摘 要:
旨在評(píng)定10種不同來源玉米化學(xué)成分含量,測(cè)定28日齡白羽肉雞對(duì)玉米的表觀回腸氨基酸消化率(apparent ileal amino acid digestibility,AID AA)和標(biāo)準(zhǔn)回腸氨基酸消化率(standardized ileal amino acid digestibility,SID AA)并建立SID AA預(yù)測(cè)方程。試驗(yàn)共選取330羽1日齡雄性愛拔益加白羽肉雞,隨機(jī)分為11個(gè)處理,每處理6重復(fù),每重復(fù)5只雞。飼養(yǎng)至25日齡時(shí),11個(gè)處理分別飼喂以10種玉米為唯一蛋白源配制成的10種試驗(yàn)日糧和無氮日糧。在第28日齡時(shí),屠宰肉雞收集回腸食糜用于測(cè)定回腸氨基酸消化率。結(jié)果顯示,10種不同來源玉米的干物質(zhì)(DM)、粗蛋白質(zhì)(CP)、粗脂肪(EE)、粗灰分(Ash)、粗纖維(CF)、中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)、無氮浸出物(NFE)、植酸(PA)、總磷(TP)、總淀粉(TS)含量平均值分別為87.14%、9.04%、3.94%、1.36%、1.97%、10.07%、2.61%、70.82%、0.84%、0.26%和74.56%。10種玉米的各氨基酸含量在0.20%~1.99%之間,脯氨酸(Pro)含量變異系數(shù)最大(21.65%),半胱氨酸(Cys)含量變異系數(shù)(10.01%)最小。AID AA和SID AA均為蘇氨酸(Thr)最低(分別為44.80%和68.15%),亮氨酸(Leu)最高(分別為83.93%和89.56%)。產(chǎn)地對(duì)AID AA和SID AA均有顯著影響(Plt;0.05)。本研究建立的玉米在28日齡白羽肉雞16種SID AA預(yù)測(cè)方程,其中SID Phe的擬合度最高(R2=0.962),SID Gly擬合度最低(R2=0.478)。綜上,本研究建立的SID AA預(yù)測(cè)方程對(duì)肉雞實(shí)現(xiàn)玉米高效利用和精準(zhǔn)營(yíng)養(yǎng)具有良好參考價(jià)值。
關(guān)鍵詞:
玉米;白羽肉雞;標(biāo)準(zhǔn)回腸氨基酸消化率(SID AA);預(yù)測(cè)方程
中圖分類號(hào):
S831.5"""" 文獻(xiàn)標(biāo)志碼:A """"文章編號(hào): 0366-6964(2025)02-0722-15
收稿日期:2024-03-15
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2021YFD1300203);江蘇現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(JATS[2023]418)
作者簡(jiǎn)介:杭振宇(1998-),男,江蘇南京人,碩士生,主要從事動(dòng)物營(yíng)養(yǎng)生理調(diào)控研究,E-mail:hang_zy@163.com
*通信作者:高 峰,主要從事動(dòng)物營(yíng)養(yǎng)調(diào)控研究,E-mail: gaofeng0629@njau.edu.cn
Evaluation and Prediction Equation Construction of Standardized Ileal Amino Acid Digestibility of Corn from Different Sources in 28-day-old White-feathered Broilers
HANG" Zhenyu, WANG" Ziyi, ZHANG" Lin, XING" Tong, ZHAO" Liang, GAOnbsp; Feng*
(Jiangsu Collaborative Innovation Center of Meat Production and Processing,Quality and Safety Control/Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province/College of Animal Science and Technology,Nanjing Agricultural University, Nanjing 210095, China)
Abstract:
This study aimed to analyze the nutrients content of corn from ten different sources, determine the apparent ileal amino acid digestibility (AID AA) and standardized ileal amino acid digestibility (SID AA) of corn in 28-day-old white-feathered broilers and construct the prediction equations of SID AA. A total of 330 1-day-old healthy male broilers (Arbor Acres) were randomly divided into 11 groups with 6 replicates per group and 5 broilers per replicate.At the age of 25 d, broilers in 11 treatments were fed 10 experimental diets which the protein sources only came from corn and a nitrogen-free diet, respectively. All broilers were euthanized on 28 d, and the ileal digesta were collected to determine the standardized ileal amino acid digestibility. The results showed that, the average content of
dry matter(DM), crude protein(CP), ether extract(EE), Ash, crude fiber(CF), neutral detergent fiber(NDF), acid detergent fiber(ADF), nitrogen-free extract(NFE), phytic acid(PA), total phosphorous(TP), total starch(TS) of corn from 10 different sources were 87.14%,9.04%, 3.94%, 1.36%, 1.97%, 10.07%, 2.61%, 70.82%, 0.84%, 0.26% and 74.56%, respectively. The content of 18 amino acids ranged from 0.20% to 1.99%. Pro had the highest coefficient of variation (22.84%) and the coefficient of variation of Cys (10.34%) was the lowest. The AID and SID were the lowest for threonine (44.80% and 68.15%), and the highest for leucine (83.93% and 89.56%). The AID AA and SID AA were significantly affected by the sources(Plt;0.05). A total of 16 SID AA prediction equations of corn in 28-day-old white-feathered broilers were constructed, among which SID Phe had the highest fitting degree (R2=0.962) and SID Gly had the lowest fitting degree (R2=0.478). In conclusion, the prediction equations established in this study had a better reference value for realizing precise nutrition and efficient utilization of corn in white-feathered broilers.
Key words:
corn; white-feathered broiler; standardized ileal amino acid digestibility (SID AA); prediction equation
*Corresponding author: GAO Feng,E-mail: gaofeng0629@njau.edu.cn
玉米因其來源廣、易消化且含有較高的代謝能被大量用作家禽飼料。我國(guó)是肉雞養(yǎng)殖大國(guó),雞肉產(chǎn)量位居世界第三[1],所以玉米在肉雞養(yǎng)殖中需求量大。據(jù)報(bào)道,飼料成本占總成本70%以上[2],而面對(duì)玉米等原料價(jià)格的上漲,肉雞生產(chǎn)成本進(jìn)一步上升。因此,提高對(duì)玉米原料的利用率是緩解目前形勢(shì)的主要策略之一。
玉米高效利用的前提是對(duì)其營(yíng)養(yǎng)價(jià)值的準(zhǔn)確評(píng)定,蛋白質(zhì)是肉雞生長(zhǎng)發(fā)育不可或缺的營(yíng)養(yǎng)素,而氨基酸消化率是評(píng)價(jià)玉米蛋白質(zhì)營(yíng)養(yǎng)價(jià)值的重要指標(biāo)。基于回腸水平評(píng)定氨基酸消化率已在飼料蛋白質(zhì)營(yíng)養(yǎng)價(jià)值評(píng)定中廣泛應(yīng)用,但表觀回腸氨基酸消化率(apparent ileal amino acid digestibility,AID AA)的計(jì)算中將回腸內(nèi)所有氨基酸歸為未消化的部分,從而低估了肉雞真實(shí)消化水平。實(shí)際上,回腸中的氨基酸一部分是由機(jī)體合成分泌到腸腔且未被重吸收的氨基酸,主要包括消化液、腸道脫落細(xì)胞、黏蛋白等[3],即內(nèi)源氨基酸損失。內(nèi)源氨基酸損失包括基礎(chǔ)損失和特殊損失:基礎(chǔ)損失是動(dòng)物活動(dòng)不可避免的最低氨基酸損失,與干物質(zhì)采食量以及家禽機(jī)體狀態(tài)有關(guān),與日糧飼料組成無關(guān);特殊損失指由飼料中蛋白質(zhì)、纖維、抗?fàn)I養(yǎng)因子等造成的氨基酸損失[4-5]。Lemme等[6]提出的標(biāo)準(zhǔn)回腸氨基酸消化率(standardized ileal amino acid digestibility,SID AA)是在AID AA基礎(chǔ)上經(jīng)過基礎(chǔ)損失校正而來,相較于AID AA,SID AA在不同日糧中具有可加性[7]。然而,運(yùn)用傳統(tǒng)體內(nèi)法測(cè)定氨基酸消化率相對(duì)繁瑣。此外,我國(guó)玉米種植范圍廣,全國(guó)各地均有分布,由于各地區(qū)光照、降水等因素的不同,不同產(chǎn)地玉米的營(yíng)養(yǎng)價(jià)值通常具有一定差異[8],這進(jìn)一步增加了消化率評(píng)定工作難度。因此,本試驗(yàn)擬測(cè)定28日齡白羽肉雞對(duì)10種不同產(chǎn)地玉米的SID AA,并建立SID AA預(yù)測(cè)方程,以期完善我國(guó)飼料數(shù)據(jù)庫(kù),為玉米的高效利用提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
10種玉米采購(gòu)于全國(guó)各地的企業(yè),分別編號(hào)為C1~C10,其產(chǎn)地信息見表1,每個(gè)玉米原料共采集70 kg。每種玉米再采集1 kg左右的試驗(yàn)分析樣品存于-20℃冰箱備用,取適量玉米用萬能粉碎機(jī)粉碎,過40目篩(其中用于氨基酸和微量元素測(cè)定的樣品過60目篩),過篩后的樣品用于化學(xué)分析。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)選取330羽1日齡雄性愛拔益加白羽肉雞,隨機(jī)分為11個(gè)處理,每處理6重復(fù),每重復(fù)5只雞。非試驗(yàn)期飼喂全價(jià)商品料,飼養(yǎng)至25日齡時(shí)飼喂試驗(yàn)日糧,試驗(yàn)期3 d。試驗(yàn)中的11個(gè)處理分別飼喂以10種玉米為唯一蛋白源配制成的10種試驗(yàn)日糧和無氮日糧。試驗(yàn)日糧和無氮日糧中添加二氧化鈦?zhàn)鳛橥庠粗甘緞y(cè)定氨基酸消化率。日糧組成見表2。
1.3 飼養(yǎng)管理
試驗(yàn)在南京農(nóng)業(yè)大學(xué)動(dòng)物房進(jìn)行。雞舍為全封閉式,可人工控溫。飼養(yǎng)過程中采用籠養(yǎng)方式,每重復(fù)為1籠,全程光照并保證肉雞自由采食和飲水。按常規(guī)程序進(jìn)行免疫。
1.4 樣品采集
在28 d時(shí),對(duì)自由采食狀態(tài)下肉雞使用二氧化碳致暈后進(jìn)行屠宰,雞屠宰后分離回腸,對(duì)折后取回腸后段1/2(棄去最后2 cm),用蒸餾水將回腸食糜沖入鋁盒中,每個(gè)重復(fù)組肉雞回腸食糜裝入1個(gè)鋁盒內(nèi),收集后的食糜立即放置于-20 ℃儲(chǔ)存,冷凍后的食糜放入冷凍干燥機(jī)中凍干,置室溫下回潮24 h,各重復(fù)內(nèi)所有雞只的凍干食糜經(jīng)充分混合后,粉碎備用。
1.5 測(cè)定指標(biāo)與方法
1.5.1 測(cè)定指標(biāo)
玉米的常規(guī)營(yíng)養(yǎng)成分和氨基酸含量,食糜氨基酸和二氧化鈦含量。
1.5.2 測(cè)定方法
干物質(zhì)(DM)、粗蛋白質(zhì)(CP)、粗脂肪(EE)、粗纖維(CF)、粗灰分(Ash)、中性洗滌纖維(NDP)、酸性洗滌纖維(ADF)、無氮浸出物(NFE)和磷含量參照張麗英[9]的方法測(cè)定;淀粉含量采用北京索萊寶科技有限公司試劑盒測(cè)定;植酸(PA)含量采用江蘇艾迪生生物科技有限公司試劑盒測(cè)定;精氨酸等15種氨基酸含量參照《飼料中氨基酸的測(cè)定:GB/T18246—2019》采用全自動(dòng)氨基酸分析儀(日立LA8080,日本)進(jìn)行測(cè)定;色氨酸含量參照《飼料中色氨酸的測(cè)定:GB/T15400—2018》采高效液相色譜儀(賽默飛Ultimate3000,美國(guó))測(cè)定;含硫氨基酸含量參照《飼料中含硫氨基酸的測(cè)定離子交換色譜法:GB/T15399—2018》采用氨基酸自動(dòng)分析儀(日立LA8080,日本)測(cè)定;二氧化鈦含量參照張麗萍等[10]的方法測(cè)定。
1.5.3 計(jì)算方法
表觀回腸氨基酸消化率AID AA(%)=100-[食糜氨基酸含量(mg·kg-1 DM)/飼糧氨基酸含量(mg·kg-1 DM)]×[飼糧指示劑含量(mg·kg-1 DM)/食糜指示劑含量(mg·kg-1 DM)]×100;無氮日糧組內(nèi)源氨基酸基礎(chǔ)損失=食糜氨基酸含量(mg·kg-1 DM)×[飼糧指示劑含量(mg·kg-1 DM)/食糜指示劑含量(mg·kg-1 DM)];標(biāo)準(zhǔn)回腸氨基酸消化率SID AA(%)=氨基酸表觀消化率+無氮日糧組內(nèi)源氨基酸基礎(chǔ)損失(mg·kg-1 DMI)/飼糧氨基酸含量(mg·kg-1 DM)×100。以上各公式中DM和DMI分別表示干物質(zhì)含量和干物質(zhì)攝入量。
1.6 數(shù)據(jù)統(tǒng)計(jì)與分析
利用Excel 2016對(duì)數(shù)據(jù)進(jìn)行初步整理后,采用SPSS 25軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行單因素方差分析,用Duncan氏法對(duì)組間數(shù)據(jù)進(jìn)行多重比較。接著分析玉米化學(xué)成分和SID AA間皮爾遜相關(guān)性,最后運(yùn)用逐步法進(jìn)行回歸分析建立標(biāo)準(zhǔn)回腸氨基酸消化率預(yù)測(cè)方程,以Plt;0.05作為差異顯著性的判斷標(biāo)準(zhǔn)。
2 結(jié) 果
2.1 不同來源玉米的化學(xué)成分含量
玉米的化學(xué)成分含量如表3所示,DM、CP、EE、Ash、CF、NDF、ADF、NFE、PA、總磷(TP)和總淀粉(TS)含量范圍分別是85.87%~88.39%,7.56%~10.93%,3.27%~6.24%,1.15%~1.79%,1.42%~2.66%,8.21%~14.20%,1.26%~3.39%,67.24%~73.63%,0.59%~1.03%,0.22%~0.29%和66.80%~79.66%。DM、NFE、TP和TS含量變異系數(shù)較低,均不超過10%。ADF含量變異系數(shù)(22.29%)最高,含量最低值為C6組,最高值為C10組。18種氨基酸含量平均值范圍為0.08%~1.99%,Trp含量最低,Glu含量最高。Cys含量變異系數(shù)(10.01%)最低,其含量在0.18%~0.24%之間,均值為0.20%;Pro含量變異系數(shù)(21.65%)最高,其含量在0.50%~1.20%之間,均值為0.85%。
2.2 不同來源玉米肉雞表觀回腸氨基酸消化率
由表4可知,產(chǎn)地對(duì)18種AID AA均具有顯著影響(Plt;0.05)。肉雞的不同來源玉米AID AA平均值范圍為44.80%~83.93%,在必需氨基酸中,AID Thr最低,為44.80%,AID Leu最高,為83.93%;在非必需氨基酸中,AID Gly最低,為58.05%,AID Glu最高,為81.77%。AID Leu變異系數(shù)(4.49%)最低;AID Trp變異系數(shù)(20.20%)最高,其中C3組最高(77.97%),C10組最低(33.23%)。
由表5可知,產(chǎn)地對(duì)18種SID AA均具有顯著影響(Plt;0.05)。肉雞的不同來源玉米SID AA平均值范圍為68.15%~89.56%,與AID AA相一致,在必需氨基酸中,SID Thr最低,為68.15%,SID Leu最高,為89.56%;在非必需氨基酸中,SID Cys最低,為73.31%,SID Glu最高,為88.87%。除Cys、Trp、Lys和Thr外,其余SID AA變異系數(shù)均不超過10%,SID Leu變異系數(shù)(3.78%)最低;SID Trp變異系數(shù)(17.70%)最高,其中C2組最高(97.87%),C10組最低(43.53%)。
2.3 不同來源玉米肉雞標(biāo)準(zhǔn)回腸氨基酸消化率預(yù)測(cè)方程
SID AA和玉米常規(guī)成分含量之間的相關(guān)性如表6所示。除His、Arg和Pro的SID AA均和NDF呈顯著負(fù)相關(guān)(Plt;0.05),其中SID Ile、SID Met和SID Cys還和ADF呈顯著負(fù)相關(guān)(Plt;0.05),SID Tyr和CP呈顯著負(fù)相關(guān)(Plt;0.05)。此外,大部分SID AA還和Ash存在顯著負(fù)相關(guān)關(guān)系(Plt;0.05)。
SID AA和玉米氨基酸含量之間的相關(guān)性如表7和表8所示。除His、Arg和Pro的SID AA均和氨基酸存在一定程度相關(guān)性,其中SID Trp和Asp負(fù)相關(guān)性最強(qiáng),相關(guān)系數(shù)為-0.848(Plt;0.05),SID Phe和Ala負(fù)相關(guān)性最弱,相關(guān)系數(shù)為-0.633(Plt;0.05)。
SID AA預(yù)測(cè)方程如表9所示,在所建立的16個(gè)預(yù)測(cè)方程中,SID Phe、SID Trp和SID Glu的預(yù)測(cè)方程擬合度較好,方程分別為SID Phe=137.237-8.92CF-54.756Arg-96.294Trp(R2=0.962,Plt;0.001),SID Trp=174.229-5.716NDF-38.895Pro(R2=0.927,Plt;0.001)和SID Glu=101.734-163.03Gly+423.801Ile-44.434Glu(R2=0.923,P=0.001)。其余SID AA預(yù)測(cè)方程擬合度較差,R2均不超過0.8,其中SID Gly的預(yù)測(cè)方程擬合度最低,SID Gly=107.381-76.982Gly(R2=0.478,P=0.027)。
3 討 論
3.1 不同來源玉米的化學(xué)成分含量
對(duì)玉米進(jìn)行化學(xué)成分分析,可為后續(xù)的消化試驗(yàn)提供基礎(chǔ)數(shù)據(jù)。本研究測(cè)定了10種玉米化學(xué)成分含量,不同產(chǎn)地來源玉米的化學(xué)成分含量存在一定程度差異。表10總結(jié)了荷蘭CVB、美國(guó)NRC、法國(guó)INRA和我國(guó)飼料數(shù)據(jù)庫(kù)中的玉米化學(xué)成分含量,與之相比,本研究中CP、CF、ADF、TP、Tyr和Cys含量偏低;Lys、His和Trp含量相近;而Leu、Met和Asp含量則高于表中數(shù)據(jù)。本研究中CP、Ash、和ADF含量與Li等[11]報(bào)道相近,該研究者在另一次試驗(yàn)中得出的玉米NDF含量則略高于本試驗(yàn)[12]。研究不同產(chǎn)地玉米的營(yíng)養(yǎng)成分含量已見諸多報(bào)道,Li等[13]分析了5個(gè)省份100個(gè)玉米樣品發(fā)現(xiàn),遼寧、吉林、河北、河南和山東產(chǎn)玉米的DM、CP、EE、ADF、NDF和TS含量存在顯著差異(Plt;0.05)。趙養(yǎng)濤[14]試驗(yàn)結(jié)果表明,東北地區(qū)玉米EE含量顯著低于黃淮和西北地區(qū)玉米;CF含量極顯著低于黃淮、西北和華南地區(qū)玉米;Ash含量則顯著高于黃淮和華南地區(qū)玉米。
分析飼料化學(xué)成分含量所使用的方法也會(huì)造成結(jié)果的差異。在淀粉含量的測(cè)定中,我國(guó)現(xiàn)行國(guó)標(biāo)為旋光法和酶解法,與之對(duì)應(yīng),CVB體系給定了旋光法和酶解法測(cè)定值,基于二者的玉米的TS含量分別為640和596 g·kg-1。酶解法使用的淀粉葡萄糖苷酶僅水解淀粉成葡萄糖,而旋光法測(cè)定過程
中不僅淀粉被水解,其他糖類如戊聚糖和β-葡聚糖也被部分水解,所以結(jié)果偏高[15-16]。同樣地,CVB呈現(xiàn)的玉米EE含量為37 g和38 g·kg-1,前者基于常規(guī)抽提法,后者則是在酸水解后再抽提。酸水解能夠?qū)⒔Y(jié)合態(tài)的脂肪提取出來,因此直接法測(cè)定的EE值低于酸水解后再抽提方法的結(jié)果,這一點(diǎn)在動(dòng)物性飼料上將會(huì)產(chǎn)生更大差異[17-18]。
此外,玉米收獲期、干燥溫度、存儲(chǔ)條件等[19-22]因素也對(duì)化學(xué)成分有重要影響。研究發(fā)現(xiàn),環(huán)境溫度越高,玉米的呼吸速度也越快[23]。伴隨著呼吸作用的進(jìn)行,可溶性糖不斷被消耗[24]。姚連謀等[25]試驗(yàn)結(jié)果表明,與熱風(fēng)干燥相比,真空冷凍干燥的玉米可溶性蛋白含量更高。
3.2 不同來源玉米肉雞回腸氨基酸消化率
SID AA是配制飼糧的重要參考,準(zhǔn)確測(cè)定SID AA有利于實(shí)現(xiàn)肉雞精準(zhǔn)營(yíng)養(yǎng)、緩解蛋白原料浪費(fèi),進(jìn)而提高生產(chǎn)效益。本試驗(yàn)數(shù)據(jù)表明,產(chǎn)地對(duì)AID AA和SID AA均具有顯著影響,以C1、C2、C6的AID和SID較高,以C3、C10的AID和SID較低。在AID AA中,AID Leu最高,為83.93%;AID Thr最低,為44.80%。在SID AA中,SID Leu最高,SID Thr最低,其值分別為89.56%和68.15%。AID Leu和AID Thr與李貝[30]的報(bào)道相近,但其SID Arg最高,SID Cys最低。廖瑞波等[31]的研究中AID Met最高,AID Thr最低,但測(cè)定值高于本試驗(yàn)結(jié)果;其研究中SID Met最高,半胱氨酸SID Cys最低。產(chǎn)地對(duì)玉米氨基酸消化率的影響已被證實(shí)[32-33],各產(chǎn)地玉米具有不同營(yíng)養(yǎng)價(jià)值。據(jù)報(bào)道,纖維水平和類型、植酸水平等因素都會(huì)影響肉雞內(nèi)源氨基酸損失[34-37],進(jìn)而影響氨基酸消化率。研究發(fā)現(xiàn)提高纖維的攝入可增加內(nèi)源氨基酸損失[38]。本試驗(yàn)在定量?jī)?nèi)源氨基酸基礎(chǔ)損失時(shí)使用無氮日糧法,而無氮日糧配方中不同比例的玉米淀粉與葡萄糖或蔗糖也會(huì)影響內(nèi)源氨基酸基礎(chǔ)損失[39]。Zhou等[40]研究發(fā)現(xiàn):相較于低葡萄糖/玉米淀粉比(0.33和0.14),高葡萄糖/玉米淀粉比(1.00和0.60)增加了大部分氨基酸的內(nèi)源損失。此外,日糧的加工形式對(duì)SID AA也有影響。Barua等[41]研究發(fā)現(xiàn),飼喂顆粒料組的大部分SID顯著低于飼喂粉料組。本研究所用日糧均經(jīng)過制粒機(jī)制粒,這可能也是本次試驗(yàn)SID AA較低的原因。其次,本研究選用愛拔益加肉雞為研究對(duì)象,而李貝選用了羅斯308,不同品種肉雞的生理結(jié)構(gòu)和消化能力不同[42]。
3.3 不同來源玉米肉雞標(biāo)準(zhǔn)回腸氨基酸消化率預(yù)測(cè)方程
評(píng)定氨基酸消化率廣泛使用體內(nèi)法,但是該法耗費(fèi)大量的人力和時(shí)間,因此研究者們致力于探索更為快速便捷的方式來獲得氨基酸消化率。近年來,已有許多學(xué)者通過分析玉米概略養(yǎng)分和SID之間的關(guān)系建立了一系列預(yù)測(cè)方程。李貝[30]報(bào)道SID Lys和CP含量呈顯著負(fù)相關(guān)。Zuber和Rodehutscord[43]研究發(fā)現(xiàn),蛋雞部分表觀氨基酸消化率與玉米樣品中的蛋白含量、容重等因素呈顯著正相關(guān)。Sadighi等[44]以24日齡羅斯308公雞為研究對(duì)象,建立了10種SID AA預(yù)測(cè)方程,預(yù)測(cè)因子主要包括CP、CF、NDF和ADF。此外,該研究者還以玉米中的氨基酸含量為預(yù)測(cè)因子建立了SID AA一元回歸方程。目前研究對(duì)于預(yù)測(cè)因子的選擇主要聚焦于玉米的理化性質(zhì)或概略養(yǎng)分或氨基酸含量。本研究在概略養(yǎng)分基礎(chǔ)上進(jìn)一步將氨基酸含量統(tǒng)籌考慮進(jìn)行回歸分析,建立的預(yù)測(cè)方程主要預(yù)測(cè)因子為NDF、Tyr和Gly,僅SID Tyr和CP呈顯著負(fù)相關(guān),并未發(fā)現(xiàn)CP和其他SID之間的相關(guān)性,具體原因有待進(jìn)一步發(fā)掘。
4 結(jié) 論
本研究中10種不同來源玉米常規(guī)養(yǎng)分和氨基酸含量變異程度大,樣品來源廣泛具有代表性,可作為飼料數(shù)據(jù)庫(kù)中玉米樣本數(shù)據(jù)的補(bǔ)充。玉米在28日齡白羽肉雞上的AID AA較低,大多在60%~80%之間,經(jīng)過內(nèi)源氨基酸基礎(chǔ)損失校正后的SID AA提高到了80%~90%,來源對(duì)AID AA和SID AA均具有顯著影響。此外,本研究建立了16個(gè)SID AA的預(yù)測(cè)方程,其中SID Phe、SID Trp和SID Glu預(yù)測(cè)方程R2超過了0.9,具有良好的參考價(jià)值。
參考文獻(xiàn)(References):
[1] 張 怡,吳 辰,黃亞州,等.2023年全球肉雞生產(chǎn)、貿(mào)易及產(chǎn)業(yè)經(jīng)濟(jì)發(fā)展研究[J].中國(guó)畜牧雜志,2024,60(3):328-334.
ZHANG Y,WU C,HUANG Y Z,et al.Study on global broiler production,trade and industrial economic development in 2023[J].Chinese Journal of Animal Science,2024,60(3):328-334.(in Chinese)
[2] BIESEK J,BANASZAK M,WLAZ′LAK S,et al.The effect of partial replacement of milled finisher feed with wheat grains on the production efficiency and meat quality in broiler chickens[J].Poult Sci,2022,101(5):101817.
[3] RAVINDRAN V.Progress in ileal endogenous amino acid flow research in poultry[J].J Anim Sci Biotechnol,2021,12(1):5.
[4] TENG P Y,YADAV S,SHI H Y,et al.Evaluating endogenous loss and standard ileal digestibility of amino acids in response to the graded severity levels of E.maxima infection[J].Poult Sci,2021,100(11):101426.
[5] ALI M,JOSEPH M,ALFARO-WISAQUILLO M C,et al.Standardized ileal amino acid digestibility of high-oleic full-fat soybean meal in broilers[J].Poult Sci,2023,102(12):103152.
[6] LEMME A,RAVINDRAN V,BRYDEN W L.Ileal digestibility of amino acids in feed ingredients for broilers[J].Worlds Poult Sci J,2004,60(4):423-438.
[7] AN S H,KONG C.Influence of dietary crude protein on growth performance and apparent and standardized ileal digestibility of amino acids in corn-soybean meal-based diets fed to broilers[J].Poult Sci,2023,102(4):102505.
[8] 滕 超,張小涵,周明春,等.不同產(chǎn)地不同玉米品種營(yíng)養(yǎng)品質(zhì)差異性分析[J].農(nóng)產(chǎn)品加工,2021(3):50-52.
TENG C,ZHANG X H,ZHOU M C,et al.Analysis on the difference of nutritional quality of different corn varieties in different producing areas[J].Farm Products Processing,2021(3):50-52.(in Chinese)
[9] 張麗英.飼料分析及飼料質(zhì)量檢測(cè)技術(shù)[M].4版.北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2016.
ZHANG L Y.Feed analysis and quality test technology[M].4th ed.Beijing:China Agricultural University Press,2016.(in Chinese)
[10] 張麗萍,王久榮,唐思宇,等.優(yōu)化測(cè)定表觀消化率指示劑二氧化鈦含量前處理方法的研究[J].中國(guó)農(nóng)學(xué)通報(bào),2023,39(11):159-164.
ZHANG L P,WANG J R,TANG S Y,et al.Optimization of pretreatment method for determining the digestibility indicator-titanium dioxide[J].Chinese Agricultural Science Bulletin,2023,39(11):159-164.(in Chinese)
[11] LI K,BAI G S,TENG C R,et al.Prediction equations of the metabolizable energy in corn developed by chemical composition and enzymatic hydrolysate gross energy for roosters[J].Poult Sci,2024,103(2):103249.
[12] 李 凱,趙于慶,鐘儒清,等.自由采食法和排空強(qiáng)飼法評(píng)定雞玉米及高粱有效能值的比較研究[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(11):3907-3916.
LI K,ZHAO Y Q,ZHONG R Q,et al.Comparative study on evaluation of the available energy of corn and sorghum of chicken by free feeding method and tube feeding method[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):3907-3916.(in Chinese)
[13] LI Q F,ZANG J J,LIU D W,et al.Predicting corn digestible and metabolizable energy content from its chemical composition in growing pigs[J].J Anim Sci Biotechnol,2014,5(1):11.
[14] 趙養(yǎng)濤.不同玉米肉仔雞表觀代謝能的研究[D].楊凌:西北農(nóng)林科技大學(xué),2008.
ZHAO Y T.Study on apparent metabolizable energy of different corns in broiler chickens[D].Yangling:Northwest Aamp;F University,2008.(in Chinese)
[15] JEZIERNY D,MOSENTHIN R,SAUER N,et al.Methodological impact of starch determination on starch content and ileal digestibility of starch in grain legumes for growing pigs[J].J Anim Sci Biotechnol,2017,8(1):4.
[16] OBUCHOWSKI W,BANASZAK Z,MAKOWSKA A,et al.Factors affecting usefulness of triticale grain for bioethanol production[J].J Sci Food Agric,2010,90(14):2506-2511.
[17] MATEOS G G,CMARA L,F(xiàn)ONDEVILA G,et al.Critical review of the procedures used for estimation of the energy content of diets and ingredients in poultry[J].J Appl Poult Res,2019,28(3):506-525.
[18] PALMQUIST D L,JENKINS T C.Challenges with fats and fatty acid methods[J].J Anim Sci,2003,81(12):3250-3254.
[19] 呂國(guó)曉,劉 婕,李會(huì)榮,等.不同品種玉米全株常規(guī)營(yíng)養(yǎng)成分和氨基酸的比較研究[J].飼料研究,2022,45(4):92-98.
L G X,LIU J,LI H R,et al.Comparative study on conventional nutrients and amino acids in whole plant of different varieties of maize[J].Feed Research,2022,45(4):92-98.(in Chinese)
[20] HUART F,MALUMBA P,ODJO S,et al.In vitro and in vivo assessment of the effect of initial moisture content and drying temperature on the feeding value of maize grain[J].Br Poult Sci,2018,59(4):452-462.
[21] SULEIMAN R,BERN C J,BRUMM T J,et al.Impact of moisture content and maize weevils on maize quality during hermetic and non-hermetic storage[J].J Stored Prod Res,2018,78:1-10.
[22] DA SILVA TIMM N,CORADI P C,DOS SANTOS BILHALVA N,et al.Effects of corn drying and storage conditions on flour,starch,feed,and ethanol production:a review[J].J Food Sci Technol,2023,60(9):2337-2349.
[23] HUANG H B,DANAO M C G,RAUSCH K D,et al.Diffusion and production of carbon dioxide in bulk corn at various temperatures and moisture contents[J].J Stored Prod Res,2013,55:21-26.
[24] ELLIS R H,HONG T D.Temperature sensitivity of the low-moisture-content limit to negative seed longevity--moisture content relationships in hermetic storage[J].Ann Bot,2006,97(5):785-791.
[25] 姚連謀,張 怡,喬勇進(jìn),等.熱風(fēng)與冷凍干燥對(duì)五種鮮食甜玉米粒品質(zhì)的影響[J].食品工業(yè)科技,2021,42(20):61-68.
YAO L M,ZHANG Y,QIAO Y J,et al.Effects of hot air and freeze drying on the quality of five fresh sweet corns kernels[J].Science and Technology of Food Industry,2021,42(20):61-68.(in Chinese)
[26] 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室、中國(guó)飼料數(shù)據(jù)庫(kù)情報(bào)網(wǎng)中心,國(guó)家農(nóng)業(yè)科學(xué)數(shù)據(jù)中心(動(dòng)物科學(xué)).中國(guó)飼料成分及營(yíng)養(yǎng)價(jià)值表(2022年第33版)制訂說明[J].中國(guó)飼料,2022,23:109-119.
Institute of Animal Sciences of Chinese Academy of Agricultural Sciences,State Key Laboratory of Animal Nutrition,Chinese Feed Database,National Agriculture Science Data Center.Tables of feed composition and nutritive values in China(2022 Thirty-third edition)[J].China Feed,2022,23:109-119.(in Chinese)
[27] CVB Feed Table 2023.Chemical composition and nutritional values of feedstuffs[R].Wageningen:Wageningen Livestock Research,2023.
[28] National Research Council.Nutrient requirements of swine[M].11th ed.Washington,DC:The National Academy Press,2012.
[29] INRAE-CIRAD-AFZ Feed tables.Composition and nutritive values of feeds for cattle,sheep,goats,pigs,poultry,rabbits,horses and salmonids[DB/OL][2024-03-15].https://www.feedtables.com.
[30] 李 貝.不同來源玉米常規(guī)養(yǎng)分測(cè)定與白羽肉雞標(biāo)準(zhǔn)回腸氨基酸消化率評(píng)定[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2021.
LI B.Evaluation of conventional nutrients of corn from different sources and determination of standard ileal amino acid digestibility of broilers[D].Changsha:Hunan Agricultural University,2021.(in Chinese)
[31] 廖瑞波,蔡輝益,劉國(guó)華,等.玉米中氨基酸的肉雞標(biāo)準(zhǔn)回腸消化率測(cè)定[J].飼料工業(yè),2012,33(6):20-25.
LIAO R B,CAI H Y,LIU G H,et al.Determination of standardized ileal digestibility of corn amino acids in broilers[J].Feed Industry,2012,33(6):20-25.(in Chinese)
[32] WILLIAMS M P,O’NEILL H V M,YORK T,et al.Effects of nutrient variability in corn and xylanase inclusion on broiler performance,nutrient utilisation,and volatile fatty acid profiles[J].J Appl Anim Res,2018,6:e1.
[33] SHEIKHHASAN B S,MORAVEJ H,GHAZIANI F,et al.Relationship between chemical composition and standardized ileal digestible amino acid contents of corn grain in broiler chickens[J].Poult Sci,2020,99(9):4496-4504.
[34] HU R J,LI J,SOOMRO R N,et al.The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters[J].PLoS One,2017,12(11):e0188525.
[35] ADEDOKUN S A,ADEOLA O.Regression-derived ileal endogenous amino acid losses in broiler chickens and cannulated pigs fed corn fiber,wheat bran,and pectin[J].Animals,2020,10(11):2145.
[36] ADERIBIGBE A,COWIESON A J,SORBARA J O,et al.Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease[J].Poult Sci,2020,99(10):5007-5017.
[37] ADEDOKUN S A,ADEOLA O,PARSONS C M,et al.Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology[J].Poult Sci,2011,90(8):1737-1748.
[38] MURAI A,KITAHARA K,TERADA H,et al.Ingestion of paddy rice increases intestinal mucin secretion and goblet cell number and prevents dextran sodium sulfate-induced intestinal barrier defect in chickens[J].Poult Sci,2018,97(10):3577-3586.
[39] KONG C,ADEOLA O.Ileal endogenous amino acid flow response to nitrogen-free diets with differing ratios of corn starch to dextrose in broiler chickens[J].Poult Sci,2013,92(5):1276-1282.
[40] ZHOU H J,WU W,MAHMOOD T,et al.Comparison of endogenous amino acid losses in broilers when offered nitrogen-free diets with differing ratios of dextrose to corn starch[J].Sci Rep,2022,12(1):5689.
[41] BARUA M,ABDOLLAHI M R,ZAEFARIAN F,et al.Standardized ileal amino acid digestibility of protein sources for broiler chickens is influenced by the feed form[J].Poult Sci,2020,99(12):6925-6934.
[42] YUN X L,LIU X B,CHENG Z C,et al.Determination and prediction of standardized ileal amino acid digestibility of wheat in broilers[J].Poult Sci,2023,102(2):102383.
[43] ZUBER T,RODEHUTSCORD M.Variability in amino acid digestibility and metabolizable energy of corn studied in cecectomized laying hens[J].Poult Sci,2017,96(6):1696-1706.
[44] SADIGHI SHEIKHHASAN B,MORAVEJ H,GHAZIANI F,et al.Relationship between chemical composition and standardized ileal digestible amino acid contents of corn grain in broiler chickens[J].Poult Sci,2020,99(9):4496-4504.
(編輯 范子娟)