摘 要:
旨在揭示雞催乳素受體基因(PRLR)和精子鞭毛蛋白2基因(SPEF2)在雞胚性腺的雙向轉(zhuǎn)錄調(diào)控特征。采集4個胚齡(E12.5、E16.5、E18.5、E21.5)180只大午金鳳雞胚左右側(cè)性腺,每3個樣品混池組成1個重復(fù),除E21.5母雞右側(cè)卵巢完全退化,其他同胚齡同性別同側(cè)性腺共14分組,利用RT-qPCR檢測PRLR和SPEF2的表達變化。利用cDNA末端快速擴增技術(shù)(5′RACE)和雙熒光素酶報告基因系統(tǒng)(DLRA)分別鑒定PRLR和SPEF2的轉(zhuǎn)錄起始位點(TSS)及其核心啟動子區(qū),利用亞硫酸氫鹽測序技術(shù)(BSP)檢測啟動子區(qū)甲基化水平。結(jié)果發(fā)現(xiàn),PRLR在E12.5~E21.5睪丸中的表達顯著高于卵巢(Plt;0.05),而SPEF2在E18.5~E21.5卵巢中的表達顯著高于睪丸(Plt;0.05)。PRLR的10個TSS中5個具有啟動子活性,SPEF2的3個TSS全部具有啟動子活性。PRLR的PA1啟動子和SPEF2的SC啟動子活性最高(Plt;0.05),進一步檢測發(fā)現(xiàn)二者的最高活性區(qū)域分別是長565 bp和478 bp的反向互補雙向啟動子區(qū)。478 bp的雙向啟動活性顯著高于565 bp(Plt;0.05),且二者對PRLR的啟動活性均顯著高于SPEF2(Plt;0.05),這與E12.5~E21.5雞胚性腺中PRLR的轉(zhuǎn)錄表達顯著高于SPEF2(Plt;0.05)一致。E21.5卵巢雙向啟動子區(qū)443 bp的CpG島甲基化水平顯著高于睪丸(Plt;0.05),與睪丸PRLR表達顯著高于卵巢一致;位于SPEF2第1內(nèi)含子區(qū)159 bp的CpG島甲基化水平睪丸顯著高于卵巢(Plt;0.05),與睪丸SPEF2的表達顯著低于卵巢一致。綜上,478 bp的雙向核心啟動子區(qū)調(diào)控雞胚性腺中PRLR和SPEF2的轉(zhuǎn)錄表達,并且啟動PRLR的轉(zhuǎn)錄活性高于SPEF2,PRLR的轉(zhuǎn)錄表達水平高于SPEF2;甲基化參與雙向啟動子調(diào)控性腺PRLR的轉(zhuǎn)錄表達,E21.5卵巢甲基化水平高,PRLR在卵巢表達低于睪丸。這些研究結(jié)果為揭示PRLR和SPEF2在雞胚性腺發(fā)育中的轉(zhuǎn)錄調(diào)控機制研究提供理論依據(jù)。
關(guān)鍵詞:
雞;PRLR;SPEF2;雙向啟動子;甲基化
中圖分類號:
S831.2"""" 文獻標志碼:A """"文章編號: 0366-6964(2025)02-0666-13
收稿日期:2024-08-09
基金項目:河北省自然科學(xué)基金(C2021204087)
作者簡介:王 濤(1999-),女,滿族,河北承德人,碩士,主要從事家禽遺傳育種研究,E-mail:1905580765@qq.com
*通信作者:李蘭會,主要從事家禽遺傳育種研究,E-mail:lanhuili13@163.com
Bidirectional Promoter Regulate Transcriptional Expression of PRLR and SPEF2
in Chicken Embryonic Gonads
WANG" Tao1, WANG" Qi2, DONG" Jiaojiao1, WANG" Dehe1, LI" Lanhui1*
(1.College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000," China;
2.Hebei Provincial Institute of Animal Husbandry and Veterinary Medicine, Baoding 071001," China)
Abstract:
This study aimed to reveal the bidirectional transcriptional regulation character of prolactin receptor gene (PRLR) and sperm flagellar protein 2 (SPEF2) in chicken embryonic gonads.
The left and right gonads of 180 Dawu Jinfeng chicken embryos at 4 embryonic ages were collected, and each 3 samples mixing pools formed a repeat. Except for the complete degeneration of the right ovary of E21.5 hens, the other ipsilateral gonads of the same embryonic age and sex were divided into 14 groups.
The expression changes of PRLR and SPEF2 in gonads of Dawujinfeng chickens at 4 embryonic ages (E12.5, E16.5, E18.5 and E21.5) were detected using real-time quantitative PCR (RT-qPCR). The transcription start sites (TSS) of the two genes were identified using rapid amplification of cDNA ends (5′RACE), their core promoter region was identified using dual luciferase reporter assay (DLRA). The methylation level in promoter region was detected using bisulfite genomic sequencing PCR (BSP). Results were as follows: The expression of PRLR in testis from E12.5 to E21.5 was higher than in ovary (Plt;0.05), while the expression of SPEF2 in ovary from E18.5 to E21.5 was higher than in testis (Plt;0.05). Among the 10 TSSs of PRLR, 5 had promoter activity, and all the 3 TSSs of SPEF2 had promoter activity. PA1 promoter region of PRLR and SC of SPEF2 exhibited the highest promoter activity (Plt;0.05), respectively. Further detection found that 565 bp of PA1 and 478 bp of SC in reverse complement had the highest promoter activity, respectively. The bidirectional promoter activity of 478 bp region was significantly higher than 565 bp (Plt;0.05), and both had significantly higher promoter activity for PRLR than for SPEF2 (Plt;0.05), which was in conformity with that the expression of PRLR was significantly higher than SPEF2 in chicken embryonic gonads at E12.5-E21.5 (Plt;0.05). That the methylation level of 443 bp CpG island in the bidirectional promoter region was significantly higher in E21.5 ovary than in testis (Plt;0.05), was in accordance with the higher expression of PRLR in testis. The methylation level of 159 bp CpG island in the first intron of SPEF2 was significantly higher in testis than in ovary (Plt;0.05), correlated with the higher expression of SPEF2 in ovary. In summary, the transcriptional expression of PRLR and SPEF2 in chicken embryonic gonads was regulated by bidirectional promoter with 478 bp core region, which had higher promoter activity for PRLR than SPEF2, and the expression of PRLR in gonad was higher than SPEF2. The methylation of the CpG island in BDP participated in regulating the transcriptional expression of PRLR, with ovary at E21.5 had higher methylation level, and PRLR was expressed lower in ovary. These results provided a theoretical basis for revealing transcriptional regulation mechanism of PRLR and SPEF2 in chicken gonadal development.
Key words:
chicken; PRLR; SPEF2; bidirectional promoter; methylation
*Corresponding author: LI Lanhui, E-mail:lanhuili13@163.com
基因的雙向轉(zhuǎn)錄在自然界廣泛存在,人類基因組中大概有11%的基因為“頭對頭”雙向基因?qū)Γ∈蠛痛笫蠡蚪M中雙向轉(zhuǎn)錄基因?qū)Ψ謩e占比8.2%和4.4%[1]。兩個相鄰且轉(zhuǎn)錄方向相反的基因共享啟動子區(qū),這種能夠同時調(diào)控上下游基因表達的啟動子稱為雙向啟動子(BDP)[2]。BDP可以相隔數(shù)百或數(shù)千個堿基對,同時調(diào)控兩個相鄰基因的表達[3]。鑒于BDP在基因工程中的巨大潛力,克隆和鑒定特異性BDP并探究其對基因表達的調(diào)控具有重要理論意義和應(yīng)用價值[4,5]。受BDP調(diào)控的基因?qū)Σ粌H具有功能相關(guān)性,表達也存在相關(guān)性[6,7]。人基因組中已經(jīng)鑒定的雙向轉(zhuǎn)錄基因?qū)咏?0個[8],雞基因組中的雙向基因?qū)σ灿醒芯繄蟮?。雞GPAT和AIRC是“頭對頭”基因?qū)?,二者均參與嘌呤核苷酸的合成[9,10];Lin等[11]發(fā)現(xiàn),雞CCDC152/GHR共用BDP,其活性受NFYB/NFYC復(fù)合物調(diào)控。
雞催乳素受體基因(PRLR)和精子鞭毛蛋白2基因(SPEF2)“頭對頭”排列于Z染色體上。PRLR和SPEF2的部分重復(fù)是雞慢羽的分子基礎(chǔ),二者還被發(fā)現(xiàn)是奶?!肮饣幻钡闹餍Щ颍?2],是公牛生育能力的候選基因[13]。PRLR影響母雞產(chǎn)蛋數(shù)、卵巢重等繁殖性狀,對公雞睪丸重、曲精細管直徑、間質(zhì)細胞發(fā)育也有影響[14]。SPEF2在小鼠精母細胞和精子等有纖毛和鞭毛的組織細胞中高表達[15],其變異造成雄性不育,在性別分化中發(fā)揮作用[16]。課題組前期研究發(fā)現(xiàn),PRLR與SPEF2在母雞卵巢中的表達高度相關(guān),暗示兩個基因的共表達可能促進卵巢的發(fā)育。本試驗檢測PRLR與SPEF2在不同胚齡雞胚性腺中的表達,5′RACE技術(shù)檢測獲得兩個基因的轉(zhuǎn)錄起始位點(transcription start site,TSS),利用雙熒光素酶報告基因系統(tǒng)(DLRA)檢測其啟動子區(qū),利用亞硫酸氫鹽測序技術(shù)(BSP)檢測啟動子區(qū)CpG島的甲基化水平。旨在明確PRLR和SPEF2的BDP核心區(qū),以及啟動子區(qū)甲基化水平對兩個基因在雞胚性腺的轉(zhuǎn)錄調(diào)控作用,為深入探究PRLR和SPEF2參與雞胚性腺發(fā)育的分子調(diào)控奠定理論基礎(chǔ)。
1 材料與方法
1.1 試驗樣品
采集40只12.5胚齡(E12.5)、40只16.5胚齡(E16.5)、40只18.5胚齡(E18.5)和60只21.5胚齡(E21.5)的健康大午金鳳公母雞胚,取兩側(cè)性腺分別裝于不同離心管中,提取總RNA進行RT-qPCR和5′RACE試驗,提取E21.5性腺基因組DNA用于甲基化水平和啟動子區(qū)檢測。
1.2 試驗試劑
雞成纖維細胞(DF-1)和ABW血清購自上海恒遠生物科技有限公司;組織樣品DNA提取試劑盒和2×Taq PCR Master Mix購自康為世紀;SMARTer RACE 5′/3′、限制性內(nèi)切酶KpnI和XhoI、PrimeSTAR Max DNA Polymerase、TaKaRa EpiTap HS和TB Green Premix Ex TaqTM購自TaKaRa;pGL3-Basic載體和pRL-TK載體由河北農(nóng)業(yè)大學(xué)動物科技學(xué)院遺傳實驗室保存;TransZol Up Plus RNA Kit購自全式金;Ultra-Universal TOPO Cloning Kit、EpiArt DNA Methylation Bisulfite Kit、無縫克隆試劑盒、無內(nèi)毒素質(zhì)粒小量提取試劑盒和產(chǎn)物純化試劑盒購自諾唯贊;DMEM/F-12、PBS和胰酶購自Gibco;轉(zhuǎn)染用脂質(zhì)體Lipofectanmine2000購自Invitrogen;雙熒光素酶報告檢測試劑盒購自Promega。
1.3 試驗方法
1.3.1 基因組DNA及總RNA提取
分別按照DNA和RNA提取試劑盒說明書提取雞胚性腺基因組DNA和總RNA,瓊脂糖凝膠電泳和NanoDrop2000檢測提取質(zhì)量和濃度。
1.3.2 引物設(shè)計及合成
根據(jù)NCBI中PRLR和SPEF2的參考序列設(shè)計RT-qPCR引物,檢測不同胚齡雞胚性腺中兩個基因的表達量;設(shè)計5′RACE特異性引物PRLR-5′RACE和SPEF2-5′RACE,檢測兩個基因的TSS。根據(jù)轉(zhuǎn)錄變體的TSS設(shè)計引物擴增兩個基因5′側(cè)翼序列,篩查PRLR和SPEF2的啟動子區(qū)。引物CpG-PRLR和CpG-SPEF2用于檢測PRLR的159 bp和SPEF2的205 bp CpG島甲基化水平,巢式PCR引物CpG-PRLR-1和CpG-PRLR-2檢測PRLR的443 bp CpG島甲基化水平。引物由蘇州金唯智生物科技有限公司合成,引物信息見表1。
1.3.3 RT-qPCR檢測雞胚性腺PRLR和SPEF2表達
RT-qPCR試驗檢測雞胚性腺中PRLR和SPEF2的轉(zhuǎn)錄表達,PCR反應(yīng)體系:cDNA模板2.0 μL,2×TB Green Premix Ex Taq II 10.0 μL,50×ROX II 0.4 μL,上、下游引物各0.8 μL,ddH2O 6.0 μL,總計20.0 μL。PCR反應(yīng)條件:95℃預(yù)變性30 s;95℃變性5 s,60℃退火34 s,40個循環(huán)。每個樣品3個重復(fù),采用2-ΔΔCt法計算PRLR和SPEF2的相對表達量。
1.3.4 5′RACE克隆PRLR和SPEF2的5′UTR區(qū)
5′RACE試驗擴增PRLR和SPEF2轉(zhuǎn)錄變體的5′UTR區(qū),第一步PCR反應(yīng)體系:SeqAmp DNA Polymerase 1.0 μL,PCR-Grade H2O 15.5 μL,2×SeqAmp Buffer 25.0 μL,5′RACE-Ready cDNA 2.5 μL,10×UPM 5.0 μL,5′GSP 1.0 μL,總計50.0 μL。PCR反應(yīng)條件:94℃變性30 s,72℃退火并延伸3 min,5個循環(huán);94℃變性30 s,70℃退火30 s,72℃延伸3 min,5個循環(huán);94℃變性30 s,68℃退火30 s,72℃延伸3 min,25個循環(huán);4℃保存。第二步PCR反應(yīng)體系:SeqAmp DNA Polymerase 1.0 μL,PCR-Grade H2O 15.5 μL,2×SeqAmp Buffer 25.0 μL,PCR產(chǎn)物稀釋液5.0 μL,Universal Primer Short 1.0 μL,5′嵌套GSP (10 mol·L-1)1.0 μL,ddH2O 1.5 μL,總計50.0 μL。PCR反應(yīng)條件:94℃變性30 s,68℃退火30 s,72℃延伸3 min,25個循環(huán);4℃保存。將PCR產(chǎn)物膠回收,連接到線性化載體中進行測序,測序結(jié)果與雞基因組DNA和mRNA序列進行比對,確定PRLR和SPEF2轉(zhuǎn)錄變體的5′UTR序列。
1.3.5 構(gòu)建PRLR和SPEF2啟動子區(qū)表達載體
為鑒定PRLR和SPEF2的啟動子區(qū),根據(jù)10種PRLR和3種SPEF2的TSS,設(shè)計8對和4對引物分別擴增兩個基因的TSS上游區(qū)域。PCR擴增體系:PrimeSTAR Max Premix 25.0 μL,上、下游引物各1.0 μL,DNA模板200 ng,ddH2O補足50.0 μL。PCR反應(yīng)條件:98℃變性10 s,53℃退火15 s,72℃延伸10 s,35個循環(huán);4℃保存。用XhoI和KnpI對pGL3-basic進行雙酶切制備線性化載體,將PCR產(chǎn)物膠回收,連接到線性化載體中進行測序檢測。
1.3.6 PRLR和SPEF2的啟動子活性檢測
將PRLR和SPEF2的12個重組質(zhì)粒、pGL3-Basic分別與內(nèi)參質(zhì)粒pRT-TK瞬時轉(zhuǎn)染到DF1細胞中,48 h后收集細胞,利用雙熒光素酶活性報告基因檢測目的片段的啟動子活性。
1.3.7 BPS檢測PRLR和SPEF2啟動子區(qū)甲基化水平
使用Methprimer(lengthgt;l00,Obs/Expgt;0.6,GC%gt;50%)預(yù)測PRLR和SPEF2啟動子區(qū)潛在CpG島,根據(jù)DNA甲基化試劑盒說明書對E21.5雞胚性腺基因組進行亞硫酸鹽轉(zhuǎn)化。利用Methprimer設(shè)計引物,對PRLR和SPEF2的4個CpG島進行甲基化檢測。
雞胚睪丸和卵巢分別檢測12個樣品的PRLR和SPEF2甲基化水平。PCR擴增體系為:TaKaRa EpiTap HS 0.25 μL,10×EpiTap PCR Buffer 5.0 μL,25 mmol·L-1 MgCl2 5.0 μL,dNTP Mixture 6.0 μL,DNA模板2.0 μL,F(xiàn)orward/Reverse primer 2.0 μL,ddH2O 27.75 μL,總體積50.0 μL。PCR反應(yīng)條件:98℃變性10 s,55℃退火30 s,72℃延伸30 s,共38個循環(huán);4℃保存。將PCR產(chǎn)物膠回收后連接到載體中進行測序,測序結(jié)果與基因DNA序列進行比較,分析甲基化水平。
1.3.8 數(shù)據(jù)分析
數(shù)據(jù)統(tǒng)計分析采用GraphPad Prism 8.0軟件進行單因素方差分析,結(jié)果以“平均值±標準誤”表示,P≤0.05表示差異顯著,P≤0.01表示差異極顯著。利用SPSS26.0雙變量相關(guān)性分析基因表達的相關(guān)性。
2 結(jié) 果
2.1 雞胚性腺中PRLR與SPEF2的表達
RT-qPCR檢測不同胚齡雞胚左右兩側(cè)性腺中PRLR(圖1A)表達,發(fā)現(xiàn)卵巢中PRLR表達隨胚齡有上升趨勢,并且在E16.5和E18.5間發(fā)生顯著上升(Plt;0.05);而睪丸中的表達沒有顯著變化(Pgt;0.05)。4個胚齡睪丸PRLR的表達均顯著高于卵巢(Plt;0.05),并且4個胚齡的兩側(cè)睪丸間以及2個胚齡兩側(cè)卵巢間PRLR的表達均無顯著差異(Pgt;0.05)。
雞胚性腺中的SPEF2(圖1B)表達:E12.5的睪丸與卵巢SPEF2表達沒有顯著差異(Pgt;0.05),但之后兩側(cè)睪丸中SPEF2顯著下降(Plt;0.05),并保持較低水平;而E18.5和E21.5左側(cè)卵巢的表達相對于E12.5~E16.5卵巢的表達顯著上升(Plt;0.05),E16.5~E21.5兩側(cè)睪丸中SPEF2的表達均顯著低于E16.5~E21.5左側(cè)卵巢(Plt;0.05)。4個胚齡兩側(cè)睪丸間以及2個胚齡兩側(cè)卵巢間的SPEF2表達均無顯著差異(Pgt;0.05)。
2.2 PRLR與SPEF2的表達相關(guān)性
雞胚睪丸和卵巢PRLR與SPEF2的表達相關(guān)性見表2,E12.5右側(cè)卵巢以及E16.5、E18.5和E21.5左側(cè)卵巢中二者的表達呈中度或高度正相關(guān)(0.762~0.900,Plt;0.05);E18.5右側(cè)睪丸和E21.5左側(cè)睪丸中PRLR與SPEF2表達呈中度或高度正相關(guān)(0.638,Plt;0.05;0.980,Plt;0.01),其他胚齡兩個基因的表達相關(guān)不顯著(Pgt;0.05)。
2.3 PRLR與SPEF2的啟動子鑒定
2.3.1 PRLR與SPEF2的TSS
為探究PRLR與SPEF2轉(zhuǎn)錄調(diào)控方式,對E21.5雞胚性腺進行5′RACE試驗,將擴增產(chǎn)物全部純化回收測序,測序結(jié)果與NCBI數(shù)據(jù)庫相關(guān)信息比對分析,獲得10個PRLR和3個SPEF2的TSS(圖2)。
2.3.2 PRLR和SPEF2的啟動子區(qū)
為明確PRLR與SPEF2的啟動子區(qū),8個PRLR重組質(zhì)粒的啟動子活性見圖3A,以PA2、PB2和PC2為轉(zhuǎn)錄起始外顯子的3個片段相對熒光活性與pGL3-Basic沒有顯著差異(Pgt;0.05),而以PA1、PA4、PC1、PB5、PA10為轉(zhuǎn)錄起始外顯子的5個片段活性顯著高于pGL3-Basic(Plt;0.05),其中PA1片段活性最高(Plt;0.05)。
4個SPEF2重組質(zhì)粒的啟動子活性見圖3B,SD片段的相對熒光活性與pGL3-Basic沒有顯著差異(Pgt;0.05),而SA、SB和SC片段的活性均顯著高于pGL3-Basic(Plt;0.05),其中SC的啟動子活性最高(Plt;0.05)。
2.3.3 PRLR的A1啟動子核心區(qū)
在明確PRLR的A1啟動子區(qū)活性最高基礎(chǔ)上,解析其核心區(qū)域,在PA1片段基礎(chǔ)上逐步缺失構(gòu)建的4個缺失表達載體的熒光素酶活性見圖4。P3-565片段的活性最強(Plt;0.05),-469~-321缺失的P3-565相較于P2-713,活性顯著上升(Plt;0.05),提示缺失區(qū)域可能存在負調(diào)控元件;而P3-565片段缺失-321~-101后的P4-345,活性顯著下降(Plt;0.05),提示-321 bp~-101 bp區(qū)域存在正調(diào)控元件。因此明確-321~+243的565 bp區(qū)域為PRLR的A1啟動子核心區(qū)。
2.3.4 SPEF2的C啟動子核心區(qū)
在明確SPEF2的C啟動子活性最高基礎(chǔ)上,解析其核心區(qū),以2 178 bp片段為基礎(chǔ)構(gòu)建的9個缺失表達載體重組質(zhì)粒的熒光素酶活性見圖5。其中SPEF2-P8-478的活性最強(Plt;0.05),SPEF2-P7-703相較SPEF2-P8-478缺失-610~-386,活性顯著上升(Plt;0.05)暗示該區(qū)域可能存在負調(diào)控元件;而SPEF2-P8-478相較于SPEF2-P9-205片段,缺失-386~-113,活性顯著下降(Plt;0.05)提示該區(qū)域存在正調(diào)控元件。因此將478 bp(-385~+91)區(qū)域確定為SPEF2的強啟動子C的核心區(qū)。
2.3.5 PRLR與SPEF2的BDP" 565 bp與478 bp分別為PRLR與SPEF2的最強活性核心啟動子區(qū),序列比對發(fā)現(xiàn)二者為反向互補重疊域,前者比后者長87 bp(圖6),因此推斷以A1為TSS的PRLR轉(zhuǎn)錄變體與以C外顯子為TSS的SPEF2轉(zhuǎn)錄變體的啟動子為具有強啟動活性的BDP。
將565 bp與478 bp兩片段分別正反兩個方向連接到pGL3-Basic,檢測發(fā)現(xiàn)兩片段對PRLR的啟動子活性均顯著高于SPEF2(圖7,Plt;0.05),478 bp對PRLR的啟動子活性是SPEF2的3.5倍,并且478 bp在兩個方向的啟動子活性均顯著高于565 bp(Plt;0.05),前者的啟動子活性是后者的4.3倍。
基于BDP在PRLR方向的啟動活性高于SPEF2,進一步分析雞胚性腺中兩基因的轉(zhuǎn)錄表達差異(圖8)。E12.5~E21.5左右兩側(cè)睪丸中PRLR的表達全部顯著高于SPEF2(Plt;0.05),PRLR對SPEF2的表達倍數(shù)隨胚齡升高,由25.4倍升至77.4倍。E12.5左右兩側(cè)卵巢中兩基因表達差異不顯著(Pgt;0.05),但E18.5~E21.5左右兩側(cè)卵巢中PRLR的表達顯著高于SPEF2(Plt;0.05),同樣表現(xiàn)為PRLR的表達倍數(shù)隨胚齡升高,由0.88升至4.97倍。PRLR與SPEF2在雞胚性腺的表達差異與其BDP在PRLR方向的高啟動活性一致。
2.4 PRLR與SPEF2啟動子區(qū)甲基化
為揭示甲基化是否參與BDP的啟動活性,利用在線工具分析檢測PRLR的A1啟動子區(qū)和SPEF2的C啟動子區(qū)的CpG島,利用BSP法檢測E21.5雞胚性腺PRLR的A1啟動子區(qū)159 bp和443 bp、SPEF2的C啟動子區(qū)205 bp和416 bp的CpG島甲基化水平。443 bp與416 bp的兩個CpG島處于PRLR和SPEF2的BDP區(qū),為同一CpG島;PRLR的A1啟動子區(qū)159 bp CpG島,同時位于SPEF2的C轉(zhuǎn)錄變體的第1內(nèi)含子上。
結(jié)果發(fā)現(xiàn)E21.5睪丸和卵巢的205 bp CpG島均未發(fā)生甲基化,A1啟動子區(qū)159 bp CpG島甲基化水平睪丸極顯著高于卵巢(70% vs. 45.6%,Plt;0.01)(圖9A);PRLR和SPEF2的BDP區(qū),卵巢甲基化水平極顯著高于睪丸(2.3% vs. 1.3%,Plt;0.01)(圖9B)。
進一步分析PRLR和SPEF2在E21.5的睪丸與卵巢間中的表達差異,結(jié)果發(fā)現(xiàn)PRLR在左右兩側(cè)睪丸中的表達量均顯著高于卵巢(Plt;0.05)(圖10A),BDP在睪丸的低甲基化水平與其PRLR的高表達一致;SPEF2在卵巢中的表達極顯著高于左右兩側(cè)睪丸(Plt;0.01)(圖10B),與SPEF2第1內(nèi)含子在卵巢中的低甲基化對應(yīng)一致。
3 討 論
3.1 PRLR和SPEF2共同參與雞胚性腺發(fā)育
性腺發(fā)育是睪丸或卵巢在性別特異性分子信號的作用下逐漸發(fā)育成熟的過程。探究雞胚性腺發(fā)育的關(guān)鍵基因,有助于我們充分了解性腺發(fā)育過程,進而提高家禽的繁殖性能。本研究發(fā)現(xiàn)PRLR在卵巢發(fā)育過程中,隨胚齡增加表達量顯著上升后保持較高水平,PRLR具有促進細胞增殖的功能[17,18],因此推測PRLR對卵巢發(fā)育起到促進作用。雖然公雞性腺中PRLR呈下降趨勢,但睪丸中PRLR的表達顯著高于母雞卵巢,這與條紋倉鼠和鴿子PRLR的睪丸高表達一致[19-21]。暗示PRLR在雄性性腺分化發(fā)育中發(fā)揮著不可低估的作用。雄性哺乳動物中,PRLR在睪丸中表達能增加睪丸重量和精細管直徑,刺激間質(zhì)細胞發(fā)育,還參與精子細胞和精母細胞的發(fā)育以及精原細胞增殖[22]。
SPEF2在含有纖毛和鞭毛的組織中表達,在精子尾部發(fā)育中起著至關(guān)重要的作用[23,24]。目前,關(guān)于SPEF2的研究主要集中在具有纖毛結(jié)構(gòu)的組織或細胞上,性反轉(zhuǎn)雞中SPEF2的低表達與其生殖細胞發(fā)育不良和生殖能力喪失有關(guān)[25]。但有研究發(fā)現(xiàn)SPEF2在沒有纖毛結(jié)構(gòu)的卵巢細胞中也有表達[26],SPEF2非編碼區(qū)內(nèi)的多態(tài)性與山羊的產(chǎn)仔數(shù)有關(guān)[27]。本試驗發(fā)現(xiàn)SPEF2在雞胚睪丸和卵巢中均有表達,E12.5的公母雞性腺中SPEF2表達無顯著差異,但E16.5~21.5的左側(cè)卵巢的表達顯著高于左側(cè)睪丸,本研究還發(fā)現(xiàn)SPEF2和PRLR在雞胚性腺中的表達具有高度相關(guān)性。因此,認為SPEF2和PRLR對雞胚性腺發(fā)育具有共調(diào)控作用。
雞胚性腺發(fā)育過程中,雄性雞胚雙側(cè)性腺發(fā)育為睪丸,而雌性雞胚左側(cè)性腺發(fā)育為卵巢、右側(cè)退化。E12.5時雞胚右側(cè)卵巢退化、左右兩側(cè)睪丸不對稱發(fā)育已經(jīng)結(jié)束[28],本研究發(fā)現(xiàn)E12.5后雞胚兩側(cè)睪丸間及兩側(cè)卵巢間,PRLR和SPEF2的表達量均沒有顯著差異,因此PRLR和SPEF2與雞胚性腺不對稱發(fā)育的關(guān)系有待深入探究。
3.2 PRLR和SPEF2的雙向啟動子
雞PRLR和SPEF2相鄰排列于Z染色體上,以5′末端“頭碰頭”方式連接[29]。雙向轉(zhuǎn)錄基因?qū)Φ霓D(zhuǎn)錄表達能夠同時啟動或抑制,其中一個基因還可以被選擇性地激活或抑制,本試驗發(fā)現(xiàn)雞胚左右兩側(cè)性腺中PRLR與SPEF2的表達存在高度正相關(guān)。為探究SPEF2與PRLR的轉(zhuǎn)錄調(diào)控,我們利用5′RACE發(fā)現(xiàn)兩個基因有多個TSS,通過雙熒光素酶報告基因系統(tǒng)發(fā)現(xiàn)各自有5個和3個啟動子活性區(qū)域,最終明確了PRLR和SPEF2的核心啟動子區(qū)域為長478 bp的BDP區(qū)。該區(qū)域是PRLR以A1外顯子為TSS的-234~+243,同時是SPEF2以C外顯子為TSS的-386~+91,A1與C外顯子間距142 bp。
BDP序列的一個顯著特點是TATA-box普遍缺失,一般TATA-box啟動單向轉(zhuǎn)錄[30],另一特征是通常含有豐富的GC成分,CCAAT-box、GC-box和CpG島較多[31,32]。在線分析PRLR和SPEF2的478 bp雙向核心啟動子區(qū),沒有TATA-box但有6個CCAAT-box和4個GC-box;Jaspar檢測BDP區(qū)正反兩個方向同時存在4個SP1、3個NRF1、2個NFY和2個RFX1結(jié)合位點,它們在兩個相反方向結(jié)合在BDP的基序分別參與調(diào)控PRLR和SPEF2轉(zhuǎn)錄。GC-box是轉(zhuǎn)錄因子SP1識別的特定DNA序列,能參與并影響機體的多種生命活動[33]。NFY可通過結(jié)合到基因啟動子上的CAAT-box來調(diào)節(jié)基因轉(zhuǎn)錄,從而促進細胞增殖、侵襲和遷移等[34]。
3.3 PRLR和SPEF2的雙向啟動子活性
本試驗發(fā)現(xiàn)478 bp的BDP對PRLR的啟動活性是SPEF2的3.5倍,E21.5公雞睪丸中前者的表達最高為后者的77.4倍。Vidal等[35]和Arnaiz等[36]也發(fā)現(xiàn)雙向啟動子在兩個方向的啟動活性存在差異。雖然BDP在E21.5性腺組織中的甲基化水平較低,但卵巢中BDP的甲基化水平顯著高于睪丸,與PRLR在卵巢中的表達量低于睪丸一致,表明BDP的甲基化參與調(diào)控性腺中PRLR的表達。另外,PRLR的A1啟動子區(qū)同時是SPEF2的C轉(zhuǎn)錄變體第1內(nèi)含子的159 bp CpG島,在性腺中的甲基化水平較高,并且睪丸的甲基化水平顯著高于卵巢。Chen等[37]對雞胚性腺全基因組甲基化測序發(fā)現(xiàn),E6的兩性雞胚基因組甲基化水平差異較小,但E10公雞的明顯高于母雞。DNA甲基化是基因表達調(diào)控的主要表觀機制,TSS下游的甲基化是基因表達的強信號,尤其第1內(nèi)含子的甲基化與基因表達的連鎖關(guān)系[38]。因此,推測雞胚睪丸SPEF2的C轉(zhuǎn)錄變體第1內(nèi)含子的高甲基化在SPEF2的轉(zhuǎn)錄中發(fā)揮更大調(diào)控作用,對睪丸SPEF2的表達具有更大的抑制作用,致使SPEF2在雞胚睪丸的表達低于卵巢。有研究發(fā)現(xiàn),共用雙向啟動子的擬南芥Hsp101和CK2在熱應(yīng)激環(huán)境下前者表達高于后者,其中雙向啟動子及基因序列的甲基化參與了兩個基因的轉(zhuǎn)錄表達[39]。因此推斷,雞胚性腺發(fā)育過程中PRLR和SPEF2在卵巢和睪丸中的表達差異及其表達相關(guān),與二者共用雙向啟動子及其DNA甲基化修飾調(diào)節(jié)有關(guān)。
4 結(jié) 論
478 bp的雙向核心啟動子區(qū)調(diào)控雞胚性腺中PRLR和SPEF2的轉(zhuǎn)錄表達,并且啟動PRLR的轉(zhuǎn)錄活性高于SPEF2,PRLR的表達高于SPEF2;甲基化參與雙向啟動子調(diào)控性腺PRLR的轉(zhuǎn)錄表達,E21.5卵巢甲基化水平高,PRLR在卵巢表達低于睪丸。本研究結(jié)果為進一步探究PRLR與SPEF2在雞胚性腺發(fā)育中的轉(zhuǎn)錄調(diào)控機制提供了理論依據(jù)。
參考文獻(References):
[1] YANG M Q,KOEHLY L M,ELNITSKI L L.Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes[J].PLoS Comput Biol,2007,3(4):e72.
[2] 曹 煜,余心宇,劉秀霞,等.雙向啟動子探針載體的構(gòu)建及其在谷氨酸棒桿菌中的應(yīng)用[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2023, 31(2):425-435.
CAO Y,YU X Y,LIU X X,et al.Construction of bidirectional promoter probe vector and its application in Corynebacterium glutamicum[J].Journal of Agricultural Biotechnology,2023,31(2):425-435.(in Chinese)
[3] WARMAN E A,F(xiàn)ORREST D,GUEST T,et al.Widespread divergent transcription from bacterial and archaeal promoters is a consequence of DNA-sequence symmetry[J].Nat Microbiol,2021,6(6):746-756.
[4] JODLBAUER J,RIEDER L,GLIEDER A,et al.Bidirectional promoter libraries enable the balanced co-expression of two target genes in E. coli[J].Methods Mol Biol,2023,2617:75-86.
[5] POWERS E N,CHAN C,DORON-MANDEL E,et al.Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation[J].eLife,2022,11:e81086.
[6] WU X X,LI F Z,YANG R F,et al.Identification of a bidirectional promoter from Trichoderma reesei and its application in dual gene expression[J].J Fungi (Basel),2022,8(10):1059.
[7] PERALTA-ALVAREZ C A,NEZ-MARTNEZ H N,CERECEDO-CASTILLO J,et al.A bidirectional non-coding RNA promoter mediates long-range gene expression regulation[J].Genes (Basel),2024,15(5):549.
[8] BARGER C J,CHEE L,ALBAHRANI M,et al.Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer[J].eLife,2021,10:e55070.
[9] KOVINA A P,PETROVA N V,KOMKOV D S,et al.Regulatory systems of chicken alpha-globin gene domain suppress bidirectional transcription[J].Biochim Biophys Acta Gene Regul Mech,2022,1865(5):194850.
[10] CHAHAR N,DANGWAL M,DAS S.Complex origin,evolution,and diversification of non-canonically organized OVATE-OFP and OVATE-Like OFP gene pair across Embryophyta[J].Gene,2023,883:147685.
[11] LIN S D,LUO W,JIANG M Y,et al.Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration[J].Oncotarget,2017,8(48):84039-84053.
[12] BERNARD V,YOUNG J,BINART N.Prolactin- a pleiotropic factor in health and disease[J].Nat Rev Endocrinol,2019,15(6): 356-365.
[13] SWEETT H,F(xiàn)ONSECA P A S,SUREZ-VEGA A,et al.Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle[J].Sci Rep,2020,10(1):20102.
[14] 洪坤月,汪 峰,虞德兵,等.太湖雞PRL、PRLR和FSHβ基因多態(tài)與前期產(chǎn)蛋性狀關(guān)系研究[J].西北農(nóng)業(yè)學(xué)報,2007, 16(5): 11-14.
HONG K Y,WANG F,YU D B,et al.Polymorphisms in Taihu chicken of PRL,PRLR and FSHβ genes and association with prophase egg production[J].Acta Agriculturae Boreali-Occidentalis Sinica,2007,16(5):11-14.(in Chinese)
[15] L X Q,HAN J R,LIU X F,et al.The LTR of endogenous retrovirus EV21 retains promoter activity and exhibits tissue specific transcription in chicken[J].Chin Sci Bull,2009,54(24):4664-4670.
[16] LU W Q,LI Y,MENG L L,et al.Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia[J].J Assist Reprod Genet,2024,41(6):1485-1498.
[17] KAVARTHAPU R,ANBAZHAGAN R,DUFAU M L.Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J].Cancers (Basel),2021,13(18):4685.
[18] NIE H Z,HUANG P Q,JIANG S H,et al.The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer[J].Theranostics,2021,11(8):3898-3915.
[19] TELLERIA C M,PARMER T G,ZHONG L,et al.The different forms of the prolactin receptor in the rat corpus luteum: developmental expression and hormonal regulation in pregnancy[J].Endocrinology,1997,138(11):4812-4820.
[20] XUE H L,XU J H,WU M,et al.Identification and sequence analysis of prolactin receptor and its differential expression profile at various developmental stages in striped hamsters[J].Braz J Med Biol Res,2021,54(5):e10274.
[21] FARRAR V S,HARRIS R M,AUSTIN S H,et al.Prolactin and prolactin receptor expression in the HPG axis and crop during parental care in both sexes of a biparental bird (Columba livia)[J].Gen Comp Endocrinol,2022,315:113940.
[22] LA Y,MA F L,MA X M,et al.Different expression of LHR,PRLR,GH and IGF1 during testicular development of yak[J]. Reprod Domest Anim,2022,57(2):221-227.
[23] SIRONEN A,F(xiàn)ISCHER D,LAIHO A,et al.A recent L1 insertion within SPEF2 gene is associated with changes in PRLR expression in sow reproductive organs[J].Anim Genet,2014,45(4):500-507.
[24] GUO F,YANG B,JU Z H,et al.Alternative splicing,promoter methylation,and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls[J].Reproduction,2014,147(2):241-252.
[25] ZHANG X A,LI J B,WANG X Q,et al.ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken[J].Epigenetics Chromatin,2023,16(1):2.
[26] PAPATHEODOROU I,F(xiàn)ONSECA N A,KEAYS M,et al.Expression Atlas:gene and protein expression across multiple studies and organisms[J].Nucleic Acids Res,2018,46(D1):D246-D251.
[27] SIRONEN A,UIMARI P,ISO-TOURU T,et al.L1 insertion within SPEF2 gene is associated with increased litter size in the Finnish Yorkshire population[J].J Anim Breed Genet,2012,129(2):92-97.
[28] TAN J L,MAJOR A T,SMITH C A.Mini review:Asymmetric Müllerian duct development in the chicken embryo[J].Front Cell Dev Biol,2024,12:1347711.
[29] 白少川,李 楠,王德賀,等.慢羽雞PRLR和SPEF2基因連接方式和融合基因雙向轉(zhuǎn)錄研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報,2021, 44(3):85-91.
BAI S C,LI N,WANG D H,et al.Detection of PRLR and SPEF2 gene connection and bidirectional transcription of fusion gene in slow-feathering chicken[J].Journal of Hebei Agricultural University,2021,44(3):85-91.(in Chinese)
[30] DUDNYK K,CAI D H,SHI C L,et al.Sequence basis of transcription initiation in the human genome[J].Science,2024, 384(6694):eadj0116.
[31] LIU X Q,ZHOU X J,LI Y,et al.Identification and functional characterization of bidirectional gene pairs and their intergenic regions in maize[J].BMC Genomics,2014,15(1):338.
[32] LIN S D,ZHANG L,LUO W,et al.Characteristics of antisense transcript promoters and the regulation of their activity[J].Int J Mol Sci,2015,17(1):9.
[33] KACZYNSKI J,COOK T,URRUTIA R.Sp1- and Krüppel-like transcription factors[J].Genome Biol,2003,4(2):206.
[34] DOLFINI D,GNESUTTA N,MANTOVANI R.Expression and function of NF-Y subunits in cancer[J].Biochim Biophys Acta Rev Cancer,2024,1879(2):189082.
[35] VIDAL L,LEBRUN E,PARK Y K,et al.Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica[J].Microb Cell Fact,2023,22(1):7.
[36] ARNAIZ A,MARTINEZ M,GONZALEZ-MELENDI P,et al.Plant defenses against pests driven by a bidirectional promoter[J]. Front Plant Sci, 2019,10:930.
[37] CHEN L G,CHENG Y,ZHANG G X,et al.WGBS of embryonic gonads revealed that long non-coding RNAs in the MHM region might be involved in cell autonomous sex identity and female gonadal development in chickens[J].Epigenetics, 2024,19(1):2283657.
[38] BRENET F,MOH M,F(xiàn)UNK P,et al.DNA methylation of the first exon is tightly linked to transcriptional silencing[J].PLoS One,2011,6(1):e14524.
[39] BABBAR R,TIWARI L D,MISHRA R C,et al.Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing[J].Plant Sci,2023,330:111639.
(編輯 郭云雁)