摘 要:
旨在探索骨形態(tài)發(fā)生蛋白4(bone morphogenetic protein 4, BMP4)對綿羊卵巢顆粒細胞中間隙連接蛋白基因(gap junction protein alpha 1, GJA1)表達的影響及其分子調(diào)控機制。本研究利用廊坊市屠宰場收集的2~4歲健康綿羊卵巢分離顆粒細胞,采用免疫熒光染色技術(shù)定位GJA1在顆粒細胞中的分布。將細胞隨機分為4組,分別添加0、10、50和100 ng·mL-1濃度的重組BMP4蛋白,每組3個重復(fù),培養(yǎng)24 h,利用CCK-8法評估細胞活性,RT-qPCR和Western blot研究BMP4對GJA1的mRNA和蛋白表達水平的影響。為探究BMP4調(diào)控GJA1表達的潛在機制,將細胞隨機分為3組,每組3個重復(fù),除對照組外分別添加10 μmol·L-1 BMP I型受體抑制劑(Dorsomorphin)和干擾小RNA敲除SMAD家族蛋白4(SMAD family member 4, SMAD4),均添加100 ng·mL-1的BMP4處理細胞24 h,RT-qPCR檢測GJA1和SMAD4表達量,Western blot分析測定GJA1和SMAD4表達水平以及SMAD1/5/8的磷酸化水平,最后利用劃痕染料示蹤試驗檢測綿羊卵巢顆粒細胞之間的間隙連接活性。結(jié)果顯示,BMP4顯著抑制了綿羊卵巢顆粒細胞中GJA1 表達和間隙連接活性(Plt;0.05),此抑制效應(yīng)在添加Dorsomorphin和敲除SMAD4后顯著減弱(Plt;0.05),同時,BMP4處理顯著增加了SMAD1/5/8的磷酸化水平(Plt;0.05)。綜上,BMP4通過SMAD1/5/8-SMAD4信號轉(zhuǎn)導(dǎo)調(diào)控GJA1表達進而影響顆粒細胞間隙連接活性,本結(jié)果增加了對綿羊BMP/SMAD通路調(diào)控顆粒細胞間隙連接活性的了解,為改進體外卵泡成熟方法和高繁母羊的分子育種提供了基礎(chǔ)。
關(guān)鍵詞:
綿羊;卵巢顆粒細胞;BMP4;間隙連接;GJA1;SMAD4
中圖分類號:
S826.3""" "文獻標志碼:A"" """"文章編號: 0366-6964(2025)02-0679-10
收稿日期:2024-08-09
基金項目:中央級公益性科研院所基本科研業(yè)務(wù)費專項(Y2024YJ08);財政部和農(nóng)業(yè)農(nóng)村部國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-38);山西省基礎(chǔ)研究計劃面上項目(20210302123371);山西農(nóng)業(yè)大學(xué)博士科研啟動項目(2021BQ04)
作者簡介:何 "雨(2000-),女,河北廊坊人,碩士生,主要從事動物遺傳育種研究,E-mail: heyu_22@163.com
*通信作者:梁 琛,主要從事動物遺傳育種與繁殖的研究,E-mail:cekiv@163.com;儲明星,主要從事羊優(yōu)異繁殖性狀分子機理研究,E-mail:chumingxing@caas.cn
BMP4/SMAD4 Downregulates GJA1 Gene Expression to Affect the Gap Junctional
Intercellular Communication Activity in Sheep Ovarian Granulosa Cells
HE" Yu1, WANG" Xiangyu2, DI" Ran2, CHU" Mingxing2*, LIANG" Chen1*
(1.College of Animal Science, Shanxi Agricultural University, Taigu 030801," China;
2.State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural
Sciences, Beijing 100193," China)
Abstract:
This study aimed to explore the effect of bone morphogenetic protein 4 (BMP4) on the expression of gap junction protein alpha 1 (GJA1) in sheep ovarian granulosa cells and its molecular regulatory mechanism. Granulosa cells were isolated from the ovaries of healthy 2-4-year-old sheep obtained from a slaughterhouse in Langfang city. Immunofluorescence staining was used to localize the distribution of GJA1 in granulosa cells. The cells were randomly divided into 4 groups, each treated with recombinant BMP4 protein at concentrations of 0, 10, 50, and 100 ng·mL-1, with 3 replicates per group, and cultured for 24 hours. Cell viability was assessed using the CCK-8 assay, while RT-qPCR and Western blot were employed to examine the effects of BMP4 on GJA1 mRNA and protein expression levels. To investigate the potential mechanism by which BMP4 regulates GJA1 expression, the cells were divided into 3 groups with 3 replicates per group. In addition to the control group, cells were treated with 10 μmol·L-1 BMP type I receptor inhibitor (Dorsomorphin) and small interfering RNA to knock down SMAD family member 4 (SMAD4), all treated with 100 ng·mL-1 BMP4 for 24 hours. RT-qPCR was used to measure the expression of GJA1 and SMAD4, and Western blot was used to assess the expression levels of GJA1 and SMAD4 as well as the phosphorylation levels of SMAD1/5/8. Finally, a scratch dye tracking assay was performed to assess the gap junction activity between sheep ovarian granulosa cells. The results showed that BMP4 significantly inhibited the expression of GJA1 and gap junction activity in sheep ovarian granulosa cells (Plt;0.05). This inhibitory effect was significantly weakened after treatment with Dorsomorphin and SMAD4 knockdown (Plt;0.05). Moreover, BMP4 treatment significantly increased the phosphorylation levels of SMAD1/5/8 (Plt;0.05). In conclusion, BMP4 regulates GJA1 expression and subsequently affects the gap junction activity of granulosa cells through the SMAD1/5/8-SMAD4 signaling pathway. These findings enhance the understanding of how the BMP/SMAD pathway regulates gap junction activity in sheep granulosa cells, providing a foundation for improving in vitro follicle maturation methods and molecular breeding of high-fertility ewes.
Key words: sheep; ovarian granulosa cells; BMP4; gap junction; GJA1; SMAD4
*Corresponding authors: LIANG Chen, E-mail:cekiv@163.com; CHU Mingxing, E-mail:chumingxing@caas.cn
間隙連接是一種重要的細胞通道,直接連接細胞質(zhì),促進各種小分子、代謝物和離子在相鄰細胞之間的轉(zhuǎn)移[1,2],每個間隙連接由兩個相互對接的半通道(或稱為連接體)組成,跨越細胞膜并構(gòu)成細胞間連接的“橋梁”[3]。在顆粒細胞和卵母細胞之間基于連接蛋白的通道不僅提供營養(yǎng)和代謝產(chǎn)物轉(zhuǎn)運,還在維持卵母細胞減數(shù)分裂停滯中發(fā)揮關(guān)鍵作用[4,5]。顆粒細胞之間通過間隙連接交流促進了其增殖和分化[6],同時,顆粒細胞通過間隙連接向卵母細胞傳遞營養(yǎng)物質(zhì),推動了卵母細胞的生長和成熟[7]。
間隙連接主要由連接蛋白構(gòu)成,它們是一個跨膜蛋白多基因家族。人類卵泡中間隙連接蛋白α1(gap junction protein alpha 1, GJA1),又被稱為Cx43蛋白,是卵泡發(fā)育過程中形成顆粒細胞之間連接的最重要的組成蛋白[8],GJA1在顆粒細胞中大量表達,存在于卵泡發(fā)育的所有階段,它在維持卵母細胞減數(shù)分裂停滯和卵泡發(fā)育中起著關(guān)鍵作用,且GJA1受到BMP/SMAD通路調(diào)控[9-11]。BMP4是TGF-β超家族的成員之一[12],并且作為BMP/SMAD信號通路中的重要配體發(fā)揮作用[13,14]。BMP4主要通過與細胞膜上的Ⅰ型受體(BMPR1A和BMPR1B)結(jié)合[15],調(diào)控下游信號傳導(dǎo),磷酸化SMAD1/5/8蛋白[16],再與SMAD家族成員4(SMAD family member 4,SMAD4)形成復(fù)合體,影響卵巢顆粒細胞的功能[17]。有研究指出,BMP4在人類顆粒細胞中引發(fā)了GJA1表達的下調(diào),這種下調(diào)是通過激活SMAD 1/5/8信號通路來實現(xiàn)的。此外,BMP4還可能參與了抑制排卵和黃體生成的過程[9]。綿羊上有報道表明,在卵泡不同發(fā)育階段,GJA1表達存在差異,但GJA1產(chǎn)生差異及其通過改變間隙連接活性影響卵泡發(fā)育的機制并不明晰[18]。
本試驗以綿羊卵巢顆粒細胞為研究對象,研究BMP4對綿羊卵巢顆粒細胞中GJA1表達的影響,以及其通過BMP/SMAD依賴途徑的潛在調(diào)節(jié)模式,以期為改進體外卵泡發(fā)育及卵母細胞成熟的方法提供科學(xué)基礎(chǔ),也為高繁母羊的分子育種提供潛在靶點。
1 材料與方法
1.1 試驗材料
試驗所用綿羊卵巢來自河北廊坊大廠回族自治縣屠宰場。
1.2 試驗方法
1.2.1 引物設(shè)計
根據(jù)NCBI數(shù)據(jù)庫已知的綿羊各基因序列,利用Primer Premier 6.25軟件分別設(shè)計GJA1,TGF-β通路中的SMAD4等基因和熒光定量內(nèi)參基因的相關(guān)引物,交由上海生工生物工程有限公司合成。si-SMAD4參照NCBI公布的綿羊SMAD4基因序列,以非特異性片段為陰性對照(NC-siRNA),由上海吉瑪生物科技有限公司設(shè)計合成。引物序列及產(chǎn)物長度等信息見表1。
1.2.2 綿羊卵巢顆粒細胞的體外分離及培養(yǎng)
羊卵巢來自河北廊坊大廠回民自治縣屠宰場,羊屠宰后取卵巢放于保溫瓶中迅速帶回實驗室,用75%酒精和添加2%青霉素鏈霉素的37℃生理鹽水輕輕沖洗2遍,用5 mL注射器抽出2~5 mm生長卵泡中的卵泡液,將卵泡液收集于15 mL離心管中,加入含1%青霉素鏈霉素的PBS,1 800 r·min-1離心5 min,棄上清;PBS重懸沉淀,1 200 r·min-1離心5 min,棄上清,重復(fù)兩次,獲得較為純凈的顆粒細胞沉淀。收集到的細胞沉淀用含1%青霉素鏈霉素、5% FBS(胎牛血清)的DMEM重懸沉淀,分別于6 cm培養(yǎng)皿中接種細胞數(shù)為每孔1×106個,每孔加入2 mL含10% FBS、1%青霉素鏈霉素的完全培養(yǎng)基,于37℃、5% CO2培養(yǎng)箱中分別培養(yǎng)。
1.2.3 免疫熒光染色
將細胞爬片置于6孔板中央,細胞接種于細胞爬片上,細胞生長貼壁至大約90%后,PBS洗滌細胞5 min 3次,4%多聚甲醛室溫固定20 min,PBS洗滌細胞5 min 3次,采用0.1%TritonX-100 4℃通透15 min,PBS洗滌細胞5 min 3次,5%山羊血清封閉30 min,棄去封閉液,4℃搖床孵育一抗Cx43(Abcam, ab312836)過夜,次日PBST洗滌5 min 3次(用錫箔紙包裹6孔板避光),避光室溫孵育二抗(Abcam, ab150081)2 h,PBST洗滌5 min 3次,DAPI復(fù)染細胞核5 min,PBS洗滌細胞5 min 3次,小心取出細胞爬片,滴加一滴抗熒光淬滅劑封片,在熒光倒置顯微鏡下鏡檢,采集圖像。
1.2.4 CCK-8檢測羊卵巢顆粒細胞增殖
將顆粒細胞接種于96孔板中,接種密度為1×104 個·mL-1,培養(yǎng)至貼壁后,將細胞分為4組,分別添加0、10、50、100 ng·mL-1的BMP4重組蛋白(Ramp;D System公司,314-BP-050/CF),BMP4處理濃度的設(shè)定參考Sugiura等[19]已發(fā)表的文章,每孔100 μL體系,每組設(shè)置3個生物學(xué)重復(fù),每個生物學(xué)重復(fù)設(shè)置3個復(fù)孔,于37℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后按照細胞增殖于毒性檢測試劑盒(Solarbio公司, CA1210)說明書進行細胞活性檢測。具體操作步驟如下:將添加不同濃度的BMP4重組蛋白培養(yǎng)基棄去,每孔加入100 μL新的培養(yǎng)液,并加入10 μL的CCK-8溶液,在培養(yǎng)箱內(nèi)孵育1 h,用酶標儀測定在450 nm處的吸光度值,計算出添加不同濃度BMP4重組蛋白的細胞活性。
1.2.5 顆粒細胞的轉(zhuǎn)染
將卵巢顆粒細胞與6孔板中培養(yǎng)至70%~80%匯合度時進行轉(zhuǎn)染試驗,利用Lipofectamine 2000轉(zhuǎn)染試劑盒(Invitrogen,11668019),按照500 μL的體系進行配置,具體配置方法如表2所示,將配置好的A液與B液顛倒混勻,室溫下孵育20 min,均勻地滴加到各孔細胞中,添加OPTI補齊至2 mL,6 h后更換為完全培養(yǎng)基,在培養(yǎng)箱中37℃ 5% CO2培養(yǎng)24 h,用于后續(xù)試驗。
1.2.6 RNA的提取和熒光定量PCR
用RNAsimple總RNA提取試劑盒(TIANGEN公司,DP419)提取添加BMP4不同時間段的顆粒細胞的總RNA,Nanodrop測其純度和濃度(1.8lt;OD260nm/OD280nmlt;2.0)后,反轉(zhuǎn)錄得到cDNA。按照以下反應(yīng)體系進行RT-qPCR:SYBR MIX 10 μL,上、下游引物各0.8 μL,cDNA 2.0 μL,加入ddH2O補充體系至20 μL。反應(yīng)條件:95℃ 5 min; 95℃ 10 s, 60℃ 30 s, 共40個循環(huán);95℃ 15 s, 60℃ 1 min, 95℃ 15 s?;蛳鄬Ρ磉_量用2-△△Ct法計算[20],引物具體信息見表1。
1.2.7 Western blot檢測相關(guān)蛋白的表達
收集BMP4處理后的顆粒細胞,按照試劑盒提取總蛋白后應(yīng)用BCA法測定蛋白濃度,經(jīng)SDS-PAGE電泳,轉(zhuǎn)膜后用封閉液室溫搖床震蕩封閉2 h,加入稀釋好的一抗(CST,GJA1,#83649,1∶1 000稀釋;Proteintech,SMAD4,10231-1-AP,1∶1 000稀釋;Invitrogen,SMAD1/5/8,#PA5-104523,1∶1 000稀釋;CST,p-SMAD1/5/8,#13820,1∶1 000稀釋;Proteintech,GAPDH,10494-1-AP;Proteintech,Beta Tubulin,10068-1-AP),4℃搖床孵育過夜。次日加入二抗(Proteintech,SA00001-2),室溫孵育2 h,洗膜,加入ECL顯色液,曝光。應(yīng)用Image J軟件對目的條帶進行灰度值分析,每組試驗設(shè)置兩個重復(fù),GAPDH和Beta Tubulin為內(nèi)參分析目的蛋白的表達量。
1.2.8 劃痕標記染料示蹤試驗
將處理好的貼壁細胞用預(yù)熱37℃的PBS輕輕沖洗3遍,用手術(shù)刀片在培養(yǎng)皿底劃痕3~5道,然后加入染料(MP, lucifer yellow, L453)1 mL,在培養(yǎng)箱內(nèi)避光孵育5 min,吸去染液,用預(yù)熱37℃的PBS輕輕沖洗3遍,洗去殘留的染液,于熒光倒置顯微鏡下觀察并拍攝照片[21,22]。
1.2.9 數(shù)據(jù)統(tǒng)計分析
采用2-△△Ct法計算基因相對表達量,使用GraphPad Prism 8.0軟件進行t檢驗和單因素方差分析,并根據(jù)結(jié)果作圖。P<0.05表示差異顯著,P<0.01表示差異極顯著。
2 結(jié) 果
2.1 GJA1在顆粒細胞中的定位和分布
為了探究GJA1在顆粒細胞中表達的位置,應(yīng)用免疫熒光染色試驗研究了GJA1在綿羊卵巢顆粒細胞中的定位和分布情況。如圖1所示,在細胞膜上觀察到強烈的綠色熒光信號,表明GJA1蛋白主要定位于細胞膜。
2.2 BMP4下調(diào)了顆粒細胞中GJA1的表達
為了檢測BMP4對顆粒細胞內(nèi)GJA1表達的影響,分別用不同濃度的BMP4(0、10、50和100 ng·mL-1)處理顆粒細胞。CCK-8結(jié)果顯示(圖2A),除添加0 ng·mL-1的對照組(ctrl)外,其余處理組之間沒有顯著差異。RT-qPCR結(jié)果顯示BMP4處理顆粒細胞12 h后,BMP4以濃度依賴性的方式抑制顆粒細胞中GJA1基因mRNA表達水平(Plt;0.05),在處理后24 h,BMP4對GJA1表達的抑制作用最為顯著(Plt;0.01,圖2B)。后續(xù)試驗選擇100 ng·mL-1為濃度、時間為24 h作為試驗條件來處理顆粒細胞。
2.3 BMP Ⅰ型受體抑制劑Dorsomorphin對BMP4誘導(dǎo)GJA1表達下調(diào)效果的影響
已知BMP家族的Ι型受體可能參與調(diào)控BMP4誘導(dǎo)的信號通路激活,因此,選用BMP家族的Ι型受體抑制劑Dorsomorphin來抑制BMP I型受體(ALK2、ALK3和ALK6)。分別用10 μmol·L-1 Dorsomorphin預(yù)處理顆粒細胞1 h,然后加入100 ng·mL-1的BMP4培養(yǎng)24 h,檢測細胞中GJA1蛋白表達量變化。Western blot結(jié)果顯示,Dorsomorphin能夠抑制BMP4誘導(dǎo)的GJA1表達水平的下調(diào)(圖3)。根據(jù)結(jié)果證明試驗的特異性。
2.4 顆粒細胞中BMP4激活SMAD1/5/8信號通路
為探究BMP4激活的相關(guān)信號通路活性,使用100 ng·mL-1的BMP4處理顆粒細胞24 h,Western blot檢測SMAD1/5/8的磷酸化水平變化。結(jié)果如圖4所示,BMP4處理后SMAD1/5/8的磷酸化水平均顯著增加,表明BMP4可以激活顆粒細胞內(nèi)的SMAD1/5/8信號通路。
2.5 BMP4通過SMAD4調(diào)節(jié)GJA1表達
在BMP信號通路中,SMAD4作為轉(zhuǎn)錄因子與磷酸化的SMAD1/5/8結(jié)合形成復(fù)合物[23],并在細胞核中與靶基因GJA1結(jié)合發(fā)揮作用[24,25]。為了證實BMP4是通過SMAD信號通路對GJA1表達水平進行調(diào)節(jié),使用SMAD4的特異性siRNA來抑制顆粒細胞內(nèi)SMAD4的表達。顆粒細胞轉(zhuǎn)染si-SMAD4后48 h,SMAD4的表達水平顯著下降(圖5C和5D)。顆粒細胞轉(zhuǎn)染si-SMAD4完成后,100 ng·mL-1的BMP4再處理24 h。RT-qPCR和Western blot結(jié)果顯示SMAD4表達被抑制后,BMP4誘導(dǎo)的GJA1表達水平的下調(diào)被抑制(圖5A、5B)。
2.6 GJA1對細胞間隙轉(zhuǎn)運效率的影響
采用刮痕染料示蹤技術(shù)探究GJA1作為間隙連接蛋白對細胞間轉(zhuǎn)運效率的影響。結(jié)果顯示(圖6),加入lucifer yellow染料避光孵育5 min后,轉(zhuǎn)染si-SMAD4處理的顆粒細胞與lucifer yellow耦合的效率低于ctrl組,加入BMP4后,耦合的效率有所升高。證明GJA1是間隙連接的重要蛋白,且受到SMAD4調(diào)控。
3 討 論
GJA1作為間隙連接蛋白,參與多種生物過程的協(xié)調(diào)和調(diào)控,近年來相關(guān)的研究逐漸增多,在人[26]、小鼠[27]、水牛[28]、綿羊[29]中都有研究表明GJA1是間隙連接的組成蛋白之一,架起了細胞與細胞之間的橋梁,向細胞內(nèi)運輸氨基酸、葡萄糖、核苷酸和生長因子等對卵母細胞發(fā)育所必需的營養(yǎng)物質(zhì)[30]。已有研究表明,GJA1水平在發(fā)情周期中的變化與血清FSH和LH水平高度相關(guān)[31,32],顆粒細胞中GJA1的表達主要受垂體促性腺激素的調(diào)節(jié)[32]。除促性腺激素外,類固醇激素同樣可以調(diào)節(jié)包括人在內(nèi)的許多哺乳動物GJA1的表達。Wu等[33]已經(jīng)證明高水平雄激素可降低人顆粒細胞系的GJA1水平和GJIC活性。
在生長卵泡中,GJA1介導(dǎo)的間隙連接協(xié)助卵泡發(fā)育[34]并且GJA1 mRNA和蛋白質(zhì)水平在排卵前增加[34]。GJA1基因敲除小鼠的突變卵泡無法進行減數(shù)分裂和成熟[35],也無法受精,表明含有GJA1的間隙連接通道是卵母細胞成熟和黃體化所必需的[36]。BMP4已被證實可以增加牛卵巢顆粒細胞的活細胞數(shù)量[37]。本研究結(jié)果顯示,BMP4可能通過抑制GJA1的表達進而影響間隙連接通道在綿羊顆粒細胞中發(fā)揮生物學(xué)功能。綜合本試驗證實的BMP4抑制了GJA1的表達和以往的研究推測,在排卵的前期,BMP4可能參與抑制排卵和預(yù)防黃體化。
目前,TGF-β超家族成員,特別是BMPs,在生殖系統(tǒng)中對于GJA1表達的調(diào)控效應(yīng)尚未得到充分研究。本研究直接證明了BMP4處理可以下調(diào)綿羊卵巢顆粒細胞中GJA1的mRNA和蛋白水平。迄今為止,人類中已有20多種BMPs被鑒定,并且研究表明其中一些生長因子在卵巢中有表達。例如,卵母細胞表達BMP6和BMP15;顆粒細胞表達BMP2、BMP5和BMP6;卵泡膜細胞表達BMP4和BMP7[38]。還需要進一步研究,以確定綿羊源的BMPs是否與人類顆粒細胞中BMPs對GJA1調(diào)作用相似。
雖然已經(jīng)報道了BMP對GJA1在小鼠骨肉瘤細胞中的調(diào)節(jié)作用,但介導(dǎo)BMP對GJA1調(diào)節(jié)功能的分子機制仍未被確定[39,40]。Chang等[9]的研究結(jié)果表明,構(gòu)成BMP下游信號通路的SMAD1/5/8介導(dǎo)了BMP4對GJA1的抑制作用。雖然本試驗提供了SMAD1/5/8能否結(jié)合到GJA1啟動子的直接證據(jù),但之前和現(xiàn)在的研究結(jié)果表明,SMAD1/5/8可能參與了BMP4誘導(dǎo)的綿羊顆粒細胞中GJA1的下調(diào)作用。在生殖系統(tǒng)中,BMPs在顆粒細胞中的表達和功能具有多樣性。例如,BMP4和BMP7在卵泡膜細胞中的表達可能對顆粒細胞中GJA1的調(diào)控發(fā)揮作用。此外,BMP4通過SMAD1/5/8信號通路介導(dǎo)對GJA1的抑制作用,這可能與排卵和黃體化的抑制過程有關(guān)[41]。
綜上,GJA1在顆粒細胞中的表達和功能受到BMP4/SMAD4信號通路的精細調(diào)節(jié),且BMP4 SMAD1/5/8的磷酸化起著重要的作用,這些調(diào)節(jié)機制對于卵泡的正常發(fā)育和排卵過程至關(guān)重要。未來需要進一步探索這些具體的調(diào)節(jié)機制,以及它們在調(diào)控綿羊卵母細胞成熟和增加產(chǎn)羔數(shù)中的作用。
4 結(jié) 論
本研究初步分析了BMP4/SMAD4通過下調(diào)GJA1基因表達影響綿羊卵巢顆粒細胞間隙連接活性的分子機制,發(fā)現(xiàn)BMP4下調(diào)了GJA1在綿羊卵巢顆粒細胞中mRNA的表達量和蛋白水平,并且降低了間隙連接活性;BMP Ι型受體抑制劑Dorsomorphin和SMAD4的敲除逆轉(zhuǎn)了BMP4對GJA1表達的影響。本研究結(jié)果為BMP4/SMAD4參與GJA1調(diào)控綿羊卵巢顆粒細胞間隙連接活性分子機制提供了理論依據(jù)。
參考文獻(References):
[1] LEI L,WANG Y T,HU D,et al.Astroglial connexin 43-mediated gap junctions and hemichannels:potential antidepressant mechanisms and the link to neuroinflammation[J].Cell Mol Neurobiol,2023,43(8):4023-4040.
[2] LI Y T,ACOSTA F M,JIANG J X.Gap junctions or hemichannel-dependent and independent roles of connexins in fibrosis,epithelial-mesenchymal transitions,and wound healing[J].Biomolecules,2023,13(12):1796.
[3] CHO S J,OH J H,BAEK J,et al.Intercellular cross-talk through lineage-specific gap junction of cancer-associated fibroblasts related to stromal fibrosis and prognosis[J].Sci Rep,2023,13(1):14230.
[4] SIDELL N,RAJAKUMAR A.Retinoic acid action in cumulus cells:implications for oocyte development and in vitro fertilization[J].Int J Mol Sci,2024,25(3):1709.
[5] WANG Y,QI J J,YIN Y J,et al.Ferulic acid enhances oocyte maturation and the subsequent development of bovine oocytes[J].Int J Mol Sci,2023,24(19):14804.
[6] MNDEZ M S,ARGUDO D E,SORIA M E,et al.Effect of the addition of melatonin in the oocyte maturation and/or vitrification medium on in vitro production of bovine embryos[J].Rev Investig Vet,2020,31(1):9.
[7] EMORI C,SUGIURA K.Role of oocyte-derived paracrine factors in follicular development[J].Anim Sci J,2014,85(6):627-633.
[8] WU H C,CHANG H M,YI Y Y,et al.Bone morphogenetic protein 6 affects cell-cell communication by altering the expression of Connexin43 in human granulosa-lutein cells[J].Mol Cell Endocrinol,2019,498:110548.
[9] CHANG H M,CHENG J C,LEUNG P C K.Theca-derived BMP4 and BMP7 down-regulate connexin43 expression and decrease gap junction intercellular communication activity in immortalized human granulosa cells[J].J Clin Endocrinol Metab,2013,98(3):E437-E445.
[10] CHEN Y C,CHANG H M,CHENG J C,et al.Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells[J].Hum Reprod,2015,30(9):2190-2201.
[11] WU Y T,CHANG H M,HUANG H F,et al.Bone morphogenetic protein 2 regulates cell-cell communication by down-regulating connexin43 expression in luteinized human granulosa cells[J].Mol Hum Reprod,2017,23(3):155-165.
[12] YANG Y,LIANG J,CHEN S Y,et al.O-Fucosylation of BMP1 promotes endometrial decidualization by activating BMP/Smad signaling pathway[J].Biol Reprod,2023,109(2):172-183.
[13] CROSS E E,THOMASON R T,MARTINEZ M,et al.Application of small organic molecules reveals cooperative TGFβ and BMP regulation of mesothelial cell behaviors[J].ACS Chem Biol,2011,6(9):952-961.
[14] 龔一鳴,賈一軒,李佳駿,等.不同F(xiàn)ecB基因型和不同直徑綿羊卵泡中BMP/SMAD通路活性及蛋白表達差異[J].畜牧獸醫(yī)學(xué)報,2024,55(9):3957-3967.
GONG Y M,JIA Y X,LI J J,et al.BMP/SMAD pathway activity and protein expression profiles in ovarian follicles with different diameters in diverse FecB genotyped ewes[J].Acta Veterinaria et Zootechnica Sinica,2024,55(9):3957-3967.(in Chinese)
[15] 楊初蕾,李星瑤,張譯元,等.綿羊骨形態(tài)發(fā)生蛋白受體-1B基因研究進展[J].中國畜牧獸醫(yī),2024,51(2):649-658.
YANG C L,LI X Y,ZHANG Y Y,et al.Research progress on bone morphogenetic protein receptor type-1B gene in sheep[J].China Animal Husbandry amp; Veterinary Medicine,2024,51(2):649-658.(in Chinese)
[16] XIN X,CHANG H M,LEUNG P C K,et al.Bone morphogenetic protein 6 induces downregulation of pentraxin 3 expression in human granulosa lutein cells in women with polycystic ovary syndrome[J].J Assist Reprod Genet,2024,41(1):31-48.
[17] YUAN J S,DENG Y,ZHANG Y Y,et al.Bmp4 inhibits goose granulosa cell apoptosis via PI3K/AKT/Caspase-9 signaling pathway[J].Anim Reprod Sci,2019,200:86-95.
[18] AMPEY B C,AMPEY A C,LOPEZ G E,et al.Cyclic nucleotides differentially regulate Cx43 gap junction function in uterine artery endothelial cells from pregnant ewes[J].Hypertension,2017,70(2):401-411.
[19] SUGIURA K,SU Y Q,EPPIG J J.Does bone morphogenetic protein 6 (BMP6) affect female fertility in the mouse?[J].Biol Reprod,2010,83(6):997-1004.
[20] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,2001,25(4):402-408.
[21] 閆 華,只達石,劉 銳.熒光顯微鏡劃痕標記染料示蹤技術(shù)的改進[J].中國現(xiàn)代神經(jīng)疾病雜志,2006,6(2):123.
YAN H,ZHI D S,LIU R.Improvement of scratch marking dye tracing technology for fluorescence microscope[J].Chinese Journal of Contemporary Neurology and Neurosurgery,2006,6(2):123.(in Chinese)
[22] 顏 玉,鮑秀琦,薛 勇,等.應(yīng)用劃痕標記染料示蹤技術(shù)檢測草蓯蓉甲醇提取物對大鼠肝癌細胞功能的影響[J].黑龍江醫(yī)藥科學(xué),2011,34(5):3-4.
YAN Y,BAO X Q,XUE Y,et al.Detection of effect of boschniakia rossica extract on rat hepatoma cell function by tracer technique of scratch labeled by dye[J].Heilongjiang Medicine and Pharmacy,2011,34(5):3-4.(in Chinese)
[23] WU M R,CHEN G Q,LI Y P.TGF-β and BMP signaling in osteoblast,skeletal development,and bone formation,homeostasis and disease[J].Bone Res,2016,4:16009.
[24] BRZERT M,KRANC W,NAWROCKI M J,et al.New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation[J].Mol Med Rep,2020,21(3):1537-1551.
[25] CHEN Y C,CHANG H M,CHENG J C,et al.Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells[J].Hum Reprod,2015,30(9):2190-2201.
[26] YAO Y L,REHEMAN A,XU Y F,et al.miR-125b contributes to ovarian granulosa cell apoptosis through targeting BMPR1B,a major gene for sheep prolificacy[J].Reprod Sci,2019,26(2):295-305.
[27] TALHOUK R,TARRAF C,KOBROSSY L,et al.Modulation of Cx43 and gap junctional intercellular communication by androstenedione in rat polycystic ovary and granulosa cells in vitro[J].J Reprod Infertil,2012,13(1):21-32.
[28] MOHAN JEENA L,KUMAR D,RAHANGDALE S,et al.Transcriptional profile of cumulus associated GJA1,PTX3,PRSS35,and SERPINE2 genes with oocytes and embryonic development in water buffalo[J].Mol Biol Rep,2022, 49(7):6285-6293.
[29] DA SILVA A M S,BRUNO J B,DE LIMA L F,et al.Connexin 37 and 43 gene and protein expression and developmental competence of isolated ovine secondary follicles cultured in vitro after vitrification of ovarian tissue[J].Theriogenology,2016, 85(8):1457-1467.
[30] LI Y X,CHANG H M,SUNG Y W,et al.Betacellulin regulates gap junction intercellular communication by inducing the phosphorylation of connexin 43 in human granulosa-lutein cells[J].J Ovarian Res,2023,16(1):103.
[31] KIM J E,LEE M Y,KANG M J,et al.Establishment of a useful in vitro decidual induction model using eCG-primed nonpregnant mouse endometrial stromal cells[J].Biol Reprod,2022,107(6):1464-1476.
[32] ZHENG X M,JING H,GAO S Q,et al.LH upregulates connexin 43 expression in granulosa cells by activating the Wnt/β-catenin signalling pathway[J].Reprod Fertil Dev,2021,33(3):239-244.
[33] WU C H,YANG J G,YANG J J,et al.Androgen excess down-regulates connexin43 in a human granulosa cell line[J].Fertil Steril,2010,94(7):2938-2941.
[34] SANTOS J D R,BATISTA R I T P,MAGALHES L C,et al.Overexpression of hyaluronan synthase 2 and gonadotropin receptors in cumulus cells of goats subjected to one-shot eCG/FSH hormonal treatment for ovarian stimulation[J].Anim Reprod Sci,2016,170:15-24.
[35] MCGINNIS L K,KINSEY W H.Role of focal adhesion kinase in oocyte-follicle communication[J].Mol Reprod Dev,2015, 82(2): 90-102.
[36] SHEN P L,XU J,WANG P,et al.A new three-dimensional glass scaffold increases the in vitro maturation efficiency of buffalo (Bubalus bubalis) oocyte via remodelling the extracellular matrix and cell connection of cumulus cells[J].Reprod Domest Anim,2020,55(2):170-180.
[37] YANG Y H,KANNO C,SAKAGUCHI K,et al.Extension of the culture period for the in vitro growth of bovine oocytes in the presence of bone morphogenetic protein-4 increases oocyte diameter,but impairs subsequent developmental competence[J]. Anim Sci J, 2017,88(11):1686-1691.
[38] NAKAJIMA K,KIDANI T,MIURA H.Molecular profiling of bone remodeling occurring in musculoskeletal tumors[J].J Orthop Res,2021,39(7):1402-1410.
[39] TASCA A,ASTLEFORD K,BLIXT N C,et al.SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors[J].PLoS One,2018,13(9):e0203404.
[40] LI Y X,CHANG H M,ZHU H,et al.EGF-like growth factors upregulate pentraxin 3 expression in human granulosa-lutein cells[J].J Ovarian Res,2024,17(1):97.
[41] JI J H,ZHOU Y J,LI Z P,et al.Impairment of ovarian follicular development caused by titanium dioxide nanoparticles exposure involved in the TGF-β/BMP/Smad pathway[J].Environ Toxicol,2023,38(1):185-192.
(編輯 郭云雁)