摘 要:
旨在基于奶牛血氧飽和度(blood oxygen saturation, BOS)高、低組的血液代謝物,嘗試篩選BOS相關(guān)差異代謝物及通路。本研究所用血樣及個體信息采集自西藏地區(qū)兩個規(guī)?;翀龅?0頭荷斯坦牛。使用質(zhì)子核磁共振光譜(proton nuclear magnetic resonance spectroscopy, 1H NMR)絕對定量法測定BOS高、低組各30頭荷斯坦牛的43種血液代謝物圖譜,經(jīng)差異倍數(shù)分析、t檢驗和變量投影重要性3種方法篩選BOS相關(guān)差異代謝物并進(jìn)行富集分析。結(jié)果,共篩選到17種差異代謝物,其中與低BOS組相比,高BOS組血液中甘氨酸、甘露醇和尿素濃度更高(Plt;0.05),檸檬酸鹽、甲酸鹽、丙酮酸鹽等14種指標(biāo)濃度更低(Plt;0.05)。這些差異代謝物富集到乙醛酸和二羧酸代謝,甘氨酸、絲氨酸和蘇氨酸代謝等16條顯著的代謝通路。差異代謝物與奶牛機(jī)體氨基酸和有機(jī)酸等多種代謝有關(guān),起到保護(hù)組織、治療損傷、調(diào)節(jié)細(xì)胞穩(wěn)態(tài)、緩解低氧應(yīng)激等積極作用。綜上,本研究篩選到BOS水平相關(guān)的差異代謝物以及通路,為后續(xù)深入研究奶牛高原適應(yīng)機(jī)制和緩解高原低氧應(yīng)激提供了參考。
關(guān)鍵詞:
荷斯坦牛;血氧飽和度;血液代謝物;高原低氧應(yīng)激
中圖分類號:
S823.91"""" 文獻(xiàn)標(biāo)志碼:A """"文章編號: 0366-6964(2025)02-0621-12
收稿日期:2024-06-26
基金項目:西藏自治區(qū)科技計劃項目(XZ202201ZY0004N);西藏自治區(qū)區(qū)域協(xié)同創(chuàng)新專項(QYXTZX-LS2021-01);西藏自治區(qū)自然科學(xué)基金項目(XZ202201ZR0010G);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-36);長江學(xué)者和創(chuàng)新團(tuán)隊發(fā)展計劃(IRT_15R62)
作者簡介:龍怡舟(2003-),女,湖南湘潭人,本科生,主要從事動物遺傳育種研究,E-mail:2021304030321@cau.edu.cn
*通信作者:王雅春,主要從事分子數(shù)量遺傳學(xué)研究,E-mail:wangyachun@cau.edu.cn;徐 青,主要從事分子遺傳學(xué)研究,E-mail:qingxu@bjtu.edu.cn
Analyses of Metabolites and Pathways Related to Hypoxic Stress in Dairy Cows Based on Blood Metabolome
LONG" Yizhou1, LOU" Wenqi1, HUANG" Shangzhen1, SHI" Rui1, CHEN" Gong2, LI" Bin3, CISANG" Zhuoma3, XU" Qing2*, WANG" Yachun1*
(1.State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2.College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044," China;
3.Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000," China)
Abstract:
This study aimed to identify differential metabolites and pathways associated with blood oxygen saturation (BOS) by analyzing blood metabolites between the high and low BOS groups of dairy cows. Blood samples were collected from 60 Chinese Holstein cows in two Tibet’s commercial farms, then 43 blood metabolite profiles and other phenotypes were obtained from 30 Holstein cows in each of the high and low BOS groups based on absolute quantification by 1H NMR. Fold Change analysis, t-test and variable importance in projection were used to investigate the differential metabolites and related pathways related to BOS. A total of 17 metabolites were found to be associated with high and low BOS, with 3 up-regulated metabolites (glycine, mannitol, urea; Plt;0.05) and 14 down-regulated metabolites (citrate, formate, pyruvate and others; Plt;0.05) in high BOS group. The 16 metabolic pathways were found that related to the glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism and others. Differential metabolites were related to a variety of metabolisms such as amino acids and organic acids in the cow body and had a critical role in the protection and treatment of tissue damage, the regulation of cellular homeostasis, and the alleviation of stress caused by hypoxia." In general, this study identified the differential metabolites as well as pathways related to BOS levels, providing a foundation for further research on the mechanism of high-altitude adaptation in cows and alleviating high-altitude hypoxia stress.
Key words:
Holstein; blood oxygen saturation; blood metabolite; high-altitude hypoxia stress
*Corresponding authors: WANG Yachun, E-mail:wangyachun@cau.edu.cn; XU Qing, E-mail:qingxu@bjtu.edu.cn
為滿足人民日益增長的奶制品消費需求,我國青藏高原地區(qū)引入大量良種荷斯坦牛,但高海拔低氧環(huán)境導(dǎo)致牛群生產(chǎn)性能普遍降低、疾病頻發(fā)[1-3],這些問題嚴(yán)重阻礙了青藏奶業(yè)的發(fā)展。低氧應(yīng)激持續(xù)影響奶牛的身體機(jī)能,限制其呼吸、心腦血管系統(tǒng)及其他耗能活動的正常運行[4],導(dǎo)致體內(nèi)代謝活動發(fā)生改變。適應(yīng)性強(qiáng)的奶??梢栽黾臃瓮猓?,6]或提高血紅細(xì)胞數(shù)目緩解低氧應(yīng)激[5-7]。有研究表明血氧飽和度(blood oxygen saturation, BOS)可用于指示體內(nèi)真實的氧氣調(diào)節(jié)狀態(tài)[8],側(cè)面衡量其高原環(huán)境下低氧適應(yīng)能力[9,10]。已有研究發(fā)現(xiàn),牦牛與處于低海拔的黃牛和奶牛群體之間的谷氨酰胺、谷氨酸、亞麻酸、溶血性磷脂酰膽堿等代謝物濃度存在顯著差異,這與先天免疫激活、氧化應(yīng)激代謝和能量代謝有關(guān)[11];不同海拔下娟姍牛群體間賴氨酸、異亮氨酸、鞘氨醇等差異代謝物主要富集于氨基酸和鞘脂代謝,其中鞘脂代謝與海拔高度呈負(fù)相關(guān)關(guān)系[12];健康與患高原病的荷斯坦牛肝臟中差異代謝主要關(guān)聯(lián)提供能量的糖類和氨基酸(核糖、丙氨酸-甘氨酸二肽等)[7]。這些結(jié)果為緩解牛的低氧應(yīng)激提供了重要參考依據(jù),但荷斯坦牛研究較少,高原環(huán)境集約化條件下群體內(nèi)代謝指標(biāo)與低氧適應(yīng)性的相關(guān)程度尚不清晰。
本研究基于BOS劃分西藏地區(qū)荷斯坦牛高、低組,尋找組間代謝差異,以期為高海拔地區(qū)荷斯坦牛的低氧適應(yīng)機(jī)制的解讀以及生產(chǎn)性能的提升提供理論參考。
1 材料與方法
1.1 試驗群體與數(shù)據(jù)采集
本試驗所用荷斯坦牛來自西藏拉薩城關(guān)地區(qū)2個規(guī)?;翀觯ê0? 700 m)、牛只自由采食、飲水。采集386頭牛尾靜脈血液樣本(10 mL·頭-1),4℃和3 000 r·min-1離心10 min,收集和分裝血清于-80℃保存。使用Nonin Avant 9600(Nonin Medical, Inc., Plymouth, MN)血氧飽和度檢測儀測量BOS[13]。依據(jù)BOS對牛只進(jìn)行排序,BOS最高和最低各30頭荷斯坦牛的血液樣品送往武漢安隆科訊技術(shù)有限公司使用質(zhì)子核磁共振光譜(proton nuclear magnetic resonance spectroscopy, 1H NMR)絕對定量法檢測,獲得43種代謝物濃度(mmol·L-1)數(shù)據(jù)。本研究收集的個體信息還包括血統(tǒng)比例、體況評分(body condition score, BCS)、胎次、泌乳天數(shù)(days in milk, DIM)、日齡。
1.2 統(tǒng)計分析
1.2.1 數(shù)據(jù)描述與正態(tài)化
對代謝組數(shù)據(jù)進(jìn)行描述性統(tǒng)計,包括濃度均值、變異系數(shù)(coefficient of variation, CV)及相關(guān)性等;接著對數(shù)據(jù)進(jìn)行歸一化和標(biāo)準(zhǔn)化,確保表型符合正態(tài)分布。
1.2.2 組間信息比較
冗余分析(redundancy analysis, RDA)是一種多元回歸方法,常用于驗證不同自變量同時對因變量的影響[14]。本試驗使用RDA判斷荷斯坦牛的血統(tǒng)比例、BCS、胎次、DIM、日齡、BOS在高低組間是否存在顯著差異,Plt;0.05表示組間差異混雜該因素影響,Pgt; 0.05表示組間差異不受該因素影響。
1.2.3 分組合理性檢驗
偏最小二乘判別分析(partial least squares discriminant analysis, PLS-DA)[15]用于檢驗分組合理性?;谑劢徊骝炞C評估模型預(yù)測效果,其中決定系數(shù)(determination coefficient, R2)和模型預(yù)測能力(predictive ability of model, Q2)越高代表分組越合理。為避免過擬合,使用置換檢驗(1 000次)評估PLS-DA分類效果,Plt;0.05表示模型擬合良好[16]。
1.2.4 差異代謝物篩選及富集分析
差異倍數(shù)(fold change, FC)分析[17]、t檢驗[18]和變量投影重要性(variable importance in projection, VIP)分別用于篩選差異代謝物。FC為高、低BOS組均值間比值,當(dāng)FCgt;1.5或FClt;0.67時,表示該代謝物為差異代謝物;t檢驗結(jié)合錯誤發(fā)現(xiàn)率(1 discovery rate, FDR)[19]用于比較組間不同代謝物均值差異是否顯著,校正后Plt;0.05說明該代謝物組間具有顯著差異;VIP值基于PLS-DA,評估代謝物濃度與分組間預(yù)測模型中不同變量重要性,當(dāng)代謝物VIPgt;1時,認(rèn)為它對模型有顯著的影響。上述3種分析結(jié)果獲得的代謝物取并集即為本試驗篩選出的差異代謝物,基于KEGG數(shù)據(jù)庫對差異代謝物進(jìn)行富集分析,并篩選顯著通路(Plt;0.05)。以上分析均在分析網(wǎng)站MetaboAnalyst(https://www.metaboanalyst.ca/)上完成。
2 結(jié) 果
2.1 血清代謝物數(shù)據(jù)描述
本研究涉及到代謝物43種,包括17種氨基酸及其衍生物、12種有機(jī)酸、4種胺及胺類、4種醇、3種糖、1種磷酸鹽、1種酮類及1種其他物質(zhì)(圖1A)。濃度信息如圖1B所示,葡萄糖、乙酸鹽和乳酸鹽濃度較高,均值范圍為1.44~4.33 mmol·L-1,而異丙醇、二甲胺和琥珀酸鹽含量較低,范圍為0.00335~0.00519 mmol·L-1。CV結(jié)果顯示,尿素、甘氨酸、二甲胺的變異系數(shù)較高,為116%~278%,而脯氨酸、葡萄糖和甲酸鹽在不同個體中較穩(wěn)定,CV為17.1%~22.3%。不同代謝物間相關(guān)性結(jié)果顯示,同類物質(zhì)間正相關(guān)程度較高(圖1C),例如乙醇和異丙醇、亮氨酸和纈氨酸、異亮氨酸和纈氨酸的相關(guān)系數(shù)在0.85~0.95之間。此外氨基丁酸和甘油、二甲基砜以及甲醇的負(fù)相關(guān)性較強(qiáng),范圍為-0.41~-0.32。
2.2 組間信息比較
RDA分析結(jié)果顯示,BOS對代謝物具有顯著影響(P=0.044lt;0.05),高、低組BOS差異約為10%,而其他因素?zé)o顯著影響(Pgt;0.05)。BOS高、低組個體間血統(tǒng)比例、BCS、胎次、DIM、日齡、BOS的個體信息描述結(jié)果如表1所示。
2.3 分組合理性檢驗
PLS-DA預(yù)測分組的結(jié)果如圖2所示。前兩個主成分的散點分布表明BOS高、低組共60頭荷斯坦牛分組明顯、各自聚類(圖2A)。PLS-DA結(jié)果中前兩個主成分可解釋總變異的20.5%(第一主成分占比13.0%;第二主成分占比7.5%)。圖2B中展示了納入不同主成分的模型表現(xiàn)(R2和Q2),使用前4個主成分可獲最佳預(yù)測效果,R2為0.889和Q2為0.656表示該模型具有較高的擬合能力和預(yù)測能力。此外,1 000次置換檢驗結(jié)果(圖2C)顯示Plt;0.001,表明模型不存在過擬合的現(xiàn)象。以上結(jié)果表明本研究分組合理。
2.4 差異代謝物
表2和圖3展示了FC分析、t檢驗和VIP獲得的17種差異代謝物。FC分析中獲得尿素、丙二醇、甜菜堿、甘氨酸和檸檬酸鹽共5種差異代謝物。t檢驗獲得甲酸鹽、丙酮酸鹽、蛋氨酸、乙酰乙酸鹽、甘氨酸和檸檬酸鹽6種差異代謝物,其中最顯著的為甲酸鹽(P=2.84×10-5;FDR=1.22×10-3)。VIP獲得17種差異代謝物,其中值最高的為甲酸鹽、丙酮酸鹽和檸檬酸鹽(1.80~2.10)。3種分析方法獲得的共同差異代謝物為甘氨酸和檸檬酸鹽。
17種差異代謝物在兩組間含量差異如圖4所示。高BOS組中甘氨酸、甘露醇和尿素含量高,例如甘氨酸均值為0.084 mmol·L-1,而低BOS組均值為0.015 mmol·L-1;甘露醇均值為0.035 mmol·L-1,比低BOS組高約0.012 mmol·L-1;尿素均值為0.80 mmol·L-1,而低BOS組均值為0.055 mmol·L-1。低BOS組中檸檬酸鹽、甲酸鹽和丙酮酸鹽等14種代謝物含量更高,例如檸檬酸鹽均值為0.34 mmol·L-1,而高BOS組均值為0.25 mmol·L-1;甲酸鹽均值為 0.053 mmol·L-1,高BOS組均值為0.044 mmol·L-1;丙酮酸鹽均值為0.089 mmol·L-1,高BOS組均值為0.077 mmol·L-1。
2.5 差異代謝物參與的代謝通路
基于上述差異代謝物,可顯著富集到16條代謝通路中(Plt;0.05),如表3所示。其中乙醛酸和二羧酸代謝,甘氨酸、絲氨酸和蘇氨酸代謝最為顯著。
3 討 論
高原地區(qū)奶牛群體數(shù)量不多,同時數(shù)據(jù)收集困難,因此相關(guān)研究較少。2017年,巴桑旺堆等[20]發(fā)現(xiàn)從平原引入西藏高原的種公牛在初期存在不適反應(yīng),但一段時間后表現(xiàn)出良好的高原適應(yīng)性;2019年,索朗曲吉等[5]將純種荷斯坦牛和娟姍牛引入高原并進(jìn)行高山病發(fā)病率、生理指標(biāo)以及生產(chǎn)性能分析,引入1年后荷斯坦牛和娟姍牛高山病發(fā)病率約為31%和9.3%,死亡率占全群26.5%和8%,同時發(fā)現(xiàn)引進(jìn)奶??共『蜕a(chǎn)性能均下降;2021年,王書祥等[21]對西藏拉薩某牧場病牛舍荷斯坦牛進(jìn)行高原病調(diào)查,發(fā)現(xiàn)高原病牛占全群5.28%,死亡率占全群2.72%。此外,臨床醫(yī)學(xué)上已使用BOS監(jiān)測機(jī)體低氧情況[8],眾多研究也表明BOS與高原適應(yīng)性具有較強(qiáng)相關(guān)性[9,10],故本試驗群體以BOS進(jìn)行分組,利用高原地區(qū)的荷斯坦牛血液代謝組數(shù)據(jù),嘗試分析奶牛高原低氧適應(yīng)能力。
甘氨酸是本研究通過FC分析、t檢驗和VIP三種方法均獲得的差異代謝物之一,作為天然結(jié)構(gòu)最簡單的非必需氨基酸參與蛋白質(zhì)代謝。已有研究結(jié)果表明它不僅在組織缺血、低氧或損傷等方面具有保護(hù)與治療作用[22-26],對呼吸道疾病也有治療作用[27],還可維護(hù)心肌細(xì)胞能量代謝穩(wěn)定,減輕多種致傷因素導(dǎo)致的心肌損害,并已用于心肌損害的臨床救治[28,29]。除此之外,甘氨酸還參與合成卟啉環(huán)、肌酸等多種重要含氮物質(zhì)[30],并與谷胱甘肽代謝、初級膽汁酸合成等多條通路息息相關(guān)[31-33],這些通路與保護(hù)組織不受損或低氧適應(yīng)性密切關(guān)聯(lián)。李孟陽[34]利用不同海拔田鼠骨骼肌代謝組探究其低氧適應(yīng)性,差異代謝物富集到了谷胱甘肽代謝,谷胱甘肽的構(gòu)成有甘氨酸的參與,同時具有緩解氧化應(yīng)激、清除自由基、預(yù)防機(jī)體氧化損傷的作用[31],與本研究篩選的差異代謝物甘氨酸并富集到谷胱甘肽代謝結(jié)果一致。本研究中,高BOS群體血液中甘氨酸含量更高,說明甘氨酸對高原低氧環(huán)境的適應(yīng)具有調(diào)節(jié)作用,但同時血液甘氨酸濃度是否可以作為個體低氧適應(yīng)能力的指示指標(biāo),需進(jìn)一步擴(kuò)大樣本量進(jìn)行驗證。
甘氨酸、絲氨酸和蘇氨酸代謝通路是本研究富集到的具有差異代謝物個數(shù)最多的通路之一,包括甘氨酸、甜菜堿、肌酸和丙酮酸。有研究表明,甘氨酸主要通過絲氨酸合成,少量可通過蘇氨酸生成[35];絲氨酸可以增加心臟功能、促進(jìn)血液補(bǔ)充及新陳代謝[36];蘇氨酸可以幫助神經(jīng)細(xì)胞脂質(zhì)代謝,調(diào)節(jié)神經(jīng)沖動,在腦細(xì)胞中起著重要作用[37]。姚琨[7]利用肝臟代謝組探究荷斯坦牛高原病發(fā)生機(jī)制,發(fā)現(xiàn)差異代謝物富集到丙氨酸、天冬氨酸和谷氨酸代謝、丁酸酯代謝等氨基酸代謝通路,與本研究篩選到多種氨基酸并富集到多條氨基酸代謝通路較為相似。Wang等[38]研究證明,甘氨酸可激活與細(xì)胞生長繁殖相關(guān)的Akt/mTOR通路,而本研究中,多種氨基酸代謝受BOS顯著影響,說明氨基酸在低氧條件下可能具有一定的調(diào)節(jié)細(xì)胞穩(wěn)態(tài)功能。
檸檬酸鹽也是本研究使用3種方法均篩選獲得的差異代謝物,它可減少組織的缺血再灌注損傷[39,40],降低患心血管等疾病風(fēng)險[41,42],促進(jìn)線粒體能量代謝,還具有降低心肌細(xì)胞凋亡的作用[42,43]。檸檬酸鹽循環(huán)也叫三羧酸循環(huán),可以合成機(jī)體活動所需能量[44],其中糖酵解在氧氣不足時的ATP產(chǎn)生方面發(fā)揮重要作用[45]。眾多研究表明,低氧環(huán)境會使低氧誘導(dǎo)因子(hypoxia-inducible transcription factors, HIFs)抑制三羧酸循環(huán)[46-48],減少機(jī)體供能。姚琨[7]利用肝臟轉(zhuǎn)錄組學(xué)與代謝組學(xué)聯(lián)合探究荷斯坦牛高原病發(fā)生機(jī)制時,發(fā)現(xiàn)糖類相關(guān)基因的表達(dá)水平和代謝產(chǎn)物在高原病荷斯坦牛中顯著降低,本研究雖未篩選到相關(guān)差異代謝物,但葡萄糖在高BOS組中含量更多,與姚琨[7]結(jié)果較一致。林金艷[49]利用肝臟的糖代謝對地下鼠的低氧適應(yīng)性進(jìn)行探究,發(fā)現(xiàn)常氧與低氧群體的差異代謝物顯著富集到糖酵解/糖異生通路。本研究中,檸檬酸鹽濃度在不同組間具有顯著差異,且它參與的三羧酸循環(huán)是三大營養(yǎng)素的最終代謝途徑,因此說明富集到的三羧酸循環(huán)和糖酵解兩條通路對機(jī)體供能有重要意義。眾多研究關(guān)注的HIFs抑制三羧酸循環(huán),說明低氧環(huán)境可能通過降低糖類或產(chǎn)生其他應(yīng)答而顯著影響機(jī)體供能,推測緩解低氧抑制三羧酸循環(huán)的情況或增加低氧條件下的機(jī)體供能可以降低奶牛高原不適應(yīng)情況。
乙醛酸和二羧酸代謝通路是本研究富集到的最顯著代謝通路,在能量代謝中為三羧酸循環(huán)支路,可通過影響檸檬酸和異檸檬酸或三羧酸循環(huán)關(guān)鍵酶活性,從而影響三羧酸循環(huán)[50,51],減少機(jī)體供能。本研究富集到該通路也說明三羧酸循環(huán)在BOS不同情況下具有不同反應(yīng),也進(jìn)一步說明三羧酸循環(huán)在低氧條件下的調(diào)節(jié)作用對奶牛機(jī)體正常能量代謝十分重要。
本研究通過1H NMR絕對定量法檢測獲得代謝物,與其他代謝組研究相比,總代謝物數(shù)量較少且類型不一致,在后續(xù)奶牛高原低氧適應(yīng)性研究中可選用其他檢測方法進(jìn)行驗證,但本研究從代謝組角度篩選出的相關(guān)代謝物和通路仍可為后續(xù)研究提供參考。
4 結(jié) 論
基于血氧飽和度高、低分組,本研究共篩選獲得甘氨酸、檸檬酸鹽等17種差異代謝物,富集到乙醛酸和二羧酸代謝,甘氨酸、絲氨酸和蘇氨酸代謝等16條氨基酸和有機(jī)酸顯著代謝通路。它們起到保護(hù)組織并治療損傷、細(xì)胞穩(wěn)態(tài)調(diào)節(jié)、高原低氧環(huán)境應(yīng)激緩解等積極作用,從代謝組層面揭示了高血氧飽和度個體適應(yīng)高原低氧環(huán)境的潛在機(jī)制。研究結(jié)果為利用血氧飽和度研究奶牛低氧適應(yīng)、深入探究奶牛高原適應(yīng)機(jī)制、制定緩解高原低氧應(yīng)激策略提供基礎(chǔ)數(shù)據(jù)。
參考文獻(xiàn)(References):
[1] 趙霞玲,白瑪央金,次桑卓瑪,等.西藏主要引進(jìn)奶牛品種適應(yīng)性表現(xiàn)及養(yǎng)殖建議[J].西藏農(nóng)業(yè)科技,2022,44(4):93-95.
ZHAO X L,BAIMAYANGJIN,CISANGZHUOMA,et al.Adaptability performance and breeding suggestions of main imported dairy cow varieties in Tibet[J].Tibet Journal of Agricultural Sciences,2022,44(4):93-95.(in Chinese)
[2] 楊柏高,郝海生,杜衛(wèi)華,等.牦牛高原適應(yīng)研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報,2023,54(1):12-23.
YANG B G,HAO H S,DU W H,et al.Advances in research on plateau adaptation of yak[J].Acta Veterinaria et Zootechnica Sinica,2023,54(1):12-23.(in Chinese)
[3] 黃上真,馬龍剛,婁文琦,等.高原地區(qū)奶牛血液指標(biāo)的影響因素分析[J].畜牧獸醫(yī)學(xué)報,2023,54(5):1964-1978.
HUANG S Z,MA L G,LOU W Q,et al.Analysis of influencing factors on blood indicators of dairy cows at high-altitude area[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):1964-1978.(in Chinese)
[4] 沈 童,王夢杰,吳 華,等.黑果枸杞花青素對低氧誘導(dǎo)的H9c2大鼠心肌細(xì)胞凋亡的影響[J].畜牧獸醫(yī)學(xué)報, 2023, 54(8):3490-3499.
SHEN T,WANG M J,WU H,et al.Effect of Lycium ruthenicum murray anthocyanin on hypoxia-induced apoptosis in H9c2 rat cardiomyocytes[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3490-3499.(in Chinese)
[5] 索朗曲吉,巴桑珠扎,趙 麗,等.西藏引進(jìn)良種奶牛高原適應(yīng)性觀察與研究[J].中國飼料,2019(2):11-15.
SUOLANG Q J,BASANG Z Z,ZHAO L,et al.Observation and research on plateau adaptability of introduced breeding cows in Tibet[J].China Feed,2019(2):11-15.(in Chinese)
[6] 嚴(yán)愛萍.奶牛引進(jìn)高海拔地區(qū)后發(fā)生肺氣腫的診治[J].中國獸醫(yī)雜志,2008,44(4):69-70.
YAN A P.Treatment of pulmonary emphysema in dairy cows after introduction to high altitudes[J].Chinese Journal of Veterinary Medicine,2008,44(4):69-70.(in Chinese)
[7] 姚 琨.多組學(xué)技術(shù)解析荷斯坦奶牛高原病的發(fā)生機(jī)制[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2021.
YAO K.Analyses of mechanism of brisket disease in Holstein heifers based on multi-omics technology[D].Urumqi:Xinjiang Agricultural University,2021.(in Chinese)
[8] FLOYD J,WU L,HAY BURGESS D,et al.Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings[J].Nature,2015,528(7580):S53-S59.
[9] ZHU J J,WU Y C,JIANG A Y,et al.Effects of dietary N-carbamylglutamate on rumen fermentation parameters,and bacterial community diversity of Holstein dairy cows in Tibet[J].Front Microbiol,2023,14:1101620.
[10] 王宏運,高 亮.適應(yīng)性訓(xùn)練預(yù)防急性高原反應(yīng)的療效觀察[J].臨床軍醫(yī)雜志,2008,36(1):107-108.
WANG H Y,GAO L.Effect of adaptation training on prevention of acute high altitude reaction[J].Clinical Journal of Medical Officers,2008,36(1):107-108.(in Chinese)
[11] HUANG M Z,ZHANG X,YAN W J,et al.Metabolomics reveals potential plateau adaptability by regulating inflammatory response and oxidative stress-related metabolism and energy metabolism pathways in yak[J].J Anim Sci Technol,2022,64(1):97-109.
[12] KONG Z W,LI B,ZHOU C S,et al.Comparative analysis of metabolic differences of jersey cattle in different high-altitude areas[J].Front Vet Sci,2021,8:713913.
[13] 黃上真.西藏地區(qū)奶牛血液指標(biāo)規(guī)律分析及高原適應(yīng)性基因挖掘[D].北京:中國農(nóng)業(yè)大學(xué),2023.
HUANG S Z.Analysis of blood indicators features of dairy cattle in Tibet and high-altitude adaptation genes mining[D].Beijing:China Agricultural University,2023.(in Chinese)
[14] CSALA A,VOORBRAAK F P J M,ZWINDERMAN A H,et al.Sparse redundancy analysis of high-dimensional genetic and genomic data[J].Bioinformatics,2017,33(20):3228-3234.
[15] MEI S H,HE G X,CHEN Z,et al.Probiotic-fermented distillers grain alters the rumen microbiome,metabolome,and enzyme activity,enhancing the immune status of finishing cattle[J].Animals (Basel),2023,13(24):3774.
[16] 胡麗蓉.基于多組學(xué)分析策略的奶牛熱應(yīng)激調(diào)控機(jī)制研究[D].北京:中國農(nóng)業(yè)大學(xué),2023.
HU L R.Investigation of regulatory mechanisms of heat stress in dairy cows on the basis of a multi-omics analysis strategy[D].Beijing:China Agricultural University,2023.(in Chinese)
[17] CONTRERAS-CORREA Z E,SNCHEZ-RODRGUEZ H L,ARICK II M A,et al.Thermotolerance capabilities,blood metabolomics,and mammary gland hemodynamics and transcriptomic profiles of slick-haired Holstein cattle during mid lactation in Puerto Rico[J].J Dairy Sci,2024,107(6):4017-4032.
[18] HU L R,BRITO L F,ABBAS Z,et al.Investigating the short-term effects of cold stress on metabolite responses and metabolic pathways in Inner-Mongolia Sanhe cattle[J].Animals (Basel),2021,11(9):2493.
[19] SHIBATA R,ITOH N,NAKANISHI Y,et al.Gut microbiota and fecal metabolites in sustained unresponsiveness by oral immunotherapy in school-age children with cow′s milk allergy[J].Allergol Int,2024,73(1):126-136.
[20] 巴桑旺堆,羅 布,平錯占堆.娟姍種公牛和荷斯坦種公牛在西藏高原地區(qū)飼養(yǎng)效果[J].中國動物保健,2017,19(9):34-35.
BA S,LUO B,PING C.Effects of rearing Jersey and Holstein bulls in the Tibetan Plateau region[J].China Animal Health,2017,19(9):34-35.(in Chinese)
[21] 王書祥,李紅麗,戴東文,等.荷斯坦奶牛高山病的發(fā)生情況調(diào)查研究[J].現(xiàn)代畜牧獸醫(yī),2021(4):71-73.
WANG S X,LI H L,DAI D W,et al.Investigation on the occurrence of high-altitude sickness in Holstein cows[J].Modern Journal of Animal Husbandry and Veterinary Medicine,2021(4):71-73.(in Chinese)
[22] HALL J C.Glycine[J].JPEN J Parenter Enteral Nutr,1998,22(6):393-398.
[23] DETERS M,SIEGERS C P,STRUBELT O.Influence of glycine on the damage induced in isolated perfused rat liver by five hepatotoxic agents[J].Toxicology,1998,128(1):63-72.
[24] QU W,IKEJIMA K,ZHONG Z,et al.Glycine blocks the increase in intracellular free Ca2+ due to vasoactive mediators in hepatic parenchymal cells[J].Am J Physiol Gastrointest Liver Physiol,2002,283(6):G1249-G1256.
[25] JAGETIA G C,GANAPATHI N G,UNNIKRISHNAN M K.Copperglycinate protects mice exposed to various doses of gamma radiation[J].Strahlenther Onkol,1993,169(5):323-328.
[26] BAINES A D,SHAIKH N,HO P.Mechanisms of perfused kidney cytoprotection by alanine and glycine[J].Am J Physiol,1990,259:F80-F87.
[27] WHEELER M D,IKEJEMA K,ENOMOTO N,et al.Glycine:a new anti-inflammatory immunonutrient[J].Cell Mol Life Sci,1999,56(9-10):843-856.
[28] 呂尚軍.谷氨酰胺、甘氨酸及甘谷二肽對燒傷大鼠心肌保護(hù)作用及其信號機(jī)制的實驗研究[D].重慶:第三軍醫(yī)大學(xué),2007.
LV S J.The effects of glutamine,glycine and glycyl-glutamine dipeptide on cardiac cytoprotection and its mechanism after burn injury[D].Chongqing:Army Medical University,2007.(in Chinese)
[29] 陳夢飛,陸大祥,戚仁斌,等.甘氨酸脂質(zhì)體對心肌細(xì)胞線粒體膜電位及凋亡的影響[J].中國病理生理雜志,2008,24(7):1254-1258.
CHEN M F,LU D X,QI R B,et al.Effect of glycine liposomes on mitochondrial membrane potential and apoptosis in cultured cardiomyocytes[J].Chinese Journal of Pathophysiology,2008,24(7):1254-1258.(in Chinese)
[30] MCCARTY M F,O′KEEFE J H,DINICOLANTONIO J J.Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection[J].Ochsner J,2018,18(1):81-87.
[31] 陶文迪,田秀玉,李茂星,等.黃芪水提取物對高原缺氧大鼠運動能力的影響[J].解放軍醫(yī)藥雜志,2019,31(12):12-18.
TAO W D,TIAN X Y,LI M X,et al.Effect of astragalus membranaceus aqueous extract on ability of plateau hypoxia exercise in rats[J].Medical amp; Pharmaceutical Journal of Chinese People′s Liberation Army,2019,31(12):12-18.(in Chinese)
[32] 范小慶,扈金萍.甘氨酸生理功能與代謝研究進(jìn)展[J].國際藥學(xué)研究雜志,2018,45(2):102-107.
FAN X Q,HU J P.Physiological function of glycine and its role in metabolism:research advances[J].Journal of International Pharmaceutical Research,2018,45(2):102-107.(in Chinese)
[33] 盧勁曄,高亞兵,韓心茹,等.乳房鏈球菌感染對乳腺上皮細(xì)胞中氨基酸代謝的影響[J].畜牧獸醫(yī)學(xué)報,2024,55(4):1766-1776.
LU J Y,GAO Y B,HAN X R,et al.The Effect of Streptococcus uberis infection on amino acid metabolism in mammary epithelial cells[J].Acta Veterinaria et Zootechnica Sinica,2024,55(4):1766-1776.(in Chinese)
[34] 李孟陽.青海田鼠、布氏田鼠和昆明小鼠骨骼肌低氧適應(yīng)分子機(jī)制[D].鄭州:鄭州大學(xué),2022.
LI M Y.Molecular mechanism of hypoxia adaptation in skeletal muscle of plateau vole,Brandt′s vole and Kunming mice[D].Zhengzhou:Zhengzhou University,2022.(in Chinese)
[35] IMENSHAHIDI M,HOSSENZADEH H.Effects of glycine on metabolic syndrome components:a review[J].J Endocrinol Invest,2022,45(5):927-939.
[36] PEREA-GIL I,SEEGER T,BRUYNEEL A A N,et al.Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy[J].Eur Heart J,2022,43(36):3477-3489.
[37] CHEN Y K,ZENG A,HE S M,et al.Autophagy-related genes in atherosclerosis[J].J Healthc Eng,2021,2021:6402206.
[38] WANG M H,YUAN F C,BAI H,et al.SHMT2 promotes liver regeneration through glycine-activated Akt/mTOR pathway[J].Transplantation,2019,103(7):e188-e197.
[39] 汪 泉,劉 紅.檸檬酸鈉對腎缺血再灌注損傷模型小鼠腎損傷指標(biāo)及炎癥細(xì)胞因子的影響[J].中國免疫學(xué)雜志,2021,37(2):145-148,154.
WANG Q,LIU H.Effects of sodium citrate on renal injury index and inflammatory cytokines in mice with renal ischemia-reperfusion injury[J].Chinese Journal of Immunology,2021,37(2):145-148,154.(in Chinese)
[40] LU Q,LI Z G,ZHOU N,et al.Impact of citrate pretreatment on ventricular arrhythmia and myocardial capase-3 expression in ischemia/reperfusion injury[J].Genet Mol Res,2016,15(4):gmr15048848.
[41] WU F,HUANG W F,TAN Q,et al.ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1[J].Cell Death Dis,2021,12(6):614.
[42] 張 博,周學(xué)才,朱冬梅,等.檸檬酸鹽對缺氧/復(fù)氧誘導(dǎo)的心肌細(xì)胞損傷及LKB1/AMPK信號通路的影響[J].中西醫(yī)結(jié)合心腦血管病雜志,2023,21(10):1782-1787.
ZHANG B,ZHOU X C,ZHU D M,et al.The effects of citrate on hypoxia/reoxygenation-induced myocardial cell injury and LKB1/AMPK signal pathway[J].Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease,2023, 21(10): 1782-1787.(in Chinese)
[43] 項海燕.檸檬酸鹽預(yù)處理對心肌缺血/再灌注損傷的影響及其機(jī)制研究[D].南昌:南昌大學(xué),2020.
XIANG H Y.Effects and mechanism of citrate pretreatment on myocardial ischemia/reperfusion injury[D].Nanchang:Nanchang University,2020.(in Chinese)
[44] ANDERSON N M,MUCKA P,KERN J G,et al.The emerging role and targetability of the TCA cycle in cancer metabolism[J].Protein Cell,2018,9(2):216-237.
[45] LIU G W,LI Y H,LIAO N,et al.Energy metabolic mechanisms for high altitude sickness:downregulation of glycolysis and upregulation of the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation[J].Sci Total Environ,2023, 894:164998.
[46] LE A,LANE A N,HAMAKER M,et al.Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells[J].Cell Metab,2012,15(1):110-121.
[47] KIM J W,TCHERNYSHYOV I,SEMENZA G L,et al.HIF-1-mediated expression of pyruvate dehydrogenase kinase:a metabolic switch required for cellular adaptation to hypoxia[J].Cell Metab,2006,3(3):177-185.
[48] 郭志麗,朱 妍,肖紅斌,等.與腦梗死關(guān)聯(lián)的氨基酸代謝通路研究進(jìn)展與發(fā)現(xiàn)[J].中國醫(yī)藥導(dǎo)報,2013,10(26):24-27.
GUO Z L,ZHU Y,XIAO H B,et al.Progress and discovery of research on the amino acid metabolic pathways associated with cerebral infarction[J].China Medical Herald,2013,10(26):24-27.(in Chinese)
[49] 林金艷.低氧環(huán)境下甘肅鼢鼠腸道菌群和肝、腦糖代謝的適應(yīng)性重塑研究[D].西安:陜西師范大學(xué),2022.
LIN J Y.Adaptive remodeling of Eospalax cansus intestinal flora and liver and brain glucose metabolism in a hypoxic environment[D].Xi’an:Shaanxi Normal University,2022.(in Chinese)
[50] 于靜波,韓 越,謝 新,等.脾胃濕熱證大鼠模型的尿液代謝組學(xué)分析[J].中國實驗方劑學(xué)雜志,2023,29(10):166-173.
YU J B,HAN Y,XIE X,et al.Metabolomic analysis of urine in rat model with spleen-stomach damp-heat syndrome[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(10):166-173.(in Chinese)
[51] 張 寧,于棟華,王 宇,等.穿山龍抗急性痛風(fēng)性關(guān)節(jié)炎的腎臟代謝組學(xué)研究[J].中華中醫(yī)藥雜志,2017,32(5):2034-2039.
ZHANG N,YU D H,WANG Y,et al.Kidney metabonomics study on acute gouty arthritis treated by Dioscorea Nipponica Makino[J].China Journal of Traditional Chinese Medicine and Pharmacy,2017,32(5):2034-2039.(in Chinese)
(編輯 郭云雁)