù)域及擦邊分岔相互轉(zhuǎn)遷
系統(tǒng)的動(dòng)力學(xué)特性由多個(gè)參數(shù)決定,其中頻率ω、間隙δ這兩個(gè)參數(shù)最為關(guān)鍵。基于多參數(shù)協(xié)同仿真法,選定激振頻率ω和間隙δ為分岔參數(shù),得到系統(tǒng)在(ω,δ)協(xié)同變化下的雙參數(shù)域圖以及三維分岔圖如圖3所示。
以ω∈[0,3],δ∈[0,1.5]為取樣范圍,通過(guò)數(shù)值計(jì)算的方法計(jì)算出(ω,δ)平面的雙參分岔圖,如圖3(a)所示。其中不同的p/n運(yùn)動(dòng)用不同的顏色表示,黑色區(qū)域?yàn)榛煦鐓^(qū)域,用Chaos標(biāo)識(shí),未識(shí)別的運(yùn)動(dòng)用灰色表示。在圖3(a)的左下角區(qū)域,即低頻、小間隙工況下存在p/1周期運(yùn)動(dòng)組成的帶狀區(qū)域,直觀地表現(xiàn)出p/1周期運(yùn)動(dòng)隨著參數(shù)的改變轉(zhuǎn)遷為(p+1)/p周期運(yùn)動(dòng)。由圖3(a)可知,當(dāng)ωgt;1的中高頻區(qū)主要存在0/1、1/1、2/2、1/2等周期運(yùn)動(dòng),而在低頻區(qū)主要以p/1周期運(yùn)動(dòng)為主,且p/1單周期多碰撞周期運(yùn)動(dòng)的碰撞次數(shù)p隨著頻率的遞減而增加。圖3(b)是三維分岔圖。由圖3(b)可以直觀地看出,激振頻率ω和間隙δ對(duì)物塊沖擊速度的影響。隨著激振頻率ω的減小,系統(tǒng)在間隙較小時(shí)呈現(xiàn)出豐富動(dòng)力學(xué)特性。因此,有必要研究小間隙工況對(duì)動(dòng)力學(xué)特性的影響,故在第4節(jié)研究了間隙的改變對(duì)周期共存區(qū)的影響。
圖4(a)是以激振頻率ω為橫坐標(biāo),物塊碰撞前速度x?1-為縱坐標(biāo)得到的單參數(shù)碰撞面分岔圖,圖4(b)是系統(tǒng)選定固定相位面作為Poincaré映射截面所得到的周期面分岔圖,其中間隙選擇δ=0.05。由圖4(a)可以觀察到,當(dāng)ω=0.9480時(shí),物塊碰撞的1/1周期運(yùn)動(dòng)發(fā)生擦邊分岔,碰撞次數(shù)p加1變?yōu)?/1周期運(yùn)動(dòng)[圖5(a)]。圖5的所有運(yùn)動(dòng)相圖中紅色虛線代表間隙δ,用來(lái)觀察是否發(fā)生擦邊分岔,當(dāng)發(fā)生擦邊分岔時(shí),在運(yùn)動(dòng)相圖中體現(xiàn)為最內(nèi)側(cè)運(yùn)動(dòng)相圖軌跡與紅色虛線相切,反之則表示發(fā)生的不是擦邊運(yùn)動(dòng)。當(dāng)ω減小至ω=0.6690、2/1周期運(yùn)動(dòng)時(shí)再次發(fā)生擦邊運(yùn)動(dòng)進(jìn)入3/1周期運(yùn)動(dòng),運(yùn)動(dòng)相圖如圖5(b)所示。隨著ω減小至0.5685時(shí),3/1周期運(yùn)動(dòng)會(huì)經(jīng)歷倍化分岔進(jìn)入6/2亞諧運(yùn)動(dòng),圖5(c)為ω=0.5430時(shí)的6/2亞諧運(yùn)動(dòng)的運(yùn)動(dòng)相圖,之后6/2亞諧運(yùn)動(dòng)發(fā)生倍化分岔并經(jīng)歷一系列復(fù)雜運(yùn)動(dòng)后進(jìn)入混沌運(yùn)動(dòng),經(jīng)過(guò)短暫混沌運(yùn)動(dòng)后隨即退出。當(dāng)ω減小至0.4350時(shí)進(jìn)入8/2亞諧運(yùn)動(dòng)。隨著ω的繼續(xù)減小8/2亞諧運(yùn)動(dòng)在ω=0.4270時(shí)發(fā)生逆倍化分岔進(jìn)入4/1周期運(yùn)動(dòng),隨后4/1周期運(yùn)動(dòng)發(fā)生擦邊分岔,碰撞次數(shù)p加1進(jìn)入5/1周期運(yùn)動(dòng),圖5(e)為4/1周期運(yùn)動(dòng)發(fā)生擦邊分岔時(shí)的運(yùn)動(dòng)相圖,圖5(f)為ω=0.3260時(shí)5/1周期運(yùn)動(dòng)的運(yùn)動(dòng)相圖,最終進(jìn)入顫碰。因此,隨著ω的減小,p/1運(yùn)動(dòng)通過(guò)擦邊、倍化、逆倍化最終進(jìn)入顫碰運(yùn)動(dòng)。轉(zhuǎn)遷規(guī)律如下,其中GBif為擦邊分岔,p?/1為顫碰運(yùn)動(dòng):
3 相鄰基本周期多態(tài)共存區(qū)及吸引域
利用控制變量法以激振頻率ω為單一變量作為分岔圖參數(shù),進(jìn)行增減速求解。圖6中紅色實(shí)線代表激振頻率ω增大時(shí)的分岔圖,藍(lán)色實(shí)線代表激振頻率ω減小時(shí)的分岔圖。圖6(a)、圖6(b)分別為增減速分岔圖,從圖6(c)、圖6(d)增減速對(duì)比圖中可以清晰地看出增減速分岔圖的分岔點(diǎn)的位置不同,以及增減速之間其他動(dòng)力學(xué)特性的區(qū)別。激振頻率ω減小時(shí)發(fā)生擦邊分岔,倍化分岔,逆倍化分岔,最終成為(p+1)/n周期運(yùn)動(dòng)。頻率ω增大時(shí),發(fā)生鞍結(jié)分岔,由(p+1)/n周期運(yùn)動(dòng)轉(zhuǎn)遷為p/n周期運(yùn)動(dòng)。頻率ω變化導(dǎo)致相鄰周期運(yùn)動(dòng)不可逆,在相鄰的p/n運(yùn)動(dòng)和(p+1)/n運(yùn)動(dòng)之間會(huì)產(chǎn)生遲滯區(qū)域,因此對(duì)遲滯區(qū)域的研究極其具有意義。選取部分頻率區(qū)間作為研究對(duì)象得到該碰撞系統(tǒng)局部周期運(yùn)動(dòng)共存區(qū)的分岔圖,如圖7(a)~圖7(c),分別表示1/1周期運(yùn)動(dòng)與2/1周期運(yùn)動(dòng)的共存區(qū)域,2/1周期運(yùn)動(dòng)與3/1周期運(yùn)動(dòng)的共存區(qū)域,4/1周期運(yùn)動(dòng)與5/1周期運(yùn)動(dòng)的共存區(qū)域,從中可以發(fā)現(xiàn),在每一個(gè)遲滯區(qū)內(nèi)存在多吸引子共存的現(xiàn)象。以4/1周期運(yùn)動(dòng)與5/1周期運(yùn)動(dòng)的共存區(qū)域?yàn)檠芯繉?duì)象,共存區(qū)在ω∈(0.3580,0.3655)的頻率區(qū)間內(nèi)。當(dāng)ω=0.3580時(shí),5/1周期運(yùn)動(dòng)發(fā)生鞍結(jié)分岔轉(zhuǎn)遷為4/1周期運(yùn)動(dòng);當(dāng)ω減小至ω=0.3580時(shí),4/1周期運(yùn)動(dòng)發(fā)生擦邊分岔轉(zhuǎn)遷為5/1周期運(yùn)動(dòng)。給定不同的初始狀態(tài),系統(tǒng)在這兩種運(yùn)動(dòng)之間轉(zhuǎn)遷,但是不可逆。為了進(jìn)一步研究,圖8(a)給出了ω=0.6830時(shí)2/1和3/1周期運(yùn)動(dòng)共存吸引子相圖,圖8(b)為ω=0.3630時(shí)得到的4/1和5/1周期運(yùn)動(dòng)共存吸引子相圖,兩張運(yùn)動(dòng)相圖表明系統(tǒng)處于周期共存區(qū),即使給定了相同分岔參數(shù)ω,由于初始運(yùn)動(dòng)狀態(tài)不同,系統(tǒng)所呈現(xiàn)的周期運(yùn)動(dòng)也不相同。
為進(jìn)一步研究周期共存區(qū)內(nèi)不同吸引域的分布,結(jié)合胞映射思想,選取初態(tài)域Ω={(x1,x?1)|-2lt;x1lt;1,-2lt;x?1lt;2}并將其劃為400×400個(gè)狀態(tài)胞,對(duì)相平面進(jìn)行映射,可得共存區(qū)在映射過(guò)后的吸引域圖。圖8所示為初態(tài)域下4/1周期運(yùn)動(dòng)與5/1周期運(yùn)動(dòng)吸引子共存的演化過(guò)程,藍(lán)色代表4/1周期運(yùn)動(dòng),紅色代表5/1周期運(yùn)動(dòng)。圖9(a)~圖9(f)表示系統(tǒng)的激振頻率ω分別為0.3590、0.3600、0.3610、0.3620、0.3625、0.3635時(shí),4/1與5/1周期運(yùn)動(dòng)的吸引域分布圖。當(dāng)ω=0.3590時(shí),紅色面積明顯大于藍(lán)色面積,5/1周期運(yùn)動(dòng)的穩(wěn)定性大于4/1周期運(yùn)動(dòng)的穩(wěn)定性;當(dāng)ω=0.3620時(shí),兩種顏色的區(qū)域面積近似相等,說(shuō)明兩種周期運(yùn)動(dòng)穩(wěn)定性相同;當(dāng)ω=0.3635時(shí),藍(lán)色區(qū)域面積明顯大于紅色區(qū)域面積,則說(shuō)明4/1周期運(yùn)動(dòng)更加穩(wěn)定。因此,在該初態(tài)域內(nèi)隨著ω的增大,4/1周期運(yùn)動(dòng)的分布區(qū)域會(huì)逐漸增大,即4/1周期運(yùn)動(dòng)的穩(wěn)定性在此激振頻率的初態(tài)域范圍內(nèi)會(huì)逐漸增大。
4 間隙對(duì)周期共存影響
其他參數(shù)保持不變,改變參數(shù)δ,得到不同的碰撞面分岔圖。圖10(a)~圖10(c)中參數(shù)δ分別為0.05、0.10、0.15。選定ω∈(0.3,0.7)作為研究區(qū)間,得到該機(jī)械振動(dòng)系統(tǒng)在不同δ下的分岔圖,發(fā)現(xiàn)隨著間隙δ的增大,系統(tǒng)的動(dòng)力學(xué)特性會(huì)發(fā)生變化,分岔圖中的周期共存區(qū)會(huì)提前出現(xiàn)。先以2/1周期運(yùn)動(dòng)與3/1周期運(yùn)動(dòng)共存區(qū)為研究對(duì)象,其中當(dāng)δ=0.05時(shí)共存區(qū)范圍為ω∈(0.9480,0.9915),當(dāng)δ=0.10時(shí)共存區(qū)范圍為ω∈(0.9290,0.9685),當(dāng)δ=0.15時(shí)共存區(qū)范圍為ω∈(0.9120,0.9465)。當(dāng)δ增大時(shí),即在δ=0.10和δ=0.15時(shí)出現(xiàn)了3/1周期運(yùn)動(dòng)和4/1周期運(yùn)動(dòng)共存區(qū),范圍分別為ω∈(0.4070,0.4125)和ω∈(0.3930,0.4000)。再以4/1周期運(yùn)動(dòng)與5/1周期運(yùn)動(dòng)共存為研究對(duì)象,當(dāng)δ=0.05時(shí)共存區(qū)范圍為ω∈(0.3580,0.3655),當(dāng)δ=0.10時(shí)共存區(qū)范圍為ω∈(0.3502,0.3575),當(dāng)δ=0.15時(shí)共存區(qū)范圍為ω∈(0.3450,0.3505)。綜上可知,改變間隙δ,其他參數(shù)不變,會(huì)使得部分頻率區(qū)間內(nèi)的系統(tǒng)的力學(xué)特性趨于簡(jiǎn)單,多態(tài)共存區(qū)的頻率范圍會(huì)提前出現(xiàn),且范圍變小。
5 結(jié)論
建立了一類單自由度含單側(cè)非線性約束機(jī)械碰撞振動(dòng)系統(tǒng)模型,研究其不同運(yùn)動(dòng)的轉(zhuǎn)遷,得到如下結(jié)論:
1)選定其他基準(zhǔn)參數(shù),隨著ω的減小,周期運(yùn)動(dòng)的轉(zhuǎn)遷主要通過(guò)擦邊分岔,隨著ω的增大,周期運(yùn)動(dòng)的轉(zhuǎn)遷主要通過(guò)鞍結(jié)分岔,并且其過(guò)渡區(qū)會(huì)出現(xiàn)復(fù)雜的周期運(yùn)動(dòng)。
2)擦邊分岔和鞍結(jié)分岔的發(fā)生位置不同,導(dǎo)致出現(xiàn)一個(gè)遲滯域,并且轉(zhuǎn)遷不可逆,會(huì)出現(xiàn)多態(tài)吸引子共存。且隨著ω的增大,p/1周期運(yùn)動(dòng)比(p+1)/1周期運(yùn)動(dòng)更加穩(wěn)定。
3)改變間隙δ,隨著間隙增大,多態(tài)共存區(qū)的頻率范圍會(huì)提前出現(xiàn),且范圍變小,部分運(yùn)動(dòng)由復(fù)雜變簡(jiǎn)單。