摘 要:
本試驗(yàn)旨在基于轉(zhuǎn)錄組測(cè)序技術(shù)研究育成期(6~17周齡)能量限飼及轉(zhuǎn)換為自由采食(18~20周齡)調(diào)控開產(chǎn)時(shí)(20周齡)蛋雞生殖器官發(fā)育和激素水平的關(guān)鍵基因和信號(hào)通路。將720只6周齡海蘭褐蛋雞隨機(jī)分為3組,每組6個(gè)重復(fù),每個(gè)重復(fù)40只雞。6~17周齡,試驗(yàn)雞分別飼喂禽代謝能(ME)水平為12.34、11.11(90%)和9.87(80%)MJ·kg-1,其它營(yíng)養(yǎng)素水平相同的試驗(yàn)飼糧,12.34 MJ·kg-1組試驗(yàn)雞自由采食(對(duì)照組),其它試驗(yàn)組蛋雞按照對(duì)照組蛋雞采食量定量飼喂,18~20周齡,各組試驗(yàn)雞均飼喂相同營(yíng)養(yǎng)水平試驗(yàn)飼糧自由采食。試驗(yàn)期6~20周齡。20周齡末,選取生殖器官發(fā)育和血液孕酮水平差異顯著的對(duì)照組和80% ME攝入組試驗(yàn)雞各4只,采集卵巢基質(zhì)部進(jìn)行RNA-seq分析,對(duì)差異表達(dá)基因進(jìn)行GO功能富集分析和KEGG信號(hào)通路分析,并對(duì)測(cè)序結(jié)果進(jìn)行qRT-PCR驗(yàn)證。結(jié)果表明:1)隨育成期能量限飼強(qiáng)度增加,各試驗(yàn)組蛋雞20周齡體重和體重變異系數(shù)(CV)均顯著線性減少(Plt;0.001),6~20周齡平均日采食量(ADFI)和料重比(F/G)均顯著線性增加(Plt;0.001),平均日代謝能攝入量(ADMEI)和平均日增重(ADG)顯著線性減少(Plt;0.001)。2)隨育成期能量限飼強(qiáng)度增加,20周齡蛋雞血清尿素氮(UN)含量顯著線性增加(P=0.007),血清甘油三酯(TG)和低密度脂蛋白(LDL)水平以及肝組織總膽固醇(TC)和游離脂肪酸(NEFA)含量均顯著線性減?。≒=0.045,P=0.029,P=0.024,P=0.003)。3)隨育成期能量限飼強(qiáng)度增加,20周齡蛋雞輸卵管長(zhǎng)度、長(zhǎng)度體重比、重量和指數(shù)(P=0.012、0.016、0.042和0.045)、小黃卵泡的數(shù)量和指數(shù)(P=0.017和0.039)以及卵巢基質(zhì)部重量和指數(shù)(P=0.046和0.047)均顯著線性減少,血漿孕酮水平顯著線性增加(Plt;0.001)。4)對(duì)20周齡自由采食組(ALF20W)和80%能量限飼組(ERF20W)蛋雞卵巢基質(zhì)部進(jìn)行RNA-Seq分析,純凈序列匹配到雞參考基因組的比例均超過(guò)了93.77%,Q20和Q30的純凈序列含量分別高于97.03%和92.14%,兩組共篩選出1 488個(gè)差異基因,ERF20W組600個(gè)下調(diào),888個(gè)上調(diào)。GO功能分析發(fā)現(xiàn)細(xì)胞進(jìn)程、發(fā)育和生殖等46個(gè)顯著富集的GO條目,KEGG信號(hào)通路顯著富集在28個(gè)顯著富集的KEGG通路,其中類固醇激素生物合成通路、雌激素信號(hào)通路、卵巢類固醇生成通路和cAMP信號(hào)通路等是與能量代謝或生殖相關(guān)的通路,篩選到的cAMP反應(yīng)元件結(jié)合蛋白(CREB)、類固醇生成急性調(diào)節(jié)蛋白(StAR)、細(xì)胞色素P450 1B1(CYP1B1)、胰島素樣生長(zhǎng)因子I(IGF-I)、黑皮質(zhì)素2受體(MC2R)、細(xì)胞骨架蛋白角蛋白18(KRT 18)和孕激素受體(PGR)等差異基因富集在以上信號(hào)通路,可能是育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控開產(chǎn)時(shí)蛋雞生殖器官發(fā)育和雌激素生成的潛在靶基因和通路。qRT-PCR結(jié)果顯示10個(gè)差異表達(dá)基因的表達(dá)趨勢(shì)與 RNA-Seq結(jié)果一致。由此可見(jiàn),育成期能量限飼及轉(zhuǎn)換為自由采食顯著影響了開產(chǎn)時(shí)(20周齡)蛋雞脂質(zhì)代謝、生殖器官發(fā)育和孕酮生成,隨育成期能量限飼強(qiáng)度增加,開產(chǎn)時(shí)蛋雞體重、體重CV、血清TG和LDL水平、肝TC和NEFA含量、輸卵管長(zhǎng)度、長(zhǎng)度體重比、重量和指數(shù)、小黃卵泡的數(shù)量和指數(shù)以及卵巢基質(zhì)部重量和指數(shù)均顯著線性減少,而血漿孕酮水平顯著線性增加。育成期能量限飼及轉(zhuǎn)換為自由采食可能通過(guò)影響卵巢組織StAR、CREB1、CYP1B1、IGF-I、MC2R、KRT18和PGR等基因的表達(dá),作用于類固醇激素生物合成通路、雌激素信號(hào)通路、卵巢類固醇生成通路和cAMP信號(hào)通路等通路,以調(diào)控開產(chǎn)時(shí)蛋雞能量代謝、生殖器官發(fā)育和孕酮生成。
關(guān)鍵詞:
蛋雞;育成期能量限飼;生殖器官;RNA-seq;卵巢
中圖分類號(hào):
S831.5"""" 文獻(xiàn)標(biāo)志碼:A """"文章編號(hào): 0366-6964(2025)02-0737-18
Studies on Key Genes and Signaling Pathways of Regulation of Energy Restriction during Rearing and Conversion to Ad libitum on the Reproductive Organ Development of Hens at the Initiation of Laying Period
LU" Jian1, MA" Meng1, GUO" Jun1, WANG" Xingguo1, DOU" Taocun1, HU" Yuping1, WANG" Qiang1, LI" Yongfeng1, SHAO" Dan1, TONG" Haibing1, GUO" Jie2*, QU" Liang1*
(1.Jiangsu Institute of Poultry Sciences, Yangzhou 225125," China;
2.Animal Husbandry Station of China, Beijing 100125," China)
Abstract:
The aim of this experiment was to investigate the key genes and signaling pathways of regulation of energy-restricted feeding during rearing and conversion to ad libitum on the reproductive organ development and hormone level of laying hens at the initiation of laying period using transcriptome sequencing technology. A total of 720 6-week-old Hyline-Brown chicks were allocated equally to three groups with six replicates of 40 chicks each, and were fed one of three diets that were nutritionally equal with the exception of ME levels. From 6 to 17 weeks of age, the chicks in control group were given diet with 12.34 MJ·kg-1 ME, and fed ad libitum. The levels of ME in diet of chicks in the experimental groups were 90% [11.11 (12.34×90%) MJ·kg-1] and 80% [9.87 (12.34×80%) MJ·kg-1] of that in control group, and the daily amount of feed was restricted to the absolute quantity of the diet consumed by chicks in control group. From 18 to 20 weeks of age, all laying pullets were fed a basal diet ad libitum. At 20 weeks of age,
four chicks in each of the ad libitum feeding group and 80% energy-restricted feeding group with significant differences (Plt;0.05) in reproductive organ development and plasma progesterone concentrations were selected to screen the novel mRNA implemented by the RNA-seq. The results showed as follows: 1) The body weight and body weight CV of chicks at 20 weeks of age decreased linearly with increasing energy restriction (Plt;0.001), the ADFI and F/G (Plt;0.001) from 6 to 20 weeks of age increased linearly, while the ADMEI and ADG (Plt;0.001) decreased linearly with increasing the degree of energy restriction. 2) A gradual increase in the degree of energy restriction resulted in a gradual increase in the serum UN (P=0.007), but a gradual decrease in serum TG and LDL (P=0.045, 0.029), and in liver TC and NEFA (P=0.024, 0.003). 3) With the increase of energy restriction during rearing period, the length, ratio of length to body weight, weight and index of oviduct (P= 0.012, 0.016, 0.042, 0.045), the number and index of small yellow follicle (P=0.017, 0.039), and the weight and index of ovarian stroma (P=0.046, 0.047) decreased linearly, while the plasma progesterone level (Plt;0.001) increased linearly. 4) The ovary stroma of chicks at 20 weeks of age in the ad libitum feeding group (ALF20W) and 80% energy-restricted feeding group (ERF20W) were used to screen the novel mRNA implemented by the RNA-seq. The proportion of pure reads matching to chicken reference genome was more than 93.77%, and the content of Q20 and Q30 was more than 97.03% and 92.14%, respectively. A total of 1 488 differential genes were screened in ALF20W and ERF20W, of which 600 were down-regulated and 888 were up-regulated in ERF20W. The GO functional enrichment analysis found that differentially expressed mRNAs were involved in biological processes such as biological regulation of cell proliferation, development, and reproduction. The KEGG pathway were significantly enriched in 28 pathways, among these pathways, the steroid hormone biosynthesis pathway, estrogen signaling pathway, ovarian steroidogenesis pathway, and cAMP signaling pathway were related to energy metabolism or reproduction. The differentially expressed genes including cAMP response element-binding protein (CREB), steroid-producing acute regulatory protein (StAR), cytochrome P450 1B1 (CYP1B1), insulin-like growth factor-1 (IGF-I), adrenocorticotropic hormone (MC2R), cytoskeletal keratin (KRT18), and progesterone receptor (PGR) were found to be enriched in the above signaling pathways, which maybe the potential target gene and pathway of energy restriction regulating reproductive organ development and estrogen production in laying chicks. The qRT-PCR results showed that the expression trends of 10 randomly selected differentially expressed genes were consistent with RNA-Seq results. The results showed that the body weight, body weight CV, serum TG and LDL, liver TC and NEFA, the length, ratio of length to body weight, weight and index of oviduct, the number and index of small yellow follicle, and the weight and index of ovarian stroma of chicks at 20 weeks of age decreased linearly with increasing the degree of energy restriction, while the plasma progesterone level increased linearly. It is suggested that energy restriction during the rearing period may regulate the expression of StAR, CREB1, CYP1B1, IGF-I, MC2R, KRT18 and PGR genes in ovarian tissues, and act on steroid hormone biosynthesis pathway, estrogen signaling pathway, ovarian steroidogenesis pathway, and cAMP signaling pathway, to regulate the energy metabolism, reproductive organ development and estrogen production of laying chicks at the initiation of laying period.
Key words:
hens; energy restriction during rearing period; reproductive organs; RNA-seq; ovary
*Corresponding authors:" QU Liang, E-mail: liangquyz@126.com; GUO Jie, E-mail: 23382063@qq.com
育成期和產(chǎn)前期是蛋雞骨架、肌肉、生殖器官和脂肪細(xì)胞等發(fā)育的主要階段[1],開產(chǎn)時(shí)(性成熟)蛋雞的體重、群體均勻度和生殖器官等發(fā)育狀況直接影響整個(gè)飼養(yǎng)期的產(chǎn)蛋性能[2],通過(guò)有效措施改善蛋雞育成期生殖器官發(fā)育狀況和群體均勻度等、達(dá)到良好的群體狀況至關(guān)重要[1]。育成期代謝能(ME)攝入量可以調(diào)節(jié)雞脂肪代謝及肌肉和生殖器官等發(fā)育狀態(tài)[3],ME攝入量不足或過(guò)多可能會(huì)延遲生殖器官發(fā)育、推遲性成熟時(shí)間,對(duì)性成熟及后期產(chǎn)蛋性能也造成潛在影響[4]。因此,系統(tǒng)研究育成期ME攝入量對(duì)開產(chǎn)時(shí)蛋雞體重、體尺、生殖器官發(fā)育、脂質(zhì)代謝和卵巢基因表達(dá)的影響,可以為蛋雞達(dá)到最佳生長(zhǎng)發(fā)育狀態(tài)和最優(yōu)產(chǎn)蛋性能提供ME需要的數(shù)據(jù)支撐,為集成蛋雞育成期精準(zhǔn)飼喂技術(shù)提供理論依據(jù),具有重要的實(shí)踐意義。有研究表明,自由采食狀況下育成期飼糧ME水平可以顯著影響育成期末蛋雞體重、卵巢基質(zhì)和小黃卵泡等發(fā)育,但對(duì)開產(chǎn)時(shí)蛋雞生殖器官發(fā)育狀況無(wú)顯著影響[5]。自由采食情況下肉種雞能量攝入過(guò)高會(huì)增加開產(chǎn)時(shí)體重、卵泡數(shù)和卵泡重,其F2卵泡快速發(fā)育,與F1卵泡接近,易發(fā)生多卵同排的異常排卵等現(xiàn)象[6]。限飼情況下高M(jìn)E攝入組母雞26周齡全部開產(chǎn),而低ME攝入組母雞僅30%左右開產(chǎn),高M(jìn)E攝入組母雞促性腺激素釋放激素(GnRH)是低ME攝入組的2.3倍,GnRH-RI 是低能攝入組的1.8倍[3]。限飼情況下肉種雞推遲了開產(chǎn)、縮短了產(chǎn)蛋周期,但改善了群體均勻度、增加了總產(chǎn)蛋數(shù)、提高了產(chǎn)蛋性能和孵化性能[7]。本團(tuán)隊(duì)前期研究發(fā)現(xiàn),育成期適度限制能量攝入量(85.97%,10.25 vs. 11.92 MJ·kg-1),能夠延遲如皋黃雞18、20、22和24周齡的生殖器官發(fā)育和性成熟,限飼組蛋雞個(gè)體開產(chǎn)日齡、5%產(chǎn)蛋率日齡和50%產(chǎn)蛋率日齡分別延遲了4.2、8.9和5.5 d,但限飼改善了性成熟過(guò)程中群體均勻度,增加了18~52周齡平均蛋重和蛋重超過(guò)40 g的蛋數(shù)[8]。以上研究表明,育成期適宜的營(yíng)養(yǎng)素?cái)z入量延遲了家禽生殖器官發(fā)育和性成熟,縮短了產(chǎn)蛋周期,卻在一定程度上改善產(chǎn)蛋性能。然而,產(chǎn)生這一結(jié)果的原因并不清楚,生殖器官發(fā)育的延遲是否增加了組織器官的發(fā)育時(shí)間使發(fā)育更加成熟進(jìn)而改善了后期產(chǎn)蛋性能?育成期ME攝入量影響家禽生殖器官發(fā)育和性成熟的分子機(jī)制研究報(bào)道較少,尤其在蛋雞上的研究未見(jiàn)報(bào)道。因此,本試驗(yàn)以海蘭褐蛋雞為研究對(duì)象,育成期(6~17周齡)通過(guò)等量飼喂不同ME水平飼糧控制蛋雞的ME攝入量,17周齡后(18~20周齡)轉(zhuǎn)換成相同營(yíng)養(yǎng)水平試驗(yàn)飼糧自由采食,研究其對(duì)20周齡蛋雞體重、體尺、血液生化指標(biāo)、激素水平和生殖器官發(fā)育的影響,并基于轉(zhuǎn)錄組測(cè)序技術(shù)研究育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控開產(chǎn)時(shí)(20周齡)蛋雞生殖器官發(fā)育的關(guān)鍵基因和信號(hào)通路。
1 材料與方法
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2021年8月至2022年2月,在江蘇省家禽科學(xué)研究所邵伯試驗(yàn)基地開展,試驗(yàn)雞來(lái)自河北華裕農(nóng)業(yè)科技有限公司,從1日齡飼養(yǎng)至6周齡后開始試驗(yàn)。
試驗(yàn)選用體況良好、體重接近的6周齡海蘭褐母雞720只。隨機(jī)分為3組,每組6個(gè)重復(fù),每個(gè)重復(fù)40只,各試驗(yàn)組蛋雞6周齡體重(375.9、381.3和377.5 g)和6周齡體重變異系數(shù)(coefficient of variation,CV;10.77、12.38和11.20)均無(wú)顯著差異(Pgt;0.05)。
6~17周齡,對(duì)照組、90%能量限飼組和80%能量限飼組分別飼喂禽代謝能(ME)水平為12.34、11.11(12.34×90%)和9.87(12.34×80%)MJ·kg-1、其它營(yíng)養(yǎng)素水平相同的飼糧,對(duì)照組試驗(yàn)雞自由采食,試驗(yàn)組蛋雞按照對(duì)照組蛋雞采食量定量飼喂。18~20周齡,各組試驗(yàn)雞均飼喂相同的試驗(yàn)飼糧,自由采食。試驗(yàn)雞每天飼喂2次(7:00、18:00),試驗(yàn)期6~20周齡。
1.2 試驗(yàn)飼糧與飼養(yǎng)管理
參照《海蘭褐飼養(yǎng)管理手冊(cè)》(HY-LINE INTERNATIONAL,2018版)推薦的不同生長(zhǎng)階段蛋雞營(yíng)養(yǎng)需要配制試驗(yàn)飼糧,飼糧組成及營(yíng)養(yǎng)水平見(jiàn)表1。飼糧中粗蛋白質(zhì)、氨基酸、鈣和磷含量分別按照GB/T 6432—2018、GB/T 18246—2019、GB/T 6436—2018和GB/T 6437—2018等方法測(cè)定。試驗(yàn)雞采用《海蘭褐飼養(yǎng)管理手冊(cè)》推薦的密閉式雞舍光照程序等飼養(yǎng)管理措施,三層個(gè)體階梯籠飼養(yǎng),自由飲水,各重復(fù)間在料槽上插入擋板,防止試驗(yàn)雞采食其它重復(fù)蛋雞試驗(yàn)飼糧。
1.3 測(cè)定指標(biāo)及方法
1.3.1 生長(zhǎng)性能測(cè)定
每天記錄雞只健康狀況。試驗(yàn)雞20周齡末,禁食12 h后逐只稱重。以重復(fù)為單位統(tǒng)計(jì)試驗(yàn)雞體重,并計(jì)算各重復(fù)體重CV作為群體均勻度評(píng)價(jià)指標(biāo)。
CV=(標(biāo)準(zhǔn)差/平均體重)×100%。
試驗(yàn)期每周齡末定時(shí)結(jié)料、稱重,統(tǒng)計(jì)各重復(fù)的耗料量。根據(jù)飼養(yǎng)試驗(yàn)記錄,以重復(fù)為單位整理統(tǒng)計(jì)試驗(yàn)雞各階段的平均日采食量(ADFI)、平均日增重(ADG)、料重比(F/G)、平均日代謝能攝入量(ADMEI)和代謝能轉(zhuǎn)化比(MECR,MECR=ADMEI/ADG)[5]。
1.3.2 體尺測(cè)定
20周齡末,測(cè)定所有試驗(yàn)雞個(gè)體體斜長(zhǎng)、跖長(zhǎng)和跖圍,體斜長(zhǎng)、跖長(zhǎng)和跖圍分別由專人測(cè)定,測(cè)定方法參考《家禽生產(chǎn)性能名詞術(shù)語(yǔ)和度量計(jì)算方法》(中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 823—2020)。體斜長(zhǎng)為肩關(guān)節(jié)至同側(cè)坐骨結(jié)節(jié)間的距離,用皮尺沿體表測(cè)定;跖長(zhǎng)為跖骨上關(guān)節(jié)至第三四趾間的直線距離,用電子數(shù)顯卡尺測(cè)定;跖圍為跖中部的周長(zhǎng),先用棉線繞跖骨中部1周,然后用直尺測(cè)定棉線長(zhǎng)度。
1.3.3 血液生化指標(biāo)和激素水平測(cè)定
20周齡末,隨機(jī)從每重復(fù)選取2只雞翅靜脈采血,血樣分別置于促凝管和EDTA抗凝管,離心后收集上清保存待測(cè)。采用全自動(dòng)生化分析儀(Uni-Cel DxC 800 Sychron,Beckman Coulter,美國(guó))測(cè)定血清葡萄糖(GLU)、尿素氮(UN)、總膽固醇(TC)、甘油三酯(TG)、游離脂肪酸(NEFA)含量、高密度脂蛋白(HDL)、低密度脂蛋白(LDL),采用酶聯(lián)免疫檢測(cè)試劑盒(ELISA)檢測(cè)血漿中雌二醇和孕酮的含量,試劑盒購(gòu)于南京奧青生物技術(shù)有限公司。
1.3.4 肝脂肪代謝相關(guān)生化指標(biāo)測(cè)定
20周齡末,試驗(yàn)雞采血后頸部放血致死。分離肝組織,滅菌生理鹽水沖洗,統(tǒng)一位置取樣,置于液氮中,后轉(zhuǎn)移至-70 ℃超低溫冰箱保存待測(cè),采用試劑盒測(cè)定肝臟TC、TG、NEFA、HDL和LDL含量,試劑盒購(gòu)自南京奧青生物技術(shù)有限公司。
1.3.5 生殖器官發(fā)育測(cè)定
20周齡末,試驗(yàn)雞屠宰后分離生殖器官,測(cè)量輸卵管長(zhǎng)度,并計(jì)算其與體重的比值;統(tǒng)計(jì)排卵前卵泡(直徑gt;8 mm)、小黃卵泡(直徑4~8 mm)和大白卵泡(直徑2~4 mm)數(shù)量;稱量輸卵管、卵巢基質(zhì)、排卵前卵泡、小黃卵泡和大白卵泡等組織重量并計(jì)算各器官與體重的比值。
1.3.6 卵巢轉(zhuǎn)錄組測(cè)序
分離卵巢基質(zhì)部后,各試驗(yàn)組分別取4個(gè)樣品置于液氮中,后轉(zhuǎn)移至-70 ℃超低溫冰箱保存。根據(jù)生殖器官發(fā)育相關(guān)指標(biāo),選取生殖器官發(fā)育差異最顯著的對(duì)照組(12.34 MJ·kg-1組,ALF20W)和80%能量限飼組(9.87 MJ·kg-1,ERF20W)蛋雞卵巢基質(zhì)部樣品進(jìn)行轉(zhuǎn)錄組分析和qRT-PCR檢測(cè)。
采用TRIzol法提取卵巢基質(zhì)部組織RNA,用Nanodrop-2000微量分光光度計(jì)檢測(cè)RNA濃度和純度,檢測(cè)合格后,合成雙鏈cDNA,進(jìn)行PCR擴(kuò)增并再次使用AMPure XP beads純化PCR產(chǎn)物,最終獲得文庫(kù),Illumina HiSeqTM 4000平臺(tái)上機(jī)測(cè)序。
1.3.7 測(cè)序數(shù)據(jù)分析
使用fastp對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)控,過(guò)濾低質(zhì)量數(shù)據(jù)后得到純凈序列。使用bowtie 2程序?qū)⒏哔|(zhì)量的純凈序列與雞核糖體序列比對(duì),評(píng)估核糖體RNA的去除效果。使用Tophat 2程序?qū)⑷コ颂求wRNA后的純凈序列與雞參考基因組(版本:Ensembl_release100)比對(duì),根據(jù)比對(duì)結(jié)果進(jìn)一步評(píng)估測(cè)序數(shù)據(jù)質(zhì)量,將比對(duì)上的序列進(jìn)行后續(xù)分析。采用FPKM作為衡量基因表達(dá)水平的指標(biāo)。使用edgeR軟件對(duì)mRNA的表達(dá)量進(jìn)行差異分析,利用P值與差異倍數(shù)(fold change)來(lái)篩選差異表達(dá)基因,篩選條件為Plt;0.05且FCgt;2.0。
使用OmicShare軟件對(duì)靶基因進(jìn)行注釋和分類。采用超幾何分布對(duì)差異表達(dá) mRNA的靶基因進(jìn)行基因本體論(gene ontology,GO)功能和京都基因與基因組百科全書(kyoto encyclopedia of genes and genomes,KEGG)信號(hào)通路富集分析。顯著條件為Plt;0.05。
1.3.8 測(cè)序結(jié)果qRT-PCR驗(yàn)證
每組從差異表達(dá)基因中隨機(jī)選擇10個(gè)參與能量代謝或雌激素生成的基因進(jìn)行qRT-PCR驗(yàn)證。根據(jù)GenBank的基因序列,利用primer premier 5軟件設(shè)計(jì)引物,各引物序列見(jiàn)表2。以卵巢基質(zhì)部總RNA為模板,使用反轉(zhuǎn)錄試劑盒將提取出的RNA反轉(zhuǎn)錄為cDNA。熒光定量PCR采用SYBR Green Ι法,參照ChamQ SYBR Color qPCR Master Mix(Q411-02)試劑盒說(shuō)明書進(jìn)行。以GAPDH基因作為內(nèi)參基因進(jìn)行數(shù)據(jù)的標(biāo)準(zhǔn)化處理。每次反應(yīng)均設(shè)空白樣品為陰性對(duì)照,每個(gè)樣品設(shè)置3個(gè)重復(fù)。定量的結(jié)果采用2-ΔΔCt法進(jìn)行處理,分析自由采食組、能量限飼組卵巢基質(zhì)mRNAs相對(duì)表達(dá)量。將80%能量限飼組的表達(dá)分析設(shè)為參照組,ΔΔCt=ΔCt(處理組)-ΔCt(參照組)。
1.4 統(tǒng)計(jì)分析
表型數(shù)據(jù)采用SPSS 15.0軟件中的單因子方差分析(one-way ANOVA)檢測(cè)組間差異顯著性。以重復(fù)為試驗(yàn)數(shù)據(jù)單元。差異顯著時(shí),用Duncan氏法進(jìn)行多重比較。育成期ME攝入量的劑量效應(yīng)用正交多項(xiàng)式中的線性和二次多項(xiàng)式進(jìn)行比較。Plt;0.05表示差異顯著。
采用edgeR軟件對(duì)mRNA的表達(dá)量進(jìn)行差異分析,利用P值與FC來(lái)篩選差異表達(dá)基因,Plt;0.05且FCgt;2.0表示差異顯著。采用超幾何分布對(duì)差異表達(dá) mRNA的靶基因進(jìn)行GO功能和KEGG信號(hào)通路富集分析,Plt;0.05表示差異顯著。
2 結(jié) 果
2.1 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)6~20周齡蛋雞生長(zhǎng)性能的影響
由表3可知,隨著育成期能量限飼強(qiáng)度增加,各試驗(yàn)組蛋雞20周齡體重和體重CV均顯著線性減少(Plt;0.001,P=0.010),20周齡跖長(zhǎng)呈先增加后減小的二次曲線趨勢(shì)(P=0.008)。
由表4可知,隨著育成期能量限飼強(qiáng)度增加,各試驗(yàn)組蛋雞6~20周齡ADFI和F/G均顯著線性增加(Plt;0.001),ADMEI和ADG均顯著線性減少(Plt;0.001),但各試驗(yàn)組MECR相比較均無(wú)顯著差異(Pgt;0.05)。
2.2 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡蛋雞血液和肝生化指標(biāo)的影響
由表5可知,隨著育成期能量限飼強(qiáng)度增加,20周齡蛋雞血清UN含量顯著線性增加(P=0.007),血清TG和LDL水平均顯著線性減?。≒=0.045,P=0.029)。育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡試驗(yàn)雞血清GLU、TC、NEFA和HDL水平均無(wú)顯著影響(Pgt;0.05)。
由表6可知,隨著育成期能量限飼強(qiáng)度增加,20周齡蛋雞肝TC和NEFA含量均顯著線性減?。≒=0.024,P=0.003)。各試驗(yàn)組蛋雞肝TG、HDL和LDL含量相比較均無(wú)顯著差異(Pgt;0.05)。
2.3 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡蛋雞生殖器官發(fā)育的影響
由表7可知,隨著育成期能量限飼強(qiáng)度增加, 20周齡蛋雞輸卵管長(zhǎng)度、長(zhǎng)度體重比、重量和指數(shù)(P=0.012、0.016、0.042和0.045)、小黃卵泡的數(shù)量和指數(shù)(P=0.017和0.039)以及卵巢基質(zhì)部重量和指數(shù)(P=0.046和0.047)均顯著線性減少。育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)其它生殖器官發(fā)育指標(biāo)均無(wú)顯著影響(Pgt;0.05)。
由圖1可知,轉(zhuǎn)換為自由采食3周后,血漿孕酮水平隨著育成期能量限飼強(qiáng)度增加顯著線性增加(Plt;0.001),育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)血漿雌二醇水平無(wú)顯著影響(Pgt;0.05)。
2.4 卵巢基質(zhì)部轉(zhuǎn)錄組測(cè)序質(zhì)量分析
由表8可知,對(duì)8個(gè)cDNA文庫(kù)測(cè)序共獲得了454 742 628條序列和453 051 448條高質(zhì)量的純凈序列,純凈序列在原始序列中占比高于99.60%,說(shuō)明低質(zhì)量序列較少,測(cè)序效果較好,平均GC含量為48.57%,堿基分布符合理論分布比例;原始序列平均堿基數(shù)為8.53 Gb,純凈序列平均堿基數(shù)為8.45 Gb,即99.15%的原始序列達(dá)到質(zhì)控標(biāo)準(zhǔn)。Q20和Q30的純凈序列含量分別高于97.03%和92.14%,表明測(cè)序數(shù)據(jù)結(jié)果可靠,可進(jìn)一步分析。將純凈序列與雞核糖體序列比對(duì),99.63%以上的純凈序列未比對(duì)到核糖體上,去除比對(duì)上的序列后可進(jìn)行后續(xù)轉(zhuǎn)錄組分析。
2.5 參考基因組比對(duì)分析
將各樣品純凈序列去重后的唯一序列與雞參考基因組對(duì)比(表9),純凈序列匹配到雞參考基因組的比例均超過(guò)了93.77%,5.16%~6.23%的reads未匹配到基因組的任何位置,91.87%~93.02%的純凈序列匹配到唯一基因組位置,1.79%~1.96%的純凈序列匹配到多個(gè)基因組位點(diǎn)。
2.6 基因表達(dá)分析
由圖2可知,20周齡8個(gè)樣本共檢測(cè)出18 672個(gè)表達(dá)的基因,其中ALF20W組蛋雞卵巢基質(zhì)部檢測(cè)到18 399個(gè)基因,ERF20W組檢測(cè)到18 430個(gè)基因,ALF20W組和ERF20W組同時(shí)檢測(cè)出18 157個(gè)基因,單獨(dú)檢到的基因數(shù)分別為242和273個(gè)。
2.7 差異表達(dá)基因篩選
由圖3可知,ALF20W與ERF20W共篩選出1 488個(gè)差異基因,其中ERF20W組600個(gè)上調(diào),888個(gè)下調(diào)。對(duì)差異表達(dá)基因進(jìn)行聚類分析,根據(jù)差異基因表達(dá)量計(jì)算樣品間的距離和樣品間的相關(guān)性,同一組的四個(gè)樣品聚在同一簇中。
2.8 差異表達(dá)基因功能分析
2.8.1 GO功能富集分析
對(duì)ALF20W組和ERF20W組差異表達(dá)基因進(jìn)行GO功能分析,發(fā)現(xiàn)46個(gè)顯著富集的GO條目(Plt;0.05),主要富集在細(xì)胞進(jìn)程(Cellular process)、生物調(diào)節(jié)(Biological regulation)、生物過(guò)程調(diào)節(jié)(Regulation of biological process)、代謝過(guò)程(Metabolic process)、多細(xì)胞生物過(guò)程(Multicellular organismal process)、發(fā)育過(guò)程(Development process)、細(xì)胞增殖(Cell proliferation)、生殖(Reproduction)和生殖過(guò)程(Reproductive process)等條目(圖4),其中與能量代謝或繁殖性能相關(guān)的基因有cAMP反應(yīng)元件結(jié)合蛋白(CREB)、類固醇生成急性調(diào)節(jié)蛋白(StAR)、細(xì)胞色素P450 1B1(CYP1B1)、胰島素樣生長(zhǎng)因子I(IGF-I)、黑皮質(zhì)素2受體(MC2R)、細(xì)胞骨架蛋白角蛋白(KRT18)和孕激素受體(PGR)等7個(gè)候選基因。
2.8.2 KEGG信號(hào)通路富集分析
對(duì)ALF20W組和ERF20W組差異表達(dá)基因進(jìn)行KEGG信號(hào)通路富集分析(圖5),發(fā)現(xiàn)28個(gè)顯著富集的KEGG通路(Plt;0.05),富集最為顯著的前20個(gè)信號(hào)通路主要包括ECM受體相互作用(ECM-receptor interaction)、醚脂代謝(Ether lipid metabolism)、蛋白質(zhì)的消化和吸收(Protein digestion and absorption)和雌激素信號(hào)通路(Estrogen signaling pathway)等。與能量代謝或繁殖性能相關(guān)的差異基因主要富集在類固醇激素生物合成(Steroid hormone biosynthesis)、雌激素信號(hào)通路(Estrogen signaling pathway)、卵巢類固醇生成(Ovarian Steroidogenesis)和環(huán)磷酸腺苷信號(hào)通路(cAMP signaling pathway)等信號(hào)通路(表10),可能是育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控蛋雞生殖器官發(fā)育的潛在通路。
2.9 差異表達(dá)基因qRT-PCR驗(yàn)證
為驗(yàn)證測(cè)序結(jié)果的準(zhǔn)確性,從ALF20W與ERF20W組測(cè)序結(jié)果中分別隨機(jī)選取10個(gè)差異表達(dá)的mRNAs(ACTA2、CFTR、COL3A1、CREB1、CYP1B1、ENTPD3、HSPG2、MC2R、NR4A3和StAR),進(jìn)行qRT-PCR驗(yàn)證。如圖6所示,qRT-PCR結(jié)果與測(cè)序結(jié)果高度一致,說(shuō)明轉(zhuǎn)錄組分析獲得的差異表達(dá)基因是準(zhǔn)確的。
3 討 論
3.1 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)6~20周齡蛋雞生長(zhǎng)性能的影響
本試驗(yàn)中,隨著育成期能量限飼強(qiáng)度增加,各試驗(yàn)組蛋雞20周齡(轉(zhuǎn)換為自由采食3周后)體重和體重CV以及6~20周齡ADMEI和ADG均顯著線性減少,表明6~17周齡能量限飼組的能量攝入量不能滿足蛋雞生長(zhǎng)需求,即便轉(zhuǎn)換成自由采食3周后,這種影響仍然存在,但育成期限飼對(duì)6~20周齡蛋雞的ME轉(zhuǎn)化效率沒(méi)有不良影響,且改善了群體均勻度。有關(guān)育成期能量限飼對(duì)蛋雞生長(zhǎng)發(fā)育影響的研究報(bào)道相對(duì)較少,在肉雞上有研究表明,與自由采食組肉雞相比,限飼期結(jié)束時(shí)限飼組肉雞體重顯著下降,但這種差異在轉(zhuǎn)換為自由采食1周后消失[9]。Butzen等[10]研究發(fā)現(xiàn),與自由采食組相比,8~16日齡限飼20%組肉雞16日齡體重顯著下降,但限飼對(duì)35日齡的肉雞體重?zé)o顯著影響。Urdaneta-Rincon和Leeson[11]研究發(fā)現(xiàn),14至17、20、23、26或29日齡,限飼10%均顯著影響肉雞公雞35日齡體重,但對(duì)42和49日齡體重?zé)o顯著影響。Novel等[12]研究發(fā)現(xiàn),與自由采食組相比,14~21日齡限飼50%組肉雞公、母雞42日齡體重均顯著下降,但14~21日齡限飼25% 對(duì)35日齡體重?zé)o顯著影響。Lu等[8]研究育成期能量限制飼喂及預(yù)產(chǎn)期轉(zhuǎn)換成自由采食對(duì)如皋黃雞后備母雞生長(zhǎng)發(fā)育影響時(shí)也發(fā)現(xiàn),8~18周齡能量限飼顯著影響18周齡蛋雞體重,但轉(zhuǎn)換成預(yù)產(chǎn)料自由采食3周后,體重與未限飼組蛋雞相比較差異不顯著。以上研究均說(shuō)明限飼會(huì)影響限飼期末家禽的生長(zhǎng)發(fā)育,這種影響可持續(xù)到轉(zhuǎn)換為自由采食數(shù)周后。本研究中,轉(zhuǎn)換成自由采食3周后,育成期能量限飼對(duì)蛋雞體重仍存在影響,但對(duì)體斜長(zhǎng)無(wú)不良影響,且改善了群體均勻度,說(shuō)明育成期限飼影響的周期可能與蛋雞品種和限飼強(qiáng)度(限飼量和限飼周期)密切相關(guān),本試驗(yàn)選用的試驗(yàn)動(dòng)物為海蘭褐蛋雞,ME攝入量分別為自由采食組的90%和80%,蛋雞品種和限飼強(qiáng)度與以上研究均不相同可能是影響本試驗(yàn)結(jié)果的重要因素。
3.2 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡蛋雞血液和肝生化指標(biāo)的影響
本試驗(yàn)中,隨著育成期能量限飼強(qiáng)度增加,轉(zhuǎn)換為自由采食3周后(20周齡)蛋雞血清UN含量顯著線性增加,血清TG和LDL水平以及肝TC和NEFA含量均顯著線性減小,說(shuō)明育成期能量限飼顯著影響了開產(chǎn)時(shí)(20周齡)蛋雞的脂質(zhì)代謝。有關(guān)育成期能量限飼對(duì)蛋雞血液和肝生化指標(biāo)的研究未見(jiàn)報(bào)道,但有研究表明,自由采食情況下,飼糧ME水平能夠影響蛋雞血清TG[13]、UN[14]、HDL和LDL[15]等,但研究結(jié)果并不一致,這可能與試驗(yàn)雞品種、日齡、飼糧組成和ME設(shè)置梯度等不同有關(guān)。育成期限飼組蛋雞20周齡血液UN含量增加,表明降低限飼組蛋雞自由采食3周后機(jī)體蛋白質(zhì)合成效率并不高,自由采食后限飼組蛋雞采食量顯著增加,粗蛋白質(zhì)攝入量顯著增加,可能由于轉(zhuǎn)換為自由采食后粗蛋白質(zhì)攝入量的增加對(duì)試驗(yàn)雞蛋白質(zhì)利用效率造成影響,限飼轉(zhuǎn)為自由采食后飼糧粗蛋白質(zhì)水平可能超過(guò)了蛋雞生長(zhǎng)需要,說(shuō)明該階段飼糧最適宜粗蛋白質(zhì)水平有待進(jìn)一步研究。育成期限飼組蛋雞20周齡血液TG和LDL水平以及肝TC和NEFA含量減小,說(shuō)明限飼組蛋雞可能改善了脂質(zhì)代謝狀態(tài),提升了膽固醇轉(zhuǎn)運(yùn)水平,這可能與限飼組蛋雞6~20周齡ADMEI仍顯著小于自由采食組有關(guān),攝入的能量物質(zhì)通過(guò)代謝轉(zhuǎn)化為能量或其它物質(zhì)滿足機(jī)體需要,限飼組蛋雞ME攝入量更少,血液和肝臟中脂質(zhì)代謝部分相關(guān)指標(biāo)顯著降低。
3.3 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡蛋雞生殖器官發(fā)育和激素水平的影響
本試驗(yàn)中,隨著育成期能量限飼強(qiáng)度增加,20周齡(轉(zhuǎn)換為自由采食3周后)蛋雞輸卵管長(zhǎng)度、長(zhǎng)度體重比、重量和指數(shù)、小黃卵泡的數(shù)量和指數(shù)以及卵巢基質(zhì)部重量和指數(shù)均顯著線性減少,說(shuō)明育成期能量限飼顯著影響了開產(chǎn)時(shí)(20周齡)蛋雞生殖器官發(fā)育。育成期ME攝入量可用于調(diào)控生殖器官的發(fā)育速度和蛋雞性成熟的時(shí)間[4]。本團(tuán)隊(duì)在前期研究地方特色蛋雞時(shí)發(fā)現(xiàn),將8~18周齡ME攝入量降至86%顯著延遲了18、20、22和24周齡如皋黃雞的生殖器官發(fā)育,對(duì)26和28周齡生殖器官發(fā)育無(wú)顯著影響[16]。將6周齡至開產(chǎn)ME攝入量降至自由采食的2/3,可使春季飼養(yǎng)的白來(lái)航蛋雞性成熟延遲3周[17]。7~15周齡和7周齡至開產(chǎn)限飼均能延遲肉種雞(Hybro G)開產(chǎn)日齡[18]。本試驗(yàn)發(fā)現(xiàn),轉(zhuǎn)換成自由采食3周后(20周齡),育成期能量限飼組蛋雞的生殖器官發(fā)育仍受一定影響,說(shuō)明育成期能量限飼對(duì)生殖器官發(fā)育的影響具有一定持續(xù)性,這種影響可能會(huì)隨自由采食時(shí)間的增加逐漸消失。理論上,育成期至開產(chǎn),蛋雞體重首先開始快速增加,先達(dá)到體成熟,增重開始減慢,輸卵管和卵巢等生殖器官開始快速發(fā)育,逐漸達(dá)到性成熟[19]。20周齡時(shí)能量限飼組蛋雞的體重仍顯著小于自由采食組,可能還未達(dá)到體成熟,影響了生殖器官的發(fā)育。
同時(shí),本研究表明,隨著育成期ME攝入量的減少,開產(chǎn)時(shí)(20周齡)蛋雞血液孕酮水平顯著線性增加,說(shuō)明限飼組蛋雞可能通過(guò)生理調(diào)節(jié)分泌了更多的孕酮,以促進(jìn)生殖器官發(fā)育,且限飼組蛋雞孕酮水平的顯著增加發(fā)生在體重仍顯著小于對(duì)照組的時(shí)間點(diǎn)(20周齡)。為了初步探明育成期能量限飼調(diào)控開產(chǎn)時(shí)蛋雞生殖器官發(fā)育和雌激素生成機(jī)制,本試驗(yàn)進(jìn)一步研究了20周齡生殖器官發(fā)育和雌激素水平差異最顯著組蛋雞卵巢基質(zhì)部的差異表達(dá)基因和信號(hào)通路。
3.4 育成期能量限飼及轉(zhuǎn)換為自由采食對(duì)20周齡蛋雞卵巢基因表達(dá)的影響
對(duì)能量限飼轉(zhuǎn)換為自由采食3周后(20周齡)卵巢基質(zhì)部組織進(jìn)行轉(zhuǎn)錄組分析,GO功能分析發(fā)現(xiàn)細(xì)胞進(jìn)程、生物調(diào)節(jié)、生物過(guò)程調(diào)節(jié)、代謝過(guò)程、發(fā)育和生殖等46個(gè)顯著富集的GO條目,KEGG信號(hào)通路富集在28個(gè)顯著富集的KEGG通路,其中類固醇激素生物合成通路、雌激素信號(hào)通路、卵巢類固醇生成通路和cAMP信號(hào)通路等是與能量代謝或生殖相關(guān)的通路,篩選到StAR、CREB1、CYP1B1、IGF-I、MC2R、KRT18、PGR等差異基因富集在以上信號(hào)通路,可能是育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控開產(chǎn)時(shí)蛋雞生殖器官發(fā)育和雌激素生成的潛在靶基因和通路。
雞性成熟是由多種激素因子、基因和通路共同調(diào)控的復(fù)雜過(guò)程。性成熟過(guò)程中,蛋雞對(duì)雌激素的敏感度比較高,雌激素可促進(jìn)肝脂質(zhì)合成,為卵泡中卵黃合成提供基礎(chǔ),最終促進(jìn)卵泡生長(zhǎng)[20]。卵巢類固醇激素包括雄激素、雌激素、孕激素等[21],是一類四環(huán)脂肪烴化合物,主要由膜細(xì)胞和顆粒細(xì)胞分泌而來(lái),對(duì)生殖器官發(fā)育和性成熟具有重要的調(diào)控作用[22]。膽固醇是卵巢類固醇激素生成的主要前體物質(zhì),膽固醇通過(guò)類固醇生成急性調(diào)節(jié)蛋白(StAR)轉(zhuǎn)運(yùn)至線粒體內(nèi)膜后,被膽固醇側(cè)鏈裂解酶(CYP11A)裂解生成孕烯醇酮(P5),P5 經(jīng)類固醇17α羥化酶(CYP17A)催化形成脫氫表雄甾酮(DHEA),DHEA經(jīng) 3β 羥基類固醇脫氫酶(3β-HSD)催化形成雄烯二酮?;蛘逷5經(jīng)3β-HSD 催化形成孕酮,再經(jīng)CYP17A催化形成雄烯二酮,雄烯二酮經(jīng)過(guò) 17β羥基類固醇脫氫酶催化形成睪酮,最后被催化形成雌激素[23-24]。在卵泡發(fā)育過(guò)程中,卵母細(xì)胞的發(fā)育和減數(shù)分裂等過(guò)程都需要大量的能量[25]。cAMP信號(hào)通路是能量代謝的重要通路,通過(guò)磷酸化途徑產(chǎn)生能量,調(diào)控生殖激素的合成以及與膜細(xì)胞和顆粒細(xì)胞增殖分化相關(guān)基因的轉(zhuǎn)錄,進(jìn)而調(diào)節(jié)卵泡發(fā)育[26-27]。綜上可見(jiàn),本研究中差異表達(dá)基因富集的類固醇激素生物合成通路、雌激素信號(hào)通路、卵巢類固醇生成通路和cAMP信號(hào)通路等是連通能量代謝、生殖激素生成、細(xì)胞增殖和卵泡發(fā)育的重要通路。
本試驗(yàn)篩選的差異表達(dá)基因StAR、CREB1、CYP1B1、IGF-I、MC2R等主要富集在類固醇激素生物合成、卵巢類固醇生成和cAMP信號(hào)通路等,KRT18、PGR等富集在雌激素信號(hào)通路。CREB家族包括CREB1、CREM和ATF1等,在哺乳動(dòng)物中,CREB是細(xì)胞能量平衡的關(guān)鍵感受器[28],研究表明,CREB和CREB轉(zhuǎn)錄激活因子(CRTC2)能夠在轉(zhuǎn)錄水平上整合由能量和激素調(diào)節(jié)的細(xì)胞信號(hào)通路[29],且在糖異生和內(nèi)質(zhì)網(wǎng)應(yīng)激過(guò)程中發(fā)揮重要作用[30],低能引起細(xì)胞內(nèi)cAMP濃度升高,促進(jìn)核內(nèi)CRTC2表達(dá)和活化并與CREB結(jié)合,激活下游基因轉(zhuǎn)錄[31]。StAR是一類可以通過(guò)激素進(jìn)行誘導(dǎo)的線粒體蛋白,主要存在類固醇激素合成的過(guò)程中[32]。類固醇激素合成細(xì)胞中的促性腺激素通過(guò)激活G蛋白和腺苷酸環(huán)化酶,提高細(xì)胞內(nèi)cAMP水平,活化蛋白激酶A(PKA),活化的PKA進(jìn)入細(xì)胞核磷酸化CREB等轉(zhuǎn)錄蛋白[33],磷酸化的CREB結(jié)合到StAR上的CREB結(jié)合區(qū),作為轉(zhuǎn)錄因子激活StAR,刺激StAR基因表達(dá),StAR蛋白能夠?qū)⒕€粒體外膜的膽固醇遞送到內(nèi)膜,由CYP11A將不溶性膽固醇裂解為可溶性的P5,進(jìn)而生成類固醇激素[34-35]。CYP1B1參與動(dòng)物繁殖,其mRNA表達(dá)顯示出明顯的季節(jié)性變化,在產(chǎn)卵期的豐度最高,在體內(nèi)和體外的最終卵母細(xì)胞成熟以及人絨毛膜促性腺激素和兒茶激素誘導(dǎo)的排卵期間發(fā)揮重要作用[36]。IGF-1在家禽卵泡發(fā)育過(guò)程中起著重要作用,IGF-1通過(guò)影響卵泡刺激素的受體表達(dá),進(jìn)而影響卵泡選擇前未分化的小黃卵泡的維持狀態(tài)[37]。黑皮質(zhì)素家族參與能量平衡的中樞和外周調(diào)節(jié),在脂肪細(xì)胞中,MC2R與黑皮質(zhì)素受體輔助蛋白2共同介導(dǎo)對(duì)促腎上腺皮質(zhì)激素反應(yīng)、傳遞 ACTH 依賴性信號(hào)[38],在脂肪細(xì)胞分化過(guò)程中其表達(dá)顯著上升[39]。細(xì)胞骨架蛋白角蛋白KRT18可參與免疫細(xì)胞調(diào)節(jié)卵巢中卵泡的選擇、成熟及排卵[40],也可作為卵丘-卵母細(xì)胞復(fù)合體生長(zhǎng)和發(fā)育以及顆粒細(xì)胞和卵丘細(xì)胞增殖的重要分子標(biāo)記[41]。孕激素受體PGR在性激素的生物合成通路中具有重要的作用,在能量限制情況下低表達(dá)[42],發(fā)情期高表達(dá),且與孕酮水平密切相關(guān)[43]。因此,本研究篩選的StAR、CREB1、CYP1B1、IGF-I、MC2R、KRT18、PGR等差異基因可能是育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控蛋雞生殖器官發(fā)育和雌激素生成的關(guān)鍵候選基因。本研究結(jié)果表明,育成期能量限飼及轉(zhuǎn)換為自由采食調(diào)控生殖器官發(fā)育可能是多基因、多通路的協(xié)同調(diào)控過(guò)程。
4 結(jié) 論
4.1 育成期(6~17周齡)80%能量限飼及轉(zhuǎn)換為自由采食(18~20周齡)顯著影響了開產(chǎn)時(shí)(20周齡)蛋雞體重和生殖器官發(fā)育等指標(biāo),但改善了群體均勻度和脂質(zhì)代謝,增加了血漿孕酮水平。
4.2 育成期能量限飼及轉(zhuǎn)換為自由采食可能通過(guò)影響卵巢組織StAR、CREB1、CYP1B1、IGF-I、MC2R、KRT18和PGR等基因的表達(dá),作用于類固醇激素生物合成通路、雌激素信號(hào)通路、卵巢類固醇生成通路和cAMP信號(hào)通路等通路,調(diào)控開產(chǎn)時(shí)蛋雞能量代謝、生殖器官發(fā)育和孕酮生成等。
4.3 建議6~17周齡蛋雞采用80%能量限飼(9.87 MJ·kg-1)飼喂方式,17周齡后自由采食。
參考文獻(xiàn)(References):
[1] BESTMAN M,RUIS M A W,HEIJMANS J,et al.Poultry signals:a practical guide for bird focused poultry farming[M].Zutphen:Roodbont Publishers,2012:42-55.
[2] FRIKHA M,SAFAA H M,JIMNEZ-MORENO E,et al.Influence of energy concentration and feed form of the diet on growth performance and digestive traits of brown egg-laying pullets from 1 to 120 days of age[J].Anim Feed Sci Technol,2009,153(3-4):292-302.
[3] PAN Y E,LIU Z C,CHANG C J,et al.Feed restriction ameliorates metabolic dysregulation and improves reproductive performance of meat-type country chickens[J].Anim Reprod Sci,2014,151(3-4):229-236.
[4] LU J,WANG Q,WANG K H,et al.Effects of energy restriction during growing phase on the productive performance of Hyline Brown laying hens aged 6 to 72 wk[J].Poult Sci,2023,102(10):102942.
[5] 盧 建,王克華,楊曉東,等.育成期飼糧代謝能水平對(duì)開產(chǎn)時(shí)如皋黃雞生長(zhǎng)發(fā)育的影響[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(7):2215-2227.
LU J,WANG K H,YANG X D,et al.Effects of dietary metabolizable energy levels during rearing on growth and development of Rugao yellow chicken at the initiation of the laying period[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2215-2227.(in Chinese)
[6] HEIJMANS J,DUIJSTER M,GERRITS W J J,et al.Impact of growth curve and dietary energy-to-protein ratio on productive performance of broiler breeders[J].Poult Sci,2021,100(7):101131.
[7] ZUKIWSKY N M,AFROUZIYEH M,ROBINSON F E,et al.Feeding,feed-seeking behavior,and reproductive performance of broiler breeders under conditions of relaxed feed restriction[J].Poult Sci,2021,100(1):119-128.
[8] LU J,LI Y F,QU L,et al.Effects of energy-restricted feeding during rearing on sexual maturation and reproductive performance of Rugao layer breeders[J].Poult Sci,2021,100(8):101225.
[9] VAN DER KLEIN S A S,SILVA F A,KWAKKEL R P,et al.The effect of quantitative feed restriction on allometric growth in broilers[J].Poult Sci,2017,96(1):118-126.
[10] BUTZEN F M,RIBEIRO A M L,VIEIRA M M,et al.Early feed restriction in broilers.I-Performance,body fraction weights,and meat quality[J].J Appl Poult Res,2013,22(2):251-259.
[11] URDANETA-RINCON M,LEESON S.Quantitative and qualitative feed restriction on growth characteristics of male broiler chickens[J].Poult Sci,2002,81(5):679-688.
[12] NOVEL D J,NGAMBI J W,NORRIS D,et al.Effect of different feed restriction regimes during the starter stage on productivity and carcass characteristics of male and female Ross 308 broiler chickens[J].J Poult Sci,2009,8(1):35-39.
[13] 張 蒙,李 強(qiáng),劉 平,等.0~4周齡大午粉1號(hào)商品代蛋雛雞飼糧中適宜的代謝能和粗蛋白質(zhì)水平[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2019,31(2):652-661.
ZHANG M,LI Q,LIU P,et al.Optimal dietary metabolizable energy and crude protein levels for Dawufen No.1 commercial layer chicks FROM 0 TO 4 weeks of age[J].Chinese Journal of Animal Nutrition,2019,31(2):652-661.(in Chinese)
[14] 王鵬飛,宋明杰,張倩雲(yún),等.凌云烏雞0~6周齡對(duì)代謝能、粗蛋白質(zhì)和苯丙氨酸+酪氨酸適宜需要量的研究[J].飼料工業(yè),2019,40(23):29-35.
WANG P F,SONG M J,ZHANG Q Y,et al.The study on appropriate requirements of ME,protein and Phe+Tyr of Lingyun chicken in the age of 0~6 weeks[J].Feed Industry,2019,40(23):29-35.(in Chinese)
[15] 盧 建,王克華,楊曉東,等.飼糧代謝能水平對(duì)3~8周齡如皋黃雞生長(zhǎng)發(fā)育和血清生化指標(biāo)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2022,34(4):2301-2313.
LU J,WANG K H,YANG X D,et al.Effects of dietary metabolic energy level on growth and development and serum biochemical indexes of Rugao yellow chickens aged from 3 to 8 weeks[J].Chinese Journal of Animal Nutrition,2022,34(4):2301-2313.(in Chinese)
[16] LU J,QU L,LI Y F,et al.Effects of energy-restricted feeding during rearing on the performance,uniformity,and development of Rugao layer breeders at the initiation of the laying period[J].Animals,2021,11(8):2222.
[17] FULLER H L,CHANEY L W.Effect of delayed maturity of White Leghorn chickens on subsequent productivity[J].Poult Sci,1974,53(4):1348-1355.
[18] BRUGGEMAN V,ONAGBESAN O,D′HONDT E,et al.Effects of timing and duration of feed restriction during rearing on reproductive characteristics in broiler breeder females[J].Poult Sci,1999,78(10):1424-1434.
[19] BDCARRATS G Y.Control of the reproductive axis:balancing act between stimulatory and inhibitory input[J].Poult Sci,2015,94(4):810-815.
[20] RENEMA R A,ROBINSON F E,ZUIDHOF M J.Reproductive efficiency and metabolism of female broiler breeders as affected by genotype,feed allocation,and age at photostimulation.2.Sexual maturation[J].Poult Sci,2007,86(10):2267-2277.
[21] YUAN X H,YANG C R,WANG X N,et al.Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1[J].J Cell Physiol,2019,234(1):709-720.
[22] 李永峰.育成期能量攝入量對(duì)蘇禽綠殼蛋雞母本早期蛋用性能的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2017.
LI Y F.The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D].Beijing:Chinese Academy of Agricultural Sciences,2017.(in Chinese)
[23] LEE A K A,VOLENTINE B K K,BAHR A J M.Two steroidogenic pathways present in the chicken ovary:theca layer prefersΔ5 pathway and granulosa layer prefersΔ4 pathway[J].Domest Anim Endocrinol,1998,15(1):1-8.
[24] KATO M,SHIMADA K,SAITO N,et al.Expression of P45017α-hydroxylase and P450aromatase genes in isolated granulosa,theca interna,and theca externa layers of chicken ovarian follicles during follicular growth[J].Biol Reprod,1995,52(2):405-410.
[25] BASTOS N M,GOULART R S,BAMBIL D B,et al.High body energy reserve influences extracellular vesicles miRNA contents within the ovarian follicle[J].PLoS One,2023,18(1):e0280195.
[26] CHENG Y,ZHU H,REN J,et al.Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets[J].Nat Commu,2023,14(1):6991.
[27] CASARINI L,CRPIEUX P.Molecular mechanisms of action of FSH[J].Front Endocrinol,2019,10:305.
[28] KOO S H,F(xiàn)LECHNER L,QI L,et al.The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J].Nature,2005,437(7062):1109-1114.
[29] ALTAREJOS J Y,MONTMINY M.CREB and the CRTC co-activators:sensors for hormonal and metabolic signals[J].Nat Rev Mol Cell Biol,2011,12(3):141-151.
[30] WANG Y G,VERA L,F(xiàn)ISCHER W H,et al.The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis[J].Nature,2009,460(7254):534-537.
[31] WANG Y G,LI G,GOODE J,et al.Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes[J].Nature,2012,485(7396):128-132.
[32] HIORT O,HOLTERHUS P M,WERNER R,et al.Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity,complete 46,XY sex reversal,and severe adrenal failure[J].J Clin Endocrinol Metab,2005,90(1):538-541.
[33] HAN J B,LI E W,CHEN L Q,et al.The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1[J].Nature,2015,524(7564):243-246.
[34] KUMAR S,KANG H,PARK E,et al.The expression of CKLFSF2B is regulated by GATA1 and CREB in the Leydig cells,which modulates testicular steroidogenesis[J].Biochim Biophys Acta Gene Regul Mech,2018,1861(12):1063-1075.
[35] CORMIER M,GHOUILI F,ROUMAUD P,et al.Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells[J].Cell Biol Toxicol,2018,34(1):23-38.
[36] CHAUBE R,RAWAT A,INBARAJ R M,et al.Cloning and characterization of estrogen hydroxylase (cyp1a1 and cyp1b1) genes in the stinging catfish Heteropneustes fossilis and induction of mRNA expression during final oocyte maturation[J].Comp Biochem Physiol A Mol Integr Physiol,2021,253:110863.
[37] ZHU M Q,WANG D,ZOU K X,et al.Insulin-like growth factor-1 regulates follicle selection of hens by promoting proliferation and inhibiting apoptosis of granulosa cells in prehierarchical follicles in vitro[J].Anim Reprod Sci,2022,247:107091.
[38] ETCHEVERS L,BELOTTI E M,DAZ P U,et al.MC2R/MRAP2 activation could affect bovine ovarian steroidogenesis potential after ACTH treatment[J].Theriogenology,2021,174:102-113.
[39] BETZ M J,HATIBOGLU N,MAURACHER B,et al.Mc2 receptor knockdown modulates differentiation and lipid composition in adipocytes[J].Horm Metab Res,2012,44(9):670-675.
[40] GOOSSENS K,TESFAYE D,RINGS F,et al.Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference[J].Reprod Fertil Dev,2010,22(2):395-404.
[41] CHERMUA B,HUTCHINGS G,KRANC W,et al.Expression profile of new gene markers and signaling pathways involved in immunological processes in human cumulus-oophorus cells[J].Genes (Basel),2021,12(9):1369.
[42] 王 震,馬鐵偉,鄧凱平,等.能量限飼和補(bǔ)償對(duì)湖羊生長(zhǎng)性能及相關(guān)激素和肉品質(zhì)的影響[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,41(4):722-729.
WANG Z,MA T W,DENG K P,et al.Effects of energy restriction and compensation on growth performance,and related hormones and meat quality of Hu sheep[J].Journal of Nanjing Agricultural University,2018,41(4):722-729.(in Chinese)
[43] 陶樂(lè)凱,高何璇,蔡永強(qiáng),等.甘加型藏羊發(fā)情周期血漿孕酮?jiǎng)討B(tài)變化及HPO軸PGR的表達(dá)[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(9):128-135.
TAO L K,GAO H X,CAI Y Q,et al.Dynamic changes of plasma progesterone and expression of HPO axis PGR in Ganjia Tibetan sheep during estrus cycle[J].Journal of China Agricultural University,2023,28(9):128-135.(in Chinese)
(編輯 范子娟)
收稿日期:2024-04-01
基金項(xiàng)目:江蘇省種業(yè)振興揭榜掛帥項(xiàng)目(JBGS[2021]104);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-40-K01)
作者簡(jiǎn)介:盧 建(1985-),男,研究員,博士,主要從事蛋雞營(yíng)養(yǎng)代謝與繁殖性能調(diào)控研究,E-mail:lujian1617@163.com
*通信作者:曲 亮,主要從事蛋雞遺傳育種研究,E-mail: liangquyz@126.com;郭 杰,主要從事畜禽養(yǎng)殖經(jīng)濟(jì)與產(chǎn)業(yè)發(fā)展研究,E-mail: 23382063@qq.com