摘 要:
旨在研究在冷凍稀釋液中添加染料木素(genistein,GEN)對牛精液冷凍保存效果的影響,為優(yōu)化冷凍稀釋液,提高冷凍-解凍后牛精液品質(zhì)提供理論依據(jù)。本研究采集6頭年齡3~5歲、體重(586±20) kg、健康狀況良好的秦川種公牛的新鮮精液,將檢測合格的精液混合后用含不同濃度GEN的冷凍稀釋液稀釋后冷凍保存;根據(jù)冷凍稀釋液中GEN添加濃度的不同,本試驗分為5個組,0 μg·mL-1 GEN組(對照組)、30 μg·mL-1 GEN組、60 μg·mL-1 GEN組、90 μg·mL-1 GEN組、120 μg·mL-1 GEN組,每組3個重復;解凍后利用牛全自動精子質(zhì)量分析儀測定精子的運動性能,低滲腫脹檢測法和花生凝集素熒光標記法檢測精子頂體完整性和質(zhì)膜完整性,試劑盒檢測精子的線粒體膜電位(mitochondrial membrane potential,MMP)、抗氧化性能、丙二醛(malondialdehyde,MDA)含量和活性氧(reactive oxygen species,ROS)水平。結(jié)果,與對照組相比,30、60、90 μg·mL-1 GEN組的前向運動精子率顯著提升(Plt;0.05),30、60 μg·mL-1 GEN組的精子的頂體完整性顯著提高(Plt;0.05);60 μg·mL-1 GEN組的ROS水平顯著低于其余組(Plt;0.05);添加了GEN的各組與對照組相比,T-AOC和SOD含量均顯著增加(Plt;0.05),MDA含量在30、60、90 μg·mL-1 GEN組顯著減少(Plt;0.05),GSH-px含量在60、90 μg·mL-1 GEN組顯著增加(Plt;0.05),CAT含量在60、120 μg·mL-1 GEN組顯著增加(Plt;0.05);60 μg·mL-1 GEN組的MMP顯著高于其余組(Plt;0.05)。試驗結(jié)果表明,冷凍稀釋液中染料木素添加濃度為60 μg·mL-1時對牛精液具有最佳的冷凍保存效果。添加染料木素可以提高牛精液中精子的抗氧化性能,抑制精子的氧化應激,緩解精子頂體和線粒體等細胞結(jié)構(gòu)受到的凍融損傷,增強解凍后精子的運動性能,從而達到改善冷凍-解凍后牛精液品質(zhì)的效果。
關(guān)鍵詞:
染料木素;牛精液冷凍保存;線粒體膜電位;抗氧化性能
中圖分類號:
S823.3"""" 文獻標志碼:A """"文章編號: 0366-6964(2025)02-0700-11
收稿日期:2024-09-02
基金項目:國家重點研發(fā)計劃(2023YFD1300101);陜西省重點研發(fā)計劃(2022GD-TSLD-46-0104;2022ZDLNY01-01);陜西省畜禽育種共性技術(shù)研發(fā)平臺楊凌畜牧產(chǎn)業(yè)創(chuàng)新中心專項(YLXM-2024-001)
作者簡介:梁恩堂(1999-),男,廣東江門人,碩士生,主要從事牛精液冷凍保存研究,E-mail:942053665@qq.com
*通信作者:昝林森,主要從事肉牛奶牛遺傳改良與種質(zhì)創(chuàng)新方面的工作研究,E-mail:zanlinsen@163.com
Effect of Genistein on Semen Cryopreservation of Bull
LIANG" Entang1, LI" Huaxuan1, CHEN" Shuaicheng1, LI" Guo1, SUN" Gege1, ZAN" Linsen1,2*
(1.College of Animal Science and Technology, Northwest Aamp; F University, Yangling 712100," China;
2.National Beef Cattle Improvement Center, Yangling 712100," China)
Abstract:
The study aimed to investigate the effect of genistein (GEN) added to the semen extender on the cryopreservation of semen from cattle, and to provide a theoretical basis for optimizing the semen extender of cattle and improving the sperm quality of cattle after freezing and thawing. In this study, the fresh semen of 6 health Qinchuan bulls aged 3-5 years old, weighing (586±20) kg were collected, and the semen that passed the test was mixed, diluted with different concentrations of genistein for cryopreservation. According to the different concentrations of GEN in the semen extender, this study was divided into 5 groups, 0 μg·mL-1 GEN group (control group), 30 μg·mL-1 GEN group, 60 μg·mL-1 GEN group, 90 μg·mL-1 GEN group, and 120 μg·mL-1 GEN group, with 3 replicates in each group. After thawing, bovine automatic sperm quality analyzer was used to measure the motility performance of sperm, hypotonic swelling detection method and peanut lectin fluorescent labeling method were used to detect sperm acrosome integrity and plasma membrane integrity, and the kits were used to detect mitochondrial membrane potential (MMP), antioxidant performance, malondialdehyde (MDA) content and reactive oxygen species (ROS) level. Compared with the control group, the forward motility sperm rate of the 30, 60 and 90 μg·mL-1 GEN groups was significantly increased (Plt;0.05), and the acrosome integrity of sperm in the 30 and 60 μg·mL-1 GEN groups was significantly increased (Plt;0.05). The ROS level in the 60 μg·mL-1 GEN group was significantly lower than that in the other groups (Plt;0.05). Compared with the control group, the contents of T-AOC and SOD were significantly increased in the GEN group (Plt;0.05), the MDA content was significantly decreased in the 30, 60 and 90 μg·mL-1 GEN groups (Plt;0.05), and the GSH-px content was significantly increased in the 60, 90 μg·mL-1 GEN groups (Plt;0.05), the CAT content was significantly increased in the 60, 120 μg·mL-1 GEN groups (Plt;0.05). The MMP of the 60 μg·mL-1 GEN group was significantly higher than that of the other groups (Plt;0.05). The results showed that the supplementation of the semen extender with genistein could improve the antioxidant performance of sperm in bovine semen, inhibit the oxidative stress of sperm during cryopreservation, alleviate the freeze-thaw damage of sperm acrosomes and mitochondria, and improve the motility performance of sperm after thawing, so as to improve the quality of bull semen after freezing-thawing, and the concentration of genistein was 60 μg·mL-1.
Key words:
genistein; cryopreservation of bovine semen; mitochondrial membrane potential; antioxidant performance
*Corresponding author: ZAN Linsen, E-mail:zanlinsen@163.com
精液的冷凍保存已成為畜牧業(yè)中推廣優(yōu)質(zhì)種質(zhì)資源和保存遺傳多樣性的關(guān)鍵技術(shù)[1],該技術(shù)不僅能夠?qū)崿F(xiàn)對存活精子的遠距離運輸,顯著減少繁殖動物的地理障礙[2],還為加速動物遺傳改良提供了有效途徑[3]。
Li等[4]研究表明,精液的品質(zhì)與受精能力之間呈正相關(guān),使用高品質(zhì)的精液進行授精時,囊胚發(fā)育的百分比更高。然而在精液凍融過程中的多種因素,包括精液處理、冷休克、滲透應激,以及在凍融過程中細胞內(nèi)外冰晶的形成,都通過改變精子體積和鞭毛結(jié)構(gòu),破壞線粒體、質(zhì)膜和頂體等細胞結(jié)構(gòu),誘導精子的氧化應激,降低精子的運動性能和受精能力,從而導致解凍后精液品質(zhì)的下降[5]。其中精子的氧化應激(oxidative stress,OS)是凍融后精液品質(zhì)下降的主要原因,通常會使精子活力和受精能力降低約40%~50%[6-8]。在精子中OS的發(fā)生源于ROS的過度累積[9]。ROS包括超氧自由基(·O-2)和羥基自由基(·OH)等自由基以及過氧化氫(H2O2)等非自由基[10],主要來源為3條途徑:第一,通過細胞膜上的NADPH氧化酶和線粒體和內(nèi)質(zhì)網(wǎng)中依賴細胞色素p450的加氧酶等酶產(chǎn)生;第二,通過線粒體電子傳遞鏈中的電子直接轉(zhuǎn)移到氧氣分子中產(chǎn)生[11];第三,精子L-氨基酸氧化酶催化稀釋液中芳香族氨基酸的氧化脫氨作用[12]。精子特異性ROS主要來源于線粒體電子傳遞系統(tǒng),并在供氧異常和低溫誘導下進一步累積[13,14]。在冷凍保存過程中,精子的抗氧化能力不足以清除低溫低氧條件下過量產(chǎn)生的ROS,導致細胞氧化應激[15]。過度累積的ROS會導致精子尾部軸索磷酸化不足、中部形態(tài)缺陷、ATP耗竭,從而影響精子運動性能和精子活力[16]。此外,過量的ROS還會誘導過早頂體反應、脂質(zhì)過氧化和抑制線粒體膜電位導致受精能力進一步降低[17-19]。
在精液冷凍稀釋液中添加抗氧化劑已被證明可以有效緩解氧化應激所帶來的不利影響,從而在冷凍保存中保護精子[20]。抗氧化劑是包括維生素、礦物質(zhì)和酶在內(nèi)的一系列化合物,通過清除活性氧從而緩解精子的氧化應激[21-23]。Hezavehei等[24]研究表明,在冷凍稀釋液中添加各種抗氧化劑(酶促、非酶促、草藥、合成、膽固醇負載環(huán)糊精等)可提高凍融后精子活率、活力、DNA完整性、頂體完整性、質(zhì)膜完整性,并減少脂質(zhì)過氧化和ROS的產(chǎn)生。染料木素(4,5,7’-三羥基異黃酮)是異黃酮類化合物中生物活性最強的一種,廣泛存在于大豆、苜蓿、三葉草等豆科植物的莖葉和籽實中[25],占大豆異黃酮總含量的60%[26],是由2個芳香苯環(huán)和1個吡喃環(huán)組成的次生代謝物[27],具有強抗氧化性能。在神經(jīng)元細胞中,染料木素通過激活PI3K/Akt/Nrf2/Keap1通路降低丙二醛和乳酸脫氫酶的水平,緩解氧化應激[28]。Thomson等[29,30]報道,在冷凍稀釋液中添加50和100 μmol·L-1的染料木素對精子DNA有顯著的保護作用,同時顯著提高了精子活率和活力。另外,在27 ℃條件下用染料木素處理公牛精液1 h可減少精子DNA斷裂[31]。上述研究表明,染料木素具有較強的抗氧化作用,可以提高凍融后精液的品質(zhì),然而其對冷凍保存后牛精液品質(zhì)的具體作用以及最適濃度尚未明確。
本研究從冷凍-解凍后的精子運動性能、質(zhì)膜完整性、頂體完整性、線粒體膜電位、抗氧化性能、MDA含量和ROS水平等方面,比較了不同濃度染料木素對牛精液冷凍保存效果的影響,為優(yōu)化冷凍稀釋液,提高冷凍-解凍后牛精液的品質(zhì)提供理論依據(jù),有助于促進牛的改良與保種工作。
1 材料與方法
1.1 試驗儀器與試劑
牛全自動精子質(zhì)量分析儀(SQA-Vb)、精液采樣管、精子冷凍細管罐裝封口一體機購于法國卡蘇;移液槍、電子天平、水浴鍋均購于德國Eppendorf公司;Evos-fl-auto2顯微成像系統(tǒng)購自賽默飛世爾科技(中國)有限公司;檸檬酸鈉、Tris、果糖、甘油、硫酸鏈霉素、青霉素鈉、染料木素均購于北京索萊寶科技有限公司;花生凝集素(FITC-PNA)、DAPI熒光染料購于Sigma公司;增強型線粒體膜電位檢測試劑盒(JC-1)購于碧云天生物技術(shù)有限公司;其余檢測試劑盒皆購于北京索萊寶科技有限公司。
1.2 精液稀釋液的配制
使用電子天平準確稱取2.42 g Tris、1.48 g檸檬酸鈉、1 g果糖、0.06 g青霉素鈉、0.1 g硫酸鏈霉素,充分溶解于滅菌的超純水中,加入6 mL甘油、20 mL卵黃后定容至100 mL,分別加入0、30、60、90、120 μg·mL-1的染料木素待用。
1.3 精液的采集
試驗采精用種公牛由西北農(nóng)林科技大學國家肉牛改良中心良種繁育場提供,實驗動物管理和樣品采集流程按照西北農(nóng)林科技大學實驗動物管理委員會的《動物福利和倫理規(guī)則》進行,并已獲得批準(方案編號:NWAFUCAST2018-168),選擇6頭年齡在3~5歲、健康、體況良好的秦川種公牛,利用假陰道法,在每周二、五早上9:00進行精液采集,顏色為乳白色或乳黃色的精液采用儀器分析后,選擇活力≥65%,密度≥6×108個·mL-1,畸形率≤15%的精液作為質(zhì)量合格的精液進行隨后的試驗[32]。
1.4 精液的冷凍-解凍
參考王萌等[32]的方法,稍做改動,采用一步法,將37 ℃預熱好的精液稀釋液加入到檢測合格的新鮮精液中,使得精子終濃度為8×107個·mL-1,將稀釋好的精液利用冷凍細管罐裝封口一體機進行分裝并在4 ℃平衡5 h。隨后將平衡好的精液細管置于距液氮面上方4 cm處,熏蒸10 min后,迅速放入液氮中保存[33]。根據(jù)冷凍稀釋液中GEN添加濃度的不同分5個組:0 μg·mL-1 GEN組(對照組)、30 μg·mL-1 GEN組、60 μg·mL-1 GEN組、90 μg·mL-1 GEN組、120 μg·mL-1 GEN組,每組3個重復。7 d后用于檢測,將凍精細管從液氮中取出并迅速放入水浴鍋中37 ℃水浴30 s解凍進行后續(xù)的試驗。
1.5 精液品質(zhì)的檢測
1.5.1 精子運動性能檢測
在37 ℃水浴鍋中提前預熱500 μL Qwik CheckTM稀釋液(適用于動物的冷凍精液),向其中加入200 μL解凍后的精液并混勻,隨后用精子采樣管吸取混合液后進行檢測,檢測指標如下:活動精子率(%)、前向運動精子率(%)、前向運動精子平均速率(μm·s-1)[34]。
1.5.2 精子質(zhì)膜完整性檢測
采用低滲腫脹法(HOST)[35]檢測精子質(zhì)膜完整性:取解凍后的精液,利用PBS稀釋精子密度至2×107個·mL-1,離心棄上清后再加入等體積的低滲溶液,在37 ℃水浴鍋中孵育30 min后取8 μL置于干凈的載玻片上,在顯微鏡下觀察精子的狀況,在低滲環(huán)境下質(zhì)膜完整的精子尾部會發(fā)生卷曲,采用五點取樣法觀察載玻片上的精子,記錄視野中精子的總數(shù)和卷尾精子的總數(shù),每個樣本隨機選取視野記錄3次,每次統(tǒng)計200個精子以上。精子質(zhì)膜完整性(%)=卷尾精子的總數(shù)/記錄精子的總數(shù)×100。
1.5.3 精子頂體完整性檢測
用花生凝集素熒光標記(FITC-PNA)染色法[32]檢測精子頂體完整性:轉(zhuǎn)移30 μL解凍后的精液到干凈的載玻片上并涂抹均勻,自然風干后用4%組織細胞固定液固定20 min,用FITC-PNA染色30 min,用PBS洗掉多余染料,DAPI染料避光孵育30 min后在熒光顯微鏡下拍照,所有精子都能發(fā)出藍色熒光,只有頭部呈現(xiàn)綠色熒光才為頂體完整,用五點取樣法觀察載玻片上的精子,記錄視野中頭部呈現(xiàn)綠色熒光精子總數(shù)和發(fā)出藍色熒光精子總數(shù),每個樣本分別記錄3次,每次統(tǒng)計200個精子以上。精子頂體完整性(%)=頭部呈現(xiàn)綠色熒光精子總數(shù)/發(fā)出藍色熒光精子總數(shù)×100。
1.6 精子MMP、抗氧化性能、MDA含量和ROS水平檢測
MMP的檢測按照增強型線粒體膜電位檢測試劑盒(JC-1)說明書進行;總抗氧化能力(T-AOC)和過氧化氫酶(CAT)、超氧化物歧化酶(SOD)及谷胱甘肽過氧化物酶(GSH-px)3種酶的含量表示抗氧化性能,這些指標與MDA、ROS的檢測按照相應的檢測試劑盒說明書進行。
1.7 統(tǒng)計與分析
使用Excel 2016初步整理所有試驗數(shù)據(jù),SAS 9.4軟件中的GLM過程進行單因素方差分析,采用Tukey法進行組間多重比較,結(jié)果以“平均值±標準誤”表示,Plt;0.05為差異顯著。趨勢性方差分析以及繪圖利用R 4.2.2進行。
2 結(jié) 果
2.1 染料木素對冷凍-解凍后牛精子運動性能的影響
結(jié)果發(fā)現(xiàn),在冷凍稀釋液中添加不同濃度的染料木素對冷凍-解凍后活動精子率、前向運動精子率和精子前向運動平均速率都有所提升(表1)。與對照組(0 μg·mL-1)相比,30、60、90 μg·mL-1 GEN組的前向運動精子率顯著提高(Plt;0.05)。并且隨著冷凍稀釋液中染料木素濃度的增加,活動精子率、前向運動精子率和精子前向運動平均速率的變化都顯著符合二次曲線的變化趨勢(Plt;0.05)。
2.2 染料木素對冷凍-解凍后牛精子質(zhì)膜完整性的影響
結(jié)果發(fā)現(xiàn),在冷凍稀釋液中添加不同濃度的染料木素提高了冷凍-解凍后牛精子質(zhì)膜完整性(表2),并且隨著冷凍稀釋液中染料木素濃度的增加,精子質(zhì)膜完整性的變化顯著符合二次曲線的變化趨勢(Plt;0.05)。精子質(zhì)膜檢測如圖1所示。
2.3 染料木素對冷凍-解凍后牛精子頂體完整性的影響
結(jié)果發(fā)現(xiàn),在冷凍稀釋液中添加不同濃度的染料木素能提高冷凍-解凍后牛精子頂體完整性(表3)。30、60 μg·mL-1 GEN組的精子頂體完整性顯著高于對照組和120 μg·mL-1 GEN組(Plt;0.05)。并且隨著冷凍稀釋液中染料木素濃度的增加,精子頂體完整性的變化顯著符合二次曲線的變化趨勢(Plt;0.05)。精子頂體染色如圖2所示。
2.4 染料木素對冷凍-解凍后牛精子ROS水平的影響
結(jié)果發(fā)現(xiàn),與對照組相比,在冷凍稀釋液中添加不同濃度的染料木素顯著降低了冷凍-解凍后牛精子ROS水平(Plt;0.05)(圖3B)。并且60 μg·mL-1 GEN組的精子ROS水平顯著低于其余組(Plt;0.05)。精子ROS染色如圖3A所示。
2.5 染料木素對冷凍-解凍后牛精子丙二醛含量和抗氧化性能的影響
結(jié)果發(fā)現(xiàn),添加30、60、90 μg·mL-1染料木素后精子的MDA含量顯著下降(Plt;0.05,圖4A)。在冷凍稀釋液中添加不同濃度的染料木素顯著提高了冷凍-解凍后牛精子的T-AOC和SOD含量(Plt;0.05)。添加60、90 μg·mL-1染料木素后顯著提高了GSH-px含量(Plt;0.05)。60、120 μg·mL-1 GEN組CAT的含量顯著高于其它組(Plt;0.05,圖4B、4C、4D、4E)。
2.6 染料木素對冷凍-解凍后牛精子線粒體膜電位的影響
結(jié)果發(fā)現(xiàn),冷凍稀釋液中添加不同濃度的染料木素顯著提高了冷凍-解凍后牛精子線粒體膜電位水平(Plt;0.05,圖5B)。并且60 μg·mL-1 GEN組線粒體膜電位顯著高于其余組(Plt;0.05),精子線粒體染色如圖5A所示。
3 討 論
冷凍保存可通過延長精液的保存時間,使精液的使用不受地區(qū)與時間的限制[36]。在正常的生理狀態(tài)下,低或中等水平的ROS發(fā)揮著重要的生理功能,如精子獲能、頂體反應和精子-卵子融合都需要少量的ROS參與[37],此外,ROS對維持精子抗氧化水平和精子細胞信號的生理調(diào)節(jié)也有著重要的作用[38]。然而由于精子體積過小且缺少大量細胞器,細胞修復機制和抗氧化系統(tǒng)不完善[9,39],所具有的抗氧化劑不足以抵抗高濃度ROS對精子的損傷[40]。此外,精子質(zhì)膜上富含多不飽和脂肪酸(PUFAs),可氧化底物含量高,再加上精子對ROS具有強敏感性[41-43],因此精子極容易受到過量ROS的傷害。當精液暴露在非生理環(huán)境中進行冷凍保存時,低溫低氧環(huán)境破壞了精子的氧化還原平衡,從而導致ROS的過量產(chǎn)生[44]。此外,在冷凍保存過程中,衰弱和死亡精子膜完整性的喪失會進一步引發(fā)ROS的產(chǎn)生[45]。過量產(chǎn)生的ROS會導致ROS產(chǎn)生和清除之間的不平衡,從而引起ROS的累積[46],進一步導致精子膜結(jié)構(gòu)和功能退化,膜通透性增加,DNA分子結(jié)構(gòu)損傷,使精子生存能力和受精能力顯著降低[47-49]。因為抗氧化劑可以清除和中和ROS,緩解氧化應激,所以研究人員選擇冷凍稀釋液中添加抗氧化劑來抵抗精子在冷凍-解凍過程中受到的氧化應激損傷[46,50]。Pang等[51]通過在冷凍稀釋液中添加1 mmol·L-1褪黑素減少了ROS的產(chǎn)生,提高了凍融后精子線粒體活性和頂體完整性。
Tvrd等[52]在精子冷凍稀釋液中添加25~50 μmol·L-1白藜蘆醇,在6 h孵育中阻止了SOD和CAT活性的降低,并保護精子免受OS誘導下的脂質(zhì)過氧化。Hu等[53]用2 mmol·L-1谷胱甘肽預處理精子3 h,通過抑制氧化應激來維持精子的生存能力和受精能力。
本研究在牛精液冷凍稀釋液中添加0、30、60、90、120 μg·mL-1濃度的染料木素,探究其對冷凍-解凍后牛精子運動性能、質(zhì)膜完整性、頂體完整性、線粒體膜電位和抗氧化性能等的影響。結(jié)果發(fā)現(xiàn)染料木素顯著提高了凍融后牛精液的前向運動精子率、精子頂體完整性、線粒體膜電位和抗氧化性能,同時顯著降低了ROS水平和MDA含量,且最適宜的添加濃度為60 μg·mL-1。這與Thomson等[29]在冷凍稀釋液中添加50和100 μmol·L-1的染料木素顯著提高精子活力的結(jié)果一致。Surico等[54]利用染料木素(100 nmol·L-1和1 μmol·L-1)處理過氧化條件下Huh 7.5 (男性永生化人肝癌細胞系),增加了谷胱甘肽過氧化物酶(GSH-px)的含量,抑制了細胞線粒體膜電位下降和ROS的產(chǎn)生,提高了細胞活力。Luo等[55]利用H2O2誘導顆粒細胞發(fā)生氧化應激后,用染料木素處理細胞,結(jié)果發(fā)現(xiàn)細胞內(nèi)ROS水平和MDA含量顯著下降,并恢復了GSH-px的含量。然而,當染料木素添加濃度達到60 μg·mL-1后,隨著添加濃度升高,精子的運動性能、質(zhì)膜和頂體完整性、抗氧化性能以及MMP都呈現(xiàn)出下降的趨勢,而ROS水平和MDA的含量也隨之上升。其原因可能是外源添加較高水平的抗氧化劑對精子有毒害作用[9,56]。
4 結(jié) 論
染料木素對牛精液的冷凍保存具有積極作用。在冷凍稀釋液中添加適宜濃度的染料木素可以顯著增強冷凍-解凍后牛精子的抗氧化性能、線粒體膜電位,降低MDA和ROS水平,顯著提高前向運動精子率和頂體完整性,從而改善凍融后牛精液的品質(zhì)。表明在一定濃度范圍內(nèi),染料木素可以改善牛精液冷凍保存的效果,且在添加濃度為60 μg·mL-1時達到最佳。
參考文獻(References):
[1] KUMAR D,PUNETHA M,DUA S,et al.Advancement in reproductive biotechnologies in livestock[M]//SOBTI R C,MUKESH M,SOBTI A.Genomic,Proteomics,and Biotechnology.Boca Raton:CRC Press,2022:215-230.
[2] LUCY M C,POHLER K G.North American perspectives for cattle production and reproduction for the next 20 years[J]. Theriogenology,2025,232:109-116.
[3] UPADHYAY V R,RAMESH V,DEWRY R K,et al.Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function[J].Theriogenology,2022,187:82-94.
[4] LI Y,KALO D,ZERON Y,et al.Progressive motility- a potential predictive parameter for semen fertilization capacity in bovines[J].Zygote,2016,24(1):70-82.
[5] SIEME H,OLDENHOF H,WOLKERS W F.Mode of action of cryoprotectants for sperm preservation[J].Anim Reprod Sci,2016,169:2-5.
[6] VIANA SILVA J R,AGUIAR BARROSO P A,NASCIMENTO D R,et al.Benefits and challenges of nanomaterials in assisted reproductive technologies[J].Mol Reprod Dev,2021,88(11):707-717.
[7] FALCHI L,KHALIL W A,HASSAN M,et al.Perspectives of nanotechnology in male fertility and sperm function[J].Int J Vet Sci Med,2018,6(2):265-269.
[8] HASHEM N M,GONZALEZ-BULNES A.State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals[J].Animals (Basel),2020,10(5):840.
[9] KOWALCZYK A.The role of the natural antioxidant mechanism in sperm cells[J].Reprod Sci,2022,29(5):1387-1394.
[10] ZANDIYEH S,KALANTARI H,F(xiàn)AKHRI A,et al.A review of recent developments in the application of nanostructures for sperm cryopreservation[J].Cryobiology,2024,115:104890.
[11] 周 豪,陳 濤,吳愛憫.氧化應激對線粒體功能及椎間盤細胞的影響[J].四川大學學報:醫(yī)學版,2024,55(2):249-255.
ZHOU H,CHEN T,WU A M.Effects of oxidative stress on mitochondrial functions and intervertebral disc cells[J].Journal of Sichuan University:Medical Sciences,2024,55(2):249-255.(in Chinese)
[12] GIBB Z,GRIFFIN R A,AITKEN R J,et al.Functions and effects of reactive oxygen species in male fertility[J].Anim Reprod Sci,2020,220:106456.
[13] KOPPERS A J,DE IULIIS G N,F(xiàn)INNIE J M,et al.Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa[J].J Clin Endocrinol Metab,2008,93(8):3199-3207.
[14] GUALTIERI R,KALTHUR G,BARBATO V,et al.Sperm oxidative stress during in vitro manipulation and its effects on sperm function and embryo development[J].Antioxidants (Basel),2021,10(7):1025.
[15] 劉鶴潔,吉木斯,謝望為,等.活性氧對精子氧化損傷及獲能影響的研究進展[J].黑龍江畜牧獸醫(yī),2023(24):31-34,56.
LIU H J,JI M S,XIE W W,et al.Research progress on the effects of reactive oxygen species on oxidative damage and capacitation of sperm[J].Heilongjiang Animal Science and Veterinary Medicine,2023(24):31-34,56.(in Chinese)
[16] SENGUPTA P,PINGGERA G M,CALOGERO A E,et al.Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient:lessons for busy clinicians[J].Reprod Med Biol,2024,23(1):e12598.
[17] SAPANIDOU V,TAITZOGLOU I,TSAKMAKIDIS I,et al.Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization[J].Theriogenology,2015,84(8):1273-1282.
[18] GHALENO L R,VALOJERDI M R,JANZAMIN E,et al.Evaluation of conventional semen parameters,intracellular reactive oxygen species,DNA fragmentation and dysfunction of mitochondrial membrane potential after semen preparation techniques:a flow cytometric study[J].Arch Gynecol Obstet,2014,289(1):173-180.
[19] KOWALCZYK A.The role of the natural antioxidant mechanism in sperm cells[J].Reprod Sci,2022,29(5):1387-1394.
[20] QAMAR A Y,NAVEED M I,RAZA S,et al.Role of antioxidants in fertility preservation of sperm-A narrative review[J].Anim Biosci,2023,36(3):385-403.
[21] BALDI E,TAMBURRINO L,MURATORI M,et al.Adverse effects of in vitro manipulation of spermatozoa[J].Anim Reprod Sci,2020,220:106314.
[22] PINTUS E,ROS-SANTAELLA J L.Impact of oxidative stress on male reproduction in domestic and wild animals[J]. Antioxidants (Basel),2021,10(7):1154.
[23] TIWARI S,DEWRY R K,SRIVASTAVA R,et al.Targeted antioxidant delivery modulates mitochondrial functions,ameliorates oxidative stress and preserve sperm quality during cryopreservation[J].Theriogenology,2022,179:22-31.
[24] HEZAVEHEI M,SHARAFI M,KOUCHESFAHANI H M,et al.Sperm cryopreservation:a review on current molecular cryobiology and advanced approaches[J].Reprod Biomed Online,2018,37(3):327-339.
[25] 甘麥鄰,楊 瓊,李 強,等.染料木素的作用機制及在畜牧生產(chǎn)中的應用研究[J].現(xiàn)代畜牧獸醫(yī),2018(1):23-30.
GAN M L,YANG Q,LI Q,et al.The mechanism of genistein and its application in livestock production[J].Modern Journal of Animal Husbandry and Veterinary Medicine,2018(1):23-30.(in Chinese)
[26] TULI H S,TUORKEY M J,THAKRAL F,et al.Molecular mechanisms of action of genistein in cancer:recent advances[J].Front Pharmacol,2019,10:1336.
[27] GUELFI G,PASQUARIELLO R,ANIPCHENKO P,et al.The role of genistein in mammalian reproduction[J].Molecules, 2023,28(21):7436.
[28] GUO J B,YANG G Q,HE Y Q,et al.Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism[J].Cell Mol Neurobiol,2021,41(2):377-393.
[29] THOMSON L K,F(xiàn)LEMING S D,AITKEN R J,et al.Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis[J].Hum Reprod,2009,24(9):2061-2070.
[30] SIERENS J,HARTLEY J A,CAMPBELL M J,et al.In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm[J].Teratog Carcinog Mutagen,2002,22(3):227-234.
[31] SILVESTRE M A,VICENTE-FIEL S,RAGA E,et al.Effect of genistein added to bull semen after thawing on pronuclear and sperm quality[J].Anim Reprod Sci,2015,163:120-127.
[32] 王 萌,楊超群,吳斯林,等.番茄紅素對秦川牛精液冷凍保存及鮮精品質(zhì)影響[J].畜牧獸醫(yī)學報,2022,53(12):4507-4517.
WANG M,YANG C Q,WU S L,et al.Impact of lycopene on semen cryopreservation and fresh semen quality of Qinchuan bull[J].Acta Veterinaria et Zootechnica Sinica,2022,53(12):4507-4517.(in Chinese)
[33] HATAMOTO-ZERVOUDAKIS L K,DUARTE JNIOR M F,ZERVOUDAKIS J T,et al.Free gossypol supplementation frequency and reproductive toxicity in young bulls[J].Theriogenology,2018,110:153-157.
[34] ORGAL S,ZERON Y,ELIOR N,et al.Season-induced changes in bovine sperm motility following a freeze-thaw procedure[J].J Reprod Dev,2012,58(2):212-218.
[35] KK N,AKSOY M,UAN U,et al.Comparison of two different cryopreservation protocols for freezing goat semen[J].Cryobiology,2014,68(3):327-331.
[36] GELBAYA T A,KYRGIOU M,TSOUMPOU I,et al.The use of estradiol for luteal phase support in in vitro fertilization/ intracytoplasmic sperm injection cycles:a systematic review and meta-analysis[J].Fertil Steril,2008,90(6):2116-2125.
[37] BARDAWEEL S K,GUL M,ALZWEIRI M,et al.Reactive oxygen species:the dual role in physiological and pathological conditions of the human body[J].Eurasian J Med,2018,50(3):193-201.
[38] ZHANG J X,WANG X L,VIKASH V,et al.ROS and ROS-mediated cellular signaling[J].Oxid Med Cell Longev,2016,2016: 4350965.
[39] PINI T,LEAHY T,DE GRAAF S P.Sublethal sperm freezing damage:manifestations and solutions[J].Theriogenology,2018, 118:172-181.
[40] KUJOANA T C,SEHLABELA L D,MABELEBELE M,et al.The potential significance of antioxidants in livestock reproduction:sperm viability and cryopreservation[J].Anim Reprod Sci,2024,267:107512.
[41] PROCHOWSKA S,BONARSKA-KUJAWA D,BOBAK ,et al.Author Correction:fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa[J].Sci Rep,2024,14(1):11109.
[42] COLLODEL G,MORETTI E,NOTO D,et al.Oxidation of polyunsaturated fatty acids as a promising area of research in infertility[J].Antioxidants (Basel),2022,11(5):1002.
[43] PROCHOWSKA S,BONARSKA-KUJAWA D,BOBAK ,et al.Fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa[J].Sci Rep,2024,14(1):10214.
[44] KHOSRAVIZADEH Z,KHODAMORADI K,RASHIDI Z,et al.Sperm cryopreservation and DNA methylation:possible implications for ART success and the health of offspring[J].J Assist Reprod Genet,2022,39(8):1815-1824.
[45] DREVET J R,AITKEN R J.Oxidation of sperm nucleus in mammals:a physiological necessity to some extent with adverse impacts on oocyte and offspring[J].Antioxidants (Basel),2020,9(2):95.
[46] ASADI N,BAHMANI M,KHERADMAND A,et al.The impact of oxidative stress on testicular function and the role of antioxidants in improving it:a review[J].J Clin Diagn Res,2017,11(5):IE01-IE05.
[47] DIAS T R,MARTIN-HIDALGO D,SILVA B M,et al.Endogenous and exogenous antioxidants as a tool to ameliorate male infertility induced by reactive oxygen species[J].Antioxid Redox Signal,2020,33(11):767-785.
[48] NOWICKA-BAUER K,NIXON B.Molecular changes induced by oxidative stress that impair human sperm motility[J]. Antioxidants (Basel),2020,9(2):134.
[49] MATEO-OTERO Y,LLAVANERA M,TORRES-GARRIDO M,et al.Embryo development is impaired by sperm mitochondrial-derived ROS[J].Biol Res,2024,57(1):5.
[50] 姜麗君,宗云鶴,李云雷,等.抗氧化劑在家禽精液儲存中的應用研究進展[J].畜牧獸醫(yī)學報,2024,55(3):913-923.
JIANG L J,ZONG Y H,LI Y L,et al.Research progress of antioxidant application in poultry semen storage[J].Acta Veterinaria et Zootechnica Sinica,2024,55(3):913-923.(in Chinese)
[51] PANG Y W,SUN Y Q,JIANG X L,et al.Protective effects of melatonin on bovine sperm characteristics and subsequent in vitro embryo development[J].Mol Reprod Dev,2016,83(11):993-1002.
[52] TVRD E,KOVACˇGIK A,TUIMOV E,et al.Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa[J].J Environ Sci Health Part A,2015,50(14):1440-1451.
[53] HU T X,ZHU H B,SUN W J,et al.Sperm pretreatment with glutathione improves IVF embryos development through increasing the viability and antioxidative capacity of sex-sorted and unsorted bull semen[J].J Integr Agric,2016,15(10):2326-2335.
[54] SURICO D,ERCOLI A,F(xiàn)ARRUGGIO S,et al.Modulation of oxidative stress by 17 β-estradiol and genistein in human hepatic cell lines in vitro[J].Cell Physiol Biochem,2017,42(3):1051-1062.
[55] LUO M,YANG Z Q,HUANG J C,et al.Genistein protects ovarian granulosa cells from oxidative stress via cAMP-PKA signaling[J].Cell Biol Int,2020,44(2):433-445.
[56] RIBAS-MAYNOU J,MATEO-OTERO Y,DELGADO-BERMDEZ A,et al.Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states:a systematic review[J].Theriogenology,2021,173:279-294.
(編輯 郭云雁)