摘 要:
旨在基于16S rRNA測序技術(shù),解析綿羊子宮容受前期與容受期陰道微生物群落的差異變化,篩選綿羊子宮內(nèi)膜容受期的標志菌群。本研究選取12只兩歲齡、體重相近且健康的經(jīng)產(chǎn)雌性湖羊為研究對象。試驗分為兩組,每組6只湖羊,利用同期發(fā)情技術(shù),在綿羊配種后第5天(容受前期,pre-receptive endometrium組,PE組)與第15天(容受期,peceptive endometrium組,RE組)采集陰道分泌物及子宮內(nèi)膜組織。利用RT-qPCR檢測子宮內(nèi)膜組織相關(guān)容受基因表達情況,并選擇16S rRNA V3V4可變區(qū)對陰道分泌物進行測序分析,比較兩組之間微生物組成差異。RT-qPCR結(jié)果顯示,相比于配種后第5天,配種后第15天的子宮內(nèi)膜組織中HOXA10、LIF和VEGFA容受基因顯著升高(Plt;0.01或P<0.05),表明配種后第15天的子宮內(nèi)膜組織進入容受狀態(tài)。Alpha多樣性比較分析,容受前期組與容受期組的陰道微生物無顯著差異(Pgt;0.05)。Beta多樣性比較分析,容受前期組與容受期組存在組間差異。物種相對豐度結(jié)果顯示,在門分類水平上,Proteobacteria、Firmicutes等為優(yōu)勢菌門,占據(jù)70%以上。與容受前期組相比,容受期組Proteobacteria和Fusobacteriota菌門豐度下降;Firmicutes菌門豐度上升;在屬分類水平上,unidentified_Enterobacteriaceae、PorpHyromonas等為優(yōu)勢菌屬。與容受前期組相比,容受期組unidentified_Enterobacteriaceae、Streptobacillus等菌屬豐度下降;PorpHyromonas、Ureaplasma等菌屬豐度增加。差異菌群比較結(jié)果顯示,在門水平上,F(xiàn)usobacteriota、Acidobacteriota等豐度存在顯著差異(P<0.05)。在屬水平上,Occallatibacter、EdapHobacter、Roseiarcus豐度存在顯著差異(P<0.05)。功能預測分析表明,相比于容受前期組,容受期組孕酮介導的卵母細胞成熟、雌激素信號通路、抗原的處理和呈遞等通路顯著升高(P<0.05)。綿羊子宮內(nèi)膜容受前期與容受期組微生物Alpha多樣性并無顯著差異,Beta多樣性表明兩組間存在著組間差異。同時在多個分類水平上均有顯著差異菌群,F(xiàn)acklamia、Turicibacter菌屬、Firmicutes菌門可作為綿羊子宮內(nèi)膜容受期的標志菌群。
關(guān)鍵詞:
綿羊;容受前期;容受期;16S rRNA
中圖分類號:
S826.3"""" 文獻標志碼:A """"文章編號: 0366-6964(2025)02-0689-11
收稿日期:2024-08-09
基金項目:陜西省畜禽育種“兩鏈’融合重點專項(2022GD-TSLD-46-0202);高產(chǎn)優(yōu)質(zhì)奶綿羊快速擴繁與選育提高(SMXMKJ001);陜西省中央引導地方科技發(fā)展資金項目(2024ZY-CGZY-20);陜西省自然科學基礎(chǔ)研究計劃資助項目(2023-JC-QN-0181)
作者簡介:楚翼?。?999-),男,吉林通化人,碩士,主要從事動物生殖生理調(diào)控研究,E-mail:yijianchu@outlook.com
*通信作者:宋宇軒,主要從事動物生物技術(shù)研究,E-mail: syx98728@163.com;黃艷平,主要從事肉羊養(yǎng)殖技術(shù)研究,E-mail:huangyp121@126.com
Comparative Study on Vaginal Microorganisms in Pre-endometrial Receptivity and Endometrial Receptivity of Sheep
CHU" Yijian1, CUI" Jiuzeng1, LI" Zengkai2, ZHANG" Lei1, CHU" Tingting1, HUANG" Yanping2*, SONG" Yuxuan1*
(1.College of Animal Science and Technology, Northwest A amp; F University, Yangling 712100,China;
2.Shenmu Animal Husbandry Development Center (Shenmu Center for Disease Control and Prevention), Shenmu 719300,China)
Abstract:
Based on 16S rRNA sequencing technology, this study aimed to analyze the differential changes of vaginal microbial communities in sheep during pre- and endometrial receptivity, and screen the marker flora of endometrial receptivity in sheep. In this experiment, 12 healthy multiparous female Hu sheep aged two years old with similar body weight were selected as the research objects. The experiment was divided into 2 groups, 6 sheep in each group. The vaginal secretions and endometrial tissues were collected on the 5th day (pre-receptive endometrium group, PE group) and the 15th day (peceptive endometrium group, RE group) after mating. RT-qPCR was used to detect the expression of endometrial tissue-related receptivity genes, and the 16S rRNA V3V4 variable region was selected for sequencing analysis of vaginal secretions to compare the differences in microbial composition between the 2 groups. RT-qPCR results showed that the expression of HOXA10, LIF and VEGFA genes in the endometrium on the 15 th day after mating was significantly higher than that on the 5 th day after mating (Plt;0.01 or Plt;0.05), indicating that the endometrium on the 15 th day after mating entered the receptive state. Alpha diversity analysis showed that there was no significant difference in vaginal microorganisms between the pre-receptive group and the receptive group (Pgt;0.05). Comparative analysis of Beta diversity showed that there were differences between the pre-tolerance group and the tolerance group. The results of relative abundance of species showed that Proteobacteria and Firmicutes were the dominant phyla at the level of phylum classification, accounting for more than 70%.Compared with the pre-tolerance group, the abundance of Proteobacteria and Fusobacteriota in the tolerance group decreased, the abundance of Firmicutes increased; at the genus level, unidentified _ Enterobacteriaceae and PorpHyromonas were the dominant genera. Compared with the pre-tolerance group, the abundance of unidentified _ Enterobacteriaceae,Streptobacillus and other bacteria in the tolerance group decreased; the abundance of PorpHyromonas and Ureaplasma increased.The results of differential flora comparison showed that there were significant differences in the abundance of Fusobacteriota and Acidobacteriota at the phylum level (Plt;0.05). At the genus level, there were significant differences in the abundance of Occallatibacter, EdapHobacter and Roseiarcus (Plt;0.05). Functional prediction analysis showed that compared with the pre-receptive group, progesterone-mediated oocyte maturation, estrogen signaling pathway, antigen processing and presentation were significantly increased in the receptive group (Plt;0.05). There was no significant difference in microbial Alpha diversity between the pre-receptive and receptive groups of sheep endometrium, and Beta diversity indicated that there were differences between the two groups. At the same time, there were significant differences in flora at multiple classification levels. Facklamia, Turicibacter and Firmicutes could be used as the marker flora of endometrial receptivity in sheep.
Key words:
sheep; pre-tolerance; tolerance; 16S rRNA
*Corresponding authors: SONG Yuxuan, E-mail: syx98728@163.com;HUANG Yanping,E-mail:huangyp121@126.com
動物的繁殖效率取決于受孕率、胚胎初期丟失率、流產(chǎn)率及胎兒早產(chǎn)率,同時也受到生殖道內(nèi)微生物群落的影響[1,2]。這些微生物群落廣泛分布于陰道、子宮頸乃至子宮內(nèi)部,是宿主與環(huán)境長期互動適應(yīng)的產(chǎn)物,體現(xiàn)了進化過程中的微妙平衡與協(xié)調(diào)。此平衡狀態(tài)高度敏感,易受宿主內(nèi)分泌狀態(tài)、生活環(huán)境及藥物干預等多重外部條件的干擾[3]。雌性生殖道,特別是陰道區(qū)域,構(gòu)成了一個復雜而精細的微生態(tài)系統(tǒng),其中微生物種類繁多,相互依存并定居于陰道皺襞及宮頸黏膜表面,共同維護著陰道微生態(tài)的穩(wěn)定與和諧[4,5]。這一微生態(tài)系統(tǒng)對于保障生殖功能的正常運作及維持生殖道健康環(huán)境至關(guān)重要,它通過維持菌群穩(wěn)態(tài)來有效抵御外源性病原體的侵入與定植[6]。健康、穩(wěn)定的陰道菌群維持著陰道正常的酸性環(huán)境和免疫功能。當陰道菌群發(fā)生失調(diào)時,可能導致陰道炎癥。細菌性陰道炎可發(fā)生上行感染,進而影響子宮頸及子宮內(nèi)膜[7,8]。例如,當陰道內(nèi)加德納菌增多時,產(chǎn)生大量胺類物質(zhì),促使陰道pH堿性化,加重陰道炎癥,其產(chǎn)生的內(nèi)毒素也可通過子宮頸進入子宮腔,損傷子宮內(nèi)膜細胞,進而影響子宮內(nèi)膜的再生和修復能力。同時,當發(fā)生陰道炎癥時,炎癥部位產(chǎn)生的炎癥因子可能進入血液循環(huán),對子宮內(nèi)膜的免疫微環(huán)境產(chǎn)生不良影響,干擾著子宮內(nèi)膜正常的生理功能[9]。既往研究表明,在經(jīng)歷反復胚胎停育的女性陰道微生態(tài)中,觀察到陰道嗜血桿菌有著顯著富集現(xiàn)象[10],而在成功妊娠的女性群體中,乳酸菌作為優(yōu)勢菌群,其豐度顯著高于胚胎停育組[11]。此外,乳酸菌豐度的減少以及條件致病菌比例的增加,已被證實與輔助生殖技術(shù)中的反復種植失敗存在關(guān)聯(lián)[12],這進一步強調(diào)了陰道微生物群落組成與胚胎著床及后續(xù)發(fā)育過程之間的緊密聯(lián)系,可見陰道微生物與胚胎植入及發(fā)育具有相關(guān)性。
子宮內(nèi)膜容受性即為子宮內(nèi)膜對胚胎的接受能力[13],是評價子宮內(nèi)膜作為胚胎“生物感受器”的重要指標,也是子宮內(nèi)膜在著床窗口期為有發(fā)育潛能的胚胎提供著床環(huán)境的必需條件[14]。子宮內(nèi)膜容受性受損被認為是胚胎植入失敗的主要原因之一[15]。雌、孕激素水平的動態(tài)變化調(diào)控著子宮內(nèi)膜的容受狀態(tài)[16,17]。陰道菌群易受雌激素和孕激素等生殖激素影響[18]。當陰道菌群發(fā)生改變時,往往也反映了體內(nèi)激素水平的變化。這種激素水平的顯著變化進一步影響并調(diào)節(jié)著陰道微生物群落的組成和結(jié)構(gòu)[19,20]。為了深入解析激素水平的波動如何具體影響陰道菌群的結(jié)構(gòu)和組成,并進一步找到可作為綿羊子宮容受期的標志菌群,本研究利用16S rRNA測序技術(shù)對綿羊子宮容受前期與容受期兩個階段的陰道菌群進行探究和分析。
1 材料與方法
1.1 試驗設(shè)計與樣品采集
本試驗在西北農(nóng)林科技大學畜牧教學實驗基地進行。選取12只兩歲齡、體重相近且健康的經(jīng)產(chǎn)雌性湖羊作為試驗對象。試驗開始前,進行同期發(fā)情處理,在配種后第5天(容受前期組,PE組)與第15天(容受期組,RE組)利用無菌陰道拭子采集陰道分泌物,同時通過手術(shù)法采集子宮內(nèi)膜組織,并迅速放入液氮中保存。
1.2 樣本DNA的提取
采用CTAB法提取樣品總基因組DNA。在1%瓊脂糖凝膠上監(jiān)測DNA濃度和純度。根據(jù)濃度,用無菌水將DNA稀釋至1 ng·L-1。
1.3 樣本16S rRNA V3V4區(qū)擴增
使用16S V3-V4特定引物對16S V3-V4區(qū)域進行擴增。所有PCR 反應(yīng)均使用 15 μL 的 pHusion High-Fidelity PCR Master Mix;2 mol·L-1的正向和反向引物,以及約 10 ng 模板 DNA。熱循環(huán)包括在98 ℃下初始變性1 min,隨后進行30個循環(huán),每個循環(huán)包括98℃變性10 s,50℃退火30 s,72℃延伸30 s,最后72℃延伸5 min。將等體積的1×上樣緩沖液與PCR產(chǎn)物混合,在2%瓊脂糖凝膠上電泳檢測。PCR產(chǎn)物按等密度比例混合。使用Qiagen Gel Extraction Kit純化混合PCR產(chǎn)物。
1.4 數(shù)據(jù)分析
基于Illumina TruSeq PCR-Free文庫制備,結(jié)合Qubit 2.0與Agilent 2100評估文庫質(zhì)量,隨后在NovaSeq上生成250 bp PE reads。通過條形碼分配、質(zhì)量過濾(FASTP)、序列合并(FLASH)及嵌合體去除(UCHIME),獲得有效標簽。利用Uparse聚類至97%相似度的OTU,并篩選代表序列進行Deblur ASV分析,以精確識別擴增子序列變異。通過MAFFT多序列比對,結(jié)合Silva Database基于Mothur算法分類注釋,分析OTU系統(tǒng)發(fā)育關(guān)系及樣品間優(yōu)勢種差異。數(shù)據(jù)標準化后,進行α與β多樣性分析,以探究微生物群落結(jié)構(gòu)及變化。
1.5 實時定量聚合酶鏈式反應(yīng)(RT-qPCR)
使用TRIzol試劑盒提取總 RNA,接著采用 PrimeScript RT 試劑盒(Takara,日本)將總 RNA 逆轉(zhuǎn)錄為 cDNA(反應(yīng)條件為:37℃持續(xù) 15 min,85 ℃5 s,隨后于 4℃儲存)。依據(jù) Seven 2×SYBR Green qPCR MasterMix Ⅱ(Universal),借助 Quant Studio 實時熒光定量系統(tǒng)測量相對基因表達水平,使用引物序列如表1所示。該反應(yīng)體系為20μL ,包含 10μL 2×SYBR Green qPCR MasterMix Ⅱ,0.4μL 正向引物(0.02μmol·L-1),0.4μL 反向引物(0.02μmol·L-1),2μL cDNA(<100 ng)以及 7.2μL ddH2O。反應(yīng)程序為:預變性 95 ℃30 s;變性 95 ℃10 s,退火/延伸 60 ℃20 s,變形、退火/延伸共 40 個循環(huán),熔解曲線分析按照儀器推薦程序進行采集。每個樣品進行6個生物學重復,每次處理進行 3 次技術(shù)重復。以 B-ACTIN 作為內(nèi)參基因,利用 2-ΔΔCt法計算基因的相對表達量。
1.6 數(shù)據(jù)分析
使用 GrapHPad Prism 8 軟件進行統(tǒng)計分析。試驗數(shù)據(jù)以“平均值±標準差”表示,進行T檢驗以確定顯著性,Plt;0.05表示差異顯著,Plt;0.01表示差異極顯著,ns為Pgt;0.05表示差異不顯著。
1.7 倫理聲明
本研究所有動物試驗均嚴格遵守國家和地方有關(guān)生物試驗倫理的法律法規(guī),以及相關(guān)的倫理準則和規(guī)范。在試驗過程中,將始終以保護試驗對象的福利和權(quán)益為首要準則,確保試驗的科學性、合理性和合法性。
2 結(jié) 果
2.1 子宮內(nèi)膜組織相關(guān)容受基因表達
如圖1所示,相比于配種后第5天(PE),配種后第15天(RE)的子宮內(nèi)膜組織相關(guān)容受基因表達出現(xiàn)顯著升高(Plt;0.01或Plt;0.05),表明子宮內(nèi)膜進入容受狀態(tài)。
2.2 Alpha多樣性比較
為探究容受前期組與容受期組α-多樣性變化,采用Shannon與Simpson指數(shù)反映菌群多樣性與均勻度,Chao1指數(shù)反映群落樣品中包含的物種總數(shù),ACE指數(shù)估計群落中ASV數(shù)目,Goods_coverage反映測序深度指數(shù),PD_whole_tree指數(shù)反映群落內(nèi)物種的親緣關(guān)系。結(jié)果如圖2所示,各指數(shù)均無顯著改變(Pgt; 0.05),表明子宮進容受期并未顯著改變陰道菌群的Alpha多樣性。
2.3 Beta多樣性比較
為探究容受前期組與容受期組Beta多樣性變化,利用無度量多維標定法(NMDS,non-metric multi-dimensional scaling)探尋容受前期組與容受期組的組間差異。圖3結(jié)果顯示容受前期組與容受期組存在著組間差異。
2.4 物種相對豐度展示
為探究綿羊子宮內(nèi)膜容受前期與容受期組樣本的物種組成,對所有樣本的高質(zhì)量序列根據(jù)97%相似性原則進行OTUs聚類,然后對OTU序列進行物種注釋。獲得各個分類水平界、門、綱、目、科、屬、種的物種注釋結(jié)果。根據(jù)物種注釋結(jié)果,選取容受前期組與容受期組在門、屬水平上最大豐富排名前10的物種,繪制物種相對豐度柱形圖。
如圖4A所示,在門分類水平上,Proteobacteria、Firmicutes、Fusobacteriota和Bacteroidota為優(yōu)勢菌門,占據(jù)70%以上。與容受前期組相比,容受期組Proteobacteria和Fusobacteriota菌門豐度下降;Firmicutes菌門豐度上升。
如圖4B所示,在屬分類水平上,unidentified_Enterobacteriaceae、PorpHyromonas、Ureaplasma、Anaerococcus、HistopHilus、Streptobacillus、Bacteroides、Leptotrichia、Caviibacter和Campylobacter為優(yōu)勢菌屬。與容受前期組相比,容受期組unidentified_Enterobacteriaceae、Streptobacillus、Bacteroides、Leptotrichia和Caviibacter菌屬豐度下降;PorpHyromonas、Ureaplasma、Anaerococcus、HistopHilus和Campylobacter菌屬豐度增加。
2.5 差異菌群比較
如圖5A所示,在門水平上,與容受前期組相比,容受期組Fusobacteriota、Acidobacteriota、Methylomirabilota、Planctomycetes菌門顯著下降(P<0.05);Firmicutes菌門顯著升高(P<0.05)。
如圖5B所示,在屬水平上,與容受前期組相比,容受期組unidentified_Enterobacteriaceae、Occallatibacter、unidentified_Acidobacteriota、EdapHobacter、unidentified_Verrucomicrobiae、Roseiarcus、Pedomicrobium、PedospHaera、Inquilinus菌屬顯著下降(P<0.05);Facklamia、Turicibacter菌屬顯著升高(P<0.05)。
2.6 差異物種LEfSe分析
如圖6A所示,采用LDA值分布柱狀圖展示兩組內(nèi)顯著富集物種及其重要程度。當LDA值≥4 時,認為該物種是生物標記物。結(jié)果顯示,容受前期組內(nèi),在門水平上,F(xiàn)usobacteriota顯著豐富;在屬水平上,unidentified_Enterobacteriaceae顯著豐富;容受期組內(nèi),在門水平上,F(xiàn)irmicutes菌門顯著豐富;在屬水平上,Helcococcus、PeptonipHilus、Corynebacterium、Anaerococcus菌屬顯著豐富。
如圖6B所示,采用物種分類學分支圖分析兩組標志物種的分類學層次分布,在門水平上,容受前期組內(nèi)Fusobacteriota、Verrucomicrobiota菌門顯著豐富;容受期組內(nèi)Firmicutes菌門顯著豐富。
2.7 功能預測分析
為預測子宮內(nèi)膜容受前期與容受期對機體功能影響的差異,通過PICRUSt方法分析細菌KEGG同源(KO)Pathway Hierarchy下的第三層級。圖7結(jié)果顯示,與容受前期組相比,容受期組有30種顯著差異的代謝通路,包括孕酮介導的卵母細胞成熟、雌激素信號通路、抗原的處理和呈現(xiàn)、Th17細胞分化等通路顯著升高(P<0.05)。
3 討 論
子宮內(nèi)膜容受性在綿羊妊娠過程中扮演者至關(guān)重要的角色,特別是在胚胎附植的臨界階段。子宮內(nèi)膜容受性受雌、孕激素水平的動態(tài)調(diào)節(jié),Gajer等[21]研究表明從青春期到整個孕齡階段,雌、孕激素水平的顯著變化深刻影響著陰道微生物群落的結(jié)構(gòu)與功能。首先,雌、孕激素通過多種方式共同調(diào)節(jié)陰道免疫功能繼而影響陰道微生物。二者可促使陰道上皮細胞趨于成熟并促進黏液分泌,以此構(gòu)建物理屏障,且黏液中的特定物質(zhì)能夠黏附微生物;對諸如淋巴細胞與巨噬細胞等免疫細胞的活性進行調(diào)節(jié),以增強免疫功能;對免疫因子如抗菌肽及細胞因子的分泌實施調(diào)控,以維持促炎與抗炎的平衡狀態(tài)。在孕期等特殊時段,孕激素對過度免疫反應(yīng)起到抑制作用,與雌激素協(xié)同或拮抗,共同調(diào)節(jié)陰道抗菌能力[22]。其次,雌、孕雌激素會促進陰道上皮細胞增殖與糖原積累,而孕激素則促進上皮細胞溶解與糖原釋放。這一過程為乳酸桿菌等益生菌提供底物,通過其代謝活動產(chǎn)生乳酸,維持陰道酸性環(huán)境,有效抑制病原體生長從而維護生殖健康并促進妊娠順利進行[23]。本研究首先利用RT-qPCR技術(shù)對配種后第5天及第15天的子宮內(nèi)膜組織進行相關(guān)容受基因定量,結(jié)果顯示配種后第15天的子宮內(nèi)膜組織中LIF、HOXA10、VEGFA相關(guān)容受基因出現(xiàn)顯著升
高(P<0.05),表明綿羊配種后第15天的子宮內(nèi)膜組織處于子宮內(nèi)膜容受狀態(tài)。隨后通過16S RNA測序發(fā)現(xiàn),陰道微生物的Shannon、Simpson、Chao1、ACE、Goods_coverage、PD_whole_tree指數(shù)均未發(fā)生顯著變化(Pgt; 0.05),說明機體內(nèi)激素水平變化并未顯著改變綿羊陰道菌群的α-多樣性。為繼續(xù)探究綿羊容受前期組與容受期組Beta多樣性變化,本研究利用無度量多維標定法分析顯示,容受前期組與容受期組存在著組間差異。
本研究隨后側(cè)重容受前期組與容受期組在門、屬水平的差異菌群。相比于容受前期組,容受期組在門水平上Fusobacteriota、Acidobacteriota、Methylomirabilota和Planctomycetes菌門豐度顯著降低(P<0.05),F(xiàn)irmicutes菌門豐度顯著升高(P<0.05)。Hu 等[24]研究表明,孕期女性陰道主要由Firmicutes菌門組成,分娩后,F(xiàn)irmicutes菌門豐度減少,與本研究結(jié)果相似,說明Firmicutes菌門在雌性動物生殖期間扮演者十分重要的角色。在屬水平上,Occallatibacter、EdapHobacter、Roseiarcus、Pedomicrobium、PedospHaera和Inquilinus菌屬豐度顯著降低(P<0.05),F(xiàn)acklamia和Turicibacter菌屬豐度顯著升高(P<0.05)。Wu 等[25]研究表明Turicibacter菌屬豐度與雌激素正相關(guān),與睪酮激素負相關(guān)。容受期組Turicibacter菌屬豐度增加,說明子宮內(nèi)膜進入容受期,機體雌激素水平升高促進了Turicibacter菌屬的生長。脂質(zhì)代謝在調(diào)控子宮容受性發(fā)揮著及其重要的作用[26-28]。Turicibacter同時可以影響宿主的膽汁酸與脂質(zhì)代謝基因[29],從而可能發(fā)揮著影響脂質(zhì)代謝繼而幫助調(diào)控子宮內(nèi)膜容受性的作用。
最后利用PICRUSt方法分析細菌KEGG同源(KO)Pathway Hierarchy下的第三層級。結(jié)果顯示與容受前期組相比,容受期組有30種顯著差異的代謝通路,包括孕酮介導的卵母細胞成熟、雌激素信號通路、抗原的處理和呈遞、IL-17信號通路等顯著升高(P<0.05)。首先,孕酮介導的卵母細胞成熟通路顯著升高,反映了子宮內(nèi)膜容受期對妊娠準備的生理需求。孕酮作為維持妊娠的關(guān)鍵激素[30],在子宮內(nèi)膜容受性的建立中發(fā)揮著至關(guān)重要的作用。其介導的卵母細胞成熟過程不僅確保了卵細胞的發(fā)育質(zhì)量[31,32],也為后續(xù)的受精和胚胎著床創(chuàng)造了有利條件[33]。在本研究中觀察到孕酮相關(guān)通路的上調(diào),也進一步證實了陰道微生物在容受期這一過程中的潛在調(diào)節(jié)作用。其次,雌激素信號通路的增強,則可能與子宮內(nèi)膜容受期雌激素水平的升高相呼應(yīng)。雌激素在促進子宮內(nèi)膜增殖、血管生成等方面發(fā)揮著關(guān)鍵作用[34,35],同時也是子宮容受性形成的重要調(diào)節(jié)因子[36]。陰道微生物可能通過影響雌激素的代謝或受體表達[37],間接參與了子宮內(nèi)膜容受性的調(diào)控過程。最后抗原的處理和呈遞、IL-17信號通路等免疫通路顯著升高,提示了陰道微生物在生殖道免疫防御中的重要角色。在子宮內(nèi)膜容受期,生殖道需要維持一個既能抵抗病原體入侵,又能允許胚胎著床的微妙平衡[38]。陰道微生物可能通過調(diào)節(jié)免疫細胞的活化和抗原呈遞在維持這一平衡中發(fā)揮著關(guān)鍵作用[39,40]。
4 結(jié) 論
綜上所述,綿羊進入子宮內(nèi)膜容受期陰道微生物群落發(fā)生改變,特別是Facklamia、Turicibacter菌屬、Firmicutes菌門豐度顯著增加,差異菌群可作為子宮內(nèi)膜容受期標志菌群。不僅提示了生殖生理狀態(tài)的轉(zhuǎn)變,也為通過微生物調(diào)控來提高繁殖性能提供了理論依據(jù)和實踐方向。
參考文獻(References):
[1] CLEMMONS B A,REESE S T,DANTAS F G,et al.Vaginal and uterine bacterial communities in postpartum lactating cows[J].Front Microbiol,2017,8:1047.
[2] TENG Y K,F(xiàn)ENG S,GU Z X,et al.Comparison of microbiota structure in reproductive tract of Yanbian cattle and Yanhuang cattle[J].Front Microbiol,2024,15:1419914.
[3] 劉 勛.基于高通量測序的健康與子宮內(nèi)膜炎奶牛陰道菌群差異性研究[D].長春:吉林農(nóng)業(yè)大學,2015.
LIU X.Diversity analysis of vaginal bacterial microbiota in healthy and endometritis dairy cows through high-throughput sequencing[D].Changchun:Jilin Agricultural University,2015.(in Chinese)
[4] 段文冰,王子娥,鞠 瑛,等.不同生理階段女性陰道微生態(tài)狀況分析[J].中國微生態(tài)學雜志,2018,30(10):1211-1216.
DUAN W B,WANG Z E,JU Y,et al.Female vaginal microecology in different physiological stages[J].Chinese Journal of Microecology,2018,30(10):1211-1216.(in Chinese)
[5] 周佳麗,丁寶隆,馬子明,等.奶牛子宮內(nèi)膜炎與胃腸微生物相關(guān)性及益生菌作用的研究進展[J].畜牧獸醫(yī)學報,2024, 55(8):3321-3330.
ZHOU J L,DING B L,MA Z M,et al.Research progress on the correlation between endometritis and gastrointestinal microorganisms and the role of probiotics in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2024,55(8):3321-3330.(in Chinese)
[6] DEIDDA F,AMORUSO A,ALLESINA S,et al.In vitro activity of Lactobacillus fermentum LF5 against different Candida species and Gardnerella vaginalis:a new perspective to approach mixed vaginal infections?[J].J Clin Gastroenterol,2016,50:S168-S170.
[7] 鮮婷婷,劉 彥,曹 忻,等.母豬子宮內(nèi)膜炎陰道菌群與血清促炎細胞因子的變化及其相關(guān)性分析[J].畜牧獸醫(yī)學報,2024,55(8):3688-3698.
XIAN T T,LIU Y,CAO X,et al.Analysis of the changes of vaginal microflora and serum pro-inflammatory cytokines and their correlation in sows with endometritis[J].Acta Veterinaria et Zootechnica Sinica,2024,55(8):3688-3698.(in Chinese)
[8] 付 涵,盧 沖,繆榮浩,等.流產(chǎn)對母馬陰道和腸道菌群多樣性的影響及陰道細菌的分離鑒定[J].畜牧獸醫(yī)學報,2024,55(10): 4700-4719.
FU H,LU C,MIAO R H,et al.Effects of abortion on the diversity of vaginal and intestinal flora in mares and the isolation and identification of vaginal bacteria[J].Acta Veterinaria et Zootechnica Sinica,2024,55(10):4700-4719.(in Chinese)
[9] 程秋涵.緩解細菌性陰道炎益生菌的篩選及緩解效果評價[D].無錫:江南大學,2022.
CHENG Q H.Screening of probiotics for relieving bacterial vaginosis and evaluation of their relief effect[D].Wuxi:Jiangnan University, 2022.(in Chinese)
[10] PEURANP P,HOLSTER T,SAQIB S,et al.Female reproductive tract microbiota and recurrent pregnancy loss:a nested case-control study[J].Reprod Biomed Online,2022,45(5):1021-1031.
[11] WANG L,CHEN J Y,HE L,et al.Association between the vaginal and uterine microbiota and the risk of early embryonic arrest[J]. Front Microbiol,2023,14:1137869.
[12] 張榮雪,王苗苗,賈媛媛,等.反復種植失敗患者陰道菌群特征研究[J].國際生殖健康/計劃生育雜志,2024,43(2):89-94.
ZHANG R X,WANG M M,JIA Y Y,et al.Study on the vaginal microbiota in patients with repeated implantation failure[J].Journal of International Reproductive Health/Family Planning,2024,43(2):89-94.(in Chinese)
[13] 陳子江,顏軍昊.子宮內(nèi)膜容受性影響因素的研究進展[J].山東大學學報:醫(yī)學版,2021,59(8):1-7.
CHEN Z J,YAN J H.Latest research advances on factors that influence endometrial receptivity[J].Journal of Shandong University: Health Sciences,2021,59(8):1-7.(in Chinese)
[14] 秦 雪,沙懿文,楊夢豪,等.非編碼RNA調(diào)控哺乳動物子宮內(nèi)膜容受性和蛻膜化的研究進展[J].畜牧獸醫(yī)學報,2023,54(4): 1347-1358.
QIN X,SHA Y W,YANG M H,et al.Advances in regulation of non-coding RNA on mammalian endometrial receptivity and decidualization[J].Acta Veterinaria et Zootechnica Sinica,2023,54(4):1347-1358.(in Chinese)
[15] NORWITZ E R,SCHUST D J,F(xiàn)ISHER S J.Implantation and the survival of early pregnancy[J].N Engl J Med,2001,345(19): 1400-1408.
[16] 李改珍,王海濱.雌孕激素與子宮內(nèi)膜容受態(tài)[J].生物醫(yī)學轉(zhuǎn)化,2022,3(4):37-44.
LI G Z,WANG H B.Oestrogen and progesterone signaling in endometrial receptivity[J].Biomedical Transformation,2022,3(4): 37-44.(in Chinese)
[17] KALAKOTA N R,GEORGE L C,MORELLI S S,et al.Towards an improved understanding of the effects of elevated progesterone levels on human endometrial receptivity and oocyte/embryo quality during assisted reproductive technologies[J].Cells, 2022,11(9):1405.
[18] DE SETA F,RESTAINO S,BANCO R,et al.Effects of estroprogestins containing natural estrogen on vaginal flora[J].Gynecol Endocrinol,2014,30(11):830-835.
[19] 向怡怡,李 虎,胡麗娜.孕激素及其制劑對女性陰道微生態(tài)影響的研究進展[J].婦產(chǎn)與遺傳:電子版,2023,13(2):35-39.
XIANG Y Y,LI H,HU L N.Research progress on the effects of progesterone and its preparations on women′s vaginal microecology[J].Obstetrics-Gynecology and Genetics:Electronic Edition,2023,13(2):35-39.(in Chinese)
[20] KAUR H,MERCHANT M,HAQUE M M,et al.Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women′s gynecological lifecycle[J].Front Microbiol,2020,11:551.
[21] GAJER P,BROTMAN R M,BAI G Y,et al.Temporal dynamics of the human vaginal microbiota[J].Sci Transl Med,2012,4(132): 132ra52.
[22] COLLINS M K,MCCUTCHEON C R,PETROFF M G.Impact of estrogen and progesterone on immune cells and host-pathogen interactions in the lower female reproductive tract[J].J Immunol,2022,209(8):1437-1449.
[23] GARCA-VELASCO J A,MENABRITO M,CATALN I B.What fertility specialists should know about the vaginal microbiome: a review[J].Reprod Biomed Online,2017,35(1):103-112.
[24] HU F F,SUN X,SU Y,et al.The dynamic changes in the composition and diversity of vaginal microbiota in women of different pregnancy periods[J].Microorganisms,2023,11(11):2686.
[25] WU Y,PENG X X,LI X Y,et al.Sex hormones influence the intestinal microbiota composition in mice[J].Front Microbiol,2022,13: 964847.
[26] YANG T L,ZHAO J,LIU F,et al.Lipid metabolism and endometrial receptivity[J].Hum Reprod Update,2022,28(6):858-889.
[27] YE Q H,ZENG X Z,CAI S,et al.Mechanisms of lipid metabolism in uterine receptivity and embryo development[J].Trends Endocrinol Metab,2021,32(12):1015-1030.
[28] 馬麗娜,秦 瑩,王克華,等.脂質(zhì)代謝對子宮內(nèi)膜容受性及胚胎著床影響的研究進展[J].解放軍醫(yī)學雜志,2024,49(9): 1088-1093.
MA L N,QIN Y,WANG K H,et al.Research progress on the impact of lipid metabolism on endometrial receptivity and embryo implantation[J].Medical Journal of Chinese People′s Liberation Army,2024,49(9):1088-1093.(in Chinese)
[29] LYNCH J B,GONZALEZ E L,CHOY K,et al.Gut microbiota Turicibacter strains differentially modify bile acids and host lipids[J].Nat Commun,2023,14(1):3669.
[30] WAGNER L H,AURICH J,MELCHERT M,et al.Low progesterone concentration in early pregnancy is detrimental to conceptus development and pregnancy outcome in horses[J].Anim Reprod Sci,2023,257:107334.
[31] LONERGAN P.Influence of progesterone on oocyte quality and embryo development in cows[J].Theriogenology,2011,76(9): 1594-1601.
[32] YUAN B,LIANG S,JIN Y X,et al.Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro[J]. PeerJ, 2016,4:e2454.
[33] CHENG J H,SHA Z Z,LI J Y,et al.Progress on the role of estrogen and progesterone signaling in mouse embryo implantation and decidualization[J].Reprod Sci,2023,30(6):1746-1757.
[34] DONG F Z,ZHANG Q Y,KONG W,et al.Regulation of endometrial cell proliferation by estrogen-induced BDNF signaling pathway[J].Gynecol Endocrinol,2017,33(6):485-489.
[35] ZHANG Y,CAO C,DU S J,et al.Estrogen regulates endoplasmic reticulum stress-mediated apoptosis by ERK-p65 pathway to promote endometrial angiogenesis[J].Reprod Sci,2021,28(4):1216-1226.
[36] SIMON C,DOMNGUEZ F,VALBUENA D,et al.The role of estrogen in uterine receptivity and blastocyst implantation[J].Trends Endocrinol Metab,2003,14(5):197-199.
[37] ARAGN A,JURADO R,JARA J,et al.Investigating the metabolism of estrogens in Ligilactobacillus salivarius strains isolated from human milk and vaginal microbiota[J].Nutrients,2024,16(6):861.
[38] 趙 瑩.宮腔內(nèi)定植菌群對子宮內(nèi)膜容受性的影響及機制研究[D].長沙:中南大學,2023.
ZHAO Y.Effect of intrauterine colonizing microbiome on endometrial receptivity and its mechanism[D].Changsha:Central South University,2023.(in Chinese)
[39] ANTON L,F(xiàn)ERGUSON B,F(xiàn)RIEDMAN E S,et al.Gardnerella vaginalis alters cervicovaginal epithelial cell function through microbe-specific immune responses[J].Microbiome,2022,10(1):119.
[40] FORONDA M H,LLEDO B,ORTIZ J A,et al.O-254 The relationship between dysbiosis of vaginal microbiome and proinflammatory cytokine levels in vaginal fluid in recurrent implantation failure patients[J].Hum Reprod,2024,39(S1):deae108.301.
(編輯 郭云雁)