摘 要:
旨在探討沉默信息調(diào)節(jié)因子2相關(guān)酶1(silent information regulator 2-related enzyme1,Sirt1)對(duì)牛骨骼肌衛(wèi)星細(xì)胞(bovine skeletal muscle satellite cells,BSMSCs)增殖和成肌分化的影響。在本試驗(yàn)中,將小片段干擾RNA(siRNA)和靶向Sirt1的過(guò)表達(dá)質(zhì)粒轉(zhuǎn)染入從3~4月齡胎牛臀腿肌剝離的原代衛(wèi)星細(xì)胞中,在增殖和分化階段的特定時(shí)間點(diǎn)收集RNA和蛋白質(zhì)樣品,每個(gè)處理設(shè)計(jì)3個(gè)生物學(xué)重復(fù),使用實(shí)時(shí)定量PCR(qRT-PCR)以及蛋白質(zhì)印記法(Western blotting)進(jìn)行分析。此外,還進(jìn)行了EdU染色試驗(yàn)以評(píng)估細(xì)胞的增殖情況。結(jié)果顯示:在細(xì)胞分化期,40倍顯微鏡下觀察,發(fā)現(xiàn)Sirt1敲低導(dǎo)致肌管的數(shù)量、長(zhǎng)度和直徑顯著增加。qRT-PCR和Western blotting證實(shí),與對(duì)照組相比,分化標(biāo)志物肌球蛋白重鏈(myosin heavy chains,MyHC)和肌細(xì)胞生成素(myogenin,MyoG)的mRNA水平顯著上調(diào)(Plt;0.01),MyoG的蛋白表達(dá)水平也顯著升高(Plt;0.05)。相反,Sirt1過(guò)表達(dá)導(dǎo)致肌管的數(shù)量、長(zhǎng)度和直徑顯著減少。Western blotting顯示Sirt1過(guò)表達(dá)組MyoG表達(dá)量顯著低于對(duì)照組(Plt;0.01)。在BSMSCs增殖期,qRT-PCR、Western blotting和EdU檢測(cè)表明,Sirt1敲低和過(guò)表達(dá)對(duì)細(xì)胞增殖均無(wú)顯著影響(Pgt;0.05)。綜上所述,Sirt1敲減可有效促進(jìn)細(xì)胞分化,而過(guò)表達(dá)可抑制該過(guò)程,但對(duì)增殖均無(wú)明顯影響。這些發(fā)現(xiàn)證實(shí)了Sirt1是作為調(diào)控BSMSCs成肌分化的重要因素,在協(xié)調(diào)成肌細(xì)胞分化和促進(jìn)肌管形成中起關(guān)鍵作用。
關(guān)鍵詞:
Sirt1;牛骨骼肌衛(wèi)星細(xì)胞;細(xì)胞增殖;成肌分化
中圖分類(lèi)號(hào):
S823.2"""" 文獻(xiàn)標(biāo)志碼:A """"文章編號(hào): 0366-6964(2025)02-0603-08
收稿日期:2024-08-01
基金項(xiàng)目:天津市“131”創(chuàng)新型人才培養(yǎng)工程第一層次人選資助項(xiàng)目
作者簡(jiǎn)介:張正雨(1999-),男,貴州遵義人,碩士,主要從事動(dòng)物遺傳育種研究,E-mail: 2203010125@stu.tjau.edu.cn
*通信作者:丁向彬,主要從事動(dòng)物遺傳育種與繁殖方向的研究,E-mail: xiangbinding@tjau.edu.cn
Effects of Sirt1 Deacetylase on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells
ZHANG" Zhengyu, YANG" Peihong, GUO" Hong, LI" Xin, ZHANG "Linlin, GUO" Yiwen, HU" Debao, DING" Xiangbin*
(Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Breeding, School of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384," China)
Abstract:
The aim of this study was to investigate the effect of silent information regulator 2-related enzyme1 (Sirt1) on proliferation and myogenic differentiation of BSMSCs. In this experiment, small fragments of interfering RNA (siRNA) and overexpressed plasmid targeting Sirt1 were transfected into primary satellite cells stripped from the thigh muscle of 3-4-month-old fetal cattle. RNA and protein samples were collected at specific time points during the proliferation and differentiation stages, with 3 biological replicates per treatment. Real-time quantitative PCR (qRT-PCR) and Western blotting were used for analysis. In addition, EdU staining experiments were performed to evaluate cell proliferation.The results showed that the number, length, and diameter of muscle ducts were significantly increased by Sirt1 knockdown under a 40-fold microscope during cell differentiation. qRT-PCR and Western blotting confirmed that compared with the control group, mRNA levels of differentiation markers myosin heavy chains (MyHC) and myogenin (MyoG) were significantly up-regulated after interfering Sitr1 (Plt;0.01). The protein expression level of MyoG was also significantly increased (Plt;0.05) after interfering Sitr1. Conversely, Sirt1 overexpression resulted in a significant reduction in the number, length, and diameter of muscle ducts. Western blotting showed that the expression of MyoG in Sirt1 overexpression group was significantly lower than that in control group (Plt;0.01). At the proliferation stage of BSMSCs, qRT-PCR, Western blotting and EdU tests showed that Sirt1 knockdown and overexpression had no significant effects on cell proliferation (Pgt;0.05). In summary, Sirt1 knockdown can effectively promote cell differentiation, while overexpression can inhibit the process, but has no significant effect on proliferation. These findings confirm that Sirt1 is an important factor regulating the myogenic differentiation of BSMSCs, and plays a key role in coordinating myoblast differentiation and promoting myotube formation.
Key words:
Sirt1; bovine skeletal muscle satellite cells; cell proliferation; myogenic differentiation
*Corresponding author: DING Xiangbin, E-mail: xiangbinding@tjau.edu.cn
Sirt1是Sirtuin家族蛋白中的一員,這個(gè)家族是一種高度保守的并且依賴煙酰胺腺嘌呤二核苷酸(NAD+)的III類(lèi)組蛋白去乙?;福?],它們?cè)诿恳粋€(gè)脫酰循環(huán)中都消耗一個(gè)NAD+分子[2]。Sirt1不僅通過(guò)去乙?;揎椊M蛋白,如Histone4 Lysine16(H4K16)、Histone3 Lysine9(H3K9)調(diào)控染色質(zhì)結(jié)構(gòu)和基因表達(dá)[3,4]。還對(duì)多種非組蛋白例如腫瘤蛋白53(tumor protein 53,p53)、叉頭蛋白家族(forkhead box O,F(xiàn)oxOs)和β-連環(huán)蛋白(β-catenin)直接去乙?;?,從而在轉(zhuǎn)錄后和翻譯后水平上調(diào)控關(guān)鍵的生物過(guò)程[5-8]。這些過(guò)程涵蓋了能量代謝、細(xì)胞衰老、凋亡和炎癥反應(yīng)等[9]。在能量代謝的調(diào)控中,Sirt1與超氧化物歧化酶(superoxide dismutase,Sod2)的相互作用被證實(shí)能夠減輕能量限制(CR)引起的綿羊睪丸間質(zhì)細(xì)胞氧化應(yīng)激和線粒體功能障礙[10]。此外,褪黑素通過(guò)上調(diào)Sirt1的表達(dá)抑制FoxO1,促進(jìn)牛卵巢顆粒細(xì)胞的線粒體自噬,進(jìn)而減少氧化應(yīng)激引發(fā)的凋亡和線粒體損傷[11]。這些研究強(qiáng)調(diào)了Sirt1在調(diào)控細(xì)胞生存和線粒體穩(wěn)態(tài)中的關(guān)鍵作用。另有研究發(fā)現(xiàn),Sirt1的自噬降解可能通過(guò)促進(jìn)衰老相關(guān)的炎癥反應(yīng),影響癌前病變的免疫監(jiān)視[12,13]。此外,在雞毒支原體病的防治中,Sirt1的表達(dá)與槲皮素通過(guò)AMP依賴的蛋白激酶(AMPK)途徑抑制炎癥因子的作用密切相關(guān)[14]。
盡管Sirt1在多種哺乳動(dòng)物和家禽體內(nèi)的生理功能已得到廣泛研究,但其在骨骼肌發(fā)育及分化中的具體作用,尤其是在牛骨骼肌衛(wèi)星細(xì)胞(BSMSCs)中的調(diào)控機(jī)制仍未得到充分揭示。雖有研究表明,Sirt1通過(guò)調(diào)控組蛋白和非組蛋白的乙?;癄顟B(tài),參與衛(wèi)星細(xì)胞增殖與分化的調(diào)控,這對(duì)于理解肌肉發(fā)育和修復(fù)機(jī)制至關(guān)重要[15]。然而,目前對(duì)Sirt1在牛骨骼肌中的具體調(diào)控作用的研究仍較為有限。在此研究背景下,本試驗(yàn)采用BSMSCs體外成肌分化模型,通過(guò)處理Sirt1后觀察關(guān)鍵調(diào)控因子的變化,驗(yàn)證Sirt1對(duì)BSMSCs增殖和分化的影響。目的是探究Sirt1在肌肉發(fā)育調(diào)控方面的作用,填補(bǔ)牛骨骼肌Sirt1調(diào)控作用的空白,同時(shí)為后續(xù)深入研究Sirt1對(duì)于肌肉分化的具體機(jī)制提供一定的理論基礎(chǔ)。
1 材料與方法
1.1 細(xì)胞株與主要試劑
本試驗(yàn)所用的BSMSCs來(lái)源于天津市農(nóng)業(yè)動(dòng)物繁殖與健康養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室[16]。DMEM培養(yǎng)基、胎牛血清(FBS)、馬血清(HS)、脫脂奶粉、轉(zhuǎn)染試劑Lipofectamine 3000均購(gòu)自Thermo Scientific公司;蛋白酶抑制劑(PMSF)、RIPA緩沖液購(gòu)自北京索萊寶科技有限公司;RNA快速提取試劑盒購(gòu)自北京艾德萊生物有限公司;逆轉(zhuǎn)錄試劑盒、BCA試劑盒購(gòu)自江蘇康為世紀(jì)生物科技有限公司;6孔培養(yǎng)板、24孔培養(yǎng)板、96孔培養(yǎng)板購(gòu)于北京白鯊易生物公司;All-in-oneTM qPCR Mix購(gòu)于GeneCopoeia公司;EdU試劑盒購(gòu)于廣州銳博生物技術(shù)有限公司;SDS-PAGE凝膠試劑盒購(gòu)于上海雅酶生物公司;Sirt1、Pax7、GAPDH、MyHC、MyoG抗體購(gòu)于杭州景杰生物科技股份有限公司。
1.2 方法
1.2.1 siRNA的設(shè)計(jì)和過(guò)表達(dá)載體構(gòu)建
由廣州銳博公司設(shè)計(jì)并合成物種牛的Sirt1 siRNA與陰性對(duì)照(si-Sirt1和si-NC),上海生工生物公司合成Sirt1過(guò)表達(dá)質(zhì)粒(pcDNA-Sirt1)。
1.2.2 細(xì)胞培養(yǎng)與轉(zhuǎn)染
增殖期:用80%DMEM+20%FBS增殖培養(yǎng)基重懸細(xì)胞后均勻鋪于6孔與24孔細(xì)胞培養(yǎng)板中,放入37℃,5% CO2培養(yǎng)箱中培養(yǎng)。當(dāng)細(xì)胞密度達(dá)到70%~80%時(shí)轉(zhuǎn)染,6 h更換培養(yǎng)基,12 h后6孔板收集細(xì)胞蛋白,24孔板收集RNA。
分化期:當(dāng)增殖期細(xì)胞密度達(dá)到相同密度時(shí)轉(zhuǎn)染,細(xì)胞稍融合后,在相同條件下更換為添加3%HS的分化培養(yǎng)基以誘導(dǎo)分化。48 h后提取蛋白與RNA。試驗(yàn)分為4組:si-Sirt1組、si-NC組、pcDNA-Sirt1組和pcDNA-NC組,按照Lipofectamine 3000說(shuō)明書(shū)進(jìn)行轉(zhuǎn)染,到培養(yǎng)時(shí)間后提取各組細(xì)胞樣品。
1.2.3 RNA與蛋白提取
RNA提?。菏褂肦NA快速提取試劑盒提取細(xì)胞總RNA。使用逆轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄為cDNA,用于熒光定量PCR。
蛋白提?。河妙A(yù)冷PBS清洗細(xì)胞2次后,加入含PMSF的RIPA緩沖液,在冰上裂解10 min,4℃離心,取上清液。使用BCA試劑盒測(cè)定蛋白濃度,并根據(jù)濃度進(jìn)行變性處理,用于后續(xù)Western blotting試驗(yàn)。
1.2.4 熒光定量PCR
通過(guò)NCBI設(shè)計(jì)qRT-PCR試驗(yàn)的引物(表1)。96孔定量板中按分組設(shè)計(jì)3個(gè)生物學(xué)重復(fù),4個(gè)技術(shù)重復(fù)。按照All-in-oneTM qPCR Mix說(shuō)明書(shū)設(shè)計(jì)熒光定量PCR儀(BIO-RAD)程序。
1.2.5 Western blotting檢測(cè)
使用SDS-PAGE凝膠試劑盒制備凝膠,將蛋白在凝膠上分離,隨后轉(zhuǎn)到PVDF膜上。用脫脂奶粉封閉2 h,結(jié)束后裁剪所需蛋白條帶,4℃過(guò)夜孵育目標(biāo)抗體。使用TBST洗3次,孵育二抗1 h,再次清洗3次后曝光,使用全能型成像系統(tǒng)(RAD-BIO)曝光與捕獲圖像,后續(xù)用Image J軟件分析印記灰度值。
1.2.6 EdU檢測(cè)
將BSMSCs細(xì)胞傳代到96孔板中培養(yǎng),每組設(shè)置3個(gè)生物學(xué)重復(fù)。細(xì)胞與10 μmol·L-1的EdU培養(yǎng)基孵育3 h后,使用EdU試劑盒檢測(cè)BSMSCs的增殖狀態(tài)。在熒光倒置顯微鏡(Leica)下捕獲圖像,并用Image J軟件分析結(jié)果。
1.2.7 數(shù)據(jù)統(tǒng)計(jì)分析
所有試驗(yàn)至少設(shè)置3個(gè)生物重復(fù)。Western blotting與qRT-PCR結(jié)果采用Student’s t檢驗(yàn),EdU陽(yáng)性細(xì)胞率用卡方檢驗(yàn),Graphpad Prism 9做柱狀圖。數(shù)據(jù)以“平均數(shù)±標(biāo)準(zhǔn)差”表示,*Plt;0.05表示顯著;**Plt;0.01表示極顯著;n.s.P≥ 0.05表示不顯著。
2 結(jié) 果
2.1 Sirt1在牛骨骼肌衛(wèi)星細(xì)胞不同時(shí)期表達(dá)量的變化
為了檢測(cè)Sirt1在成肌分化前后的差異,分別" 在增殖期24 h(GM)和分化期1 d、2 d和3 d(DM1、DM2、DM3)收集細(xì)胞樣品。通過(guò)qRT-PCR和Western blotting檢測(cè)4個(gè)時(shí)期Sirt1的mRNA和蛋白表達(dá)水平(圖1);與GM期相比,Sirt1的mRNA表達(dá)量在DM2時(shí)期極顯著下降(P<0.01),而在DM1和DM3時(shí)期變化不顯著(P>0.05)。在蛋白層面,DM2時(shí)期Sirt1的表達(dá)水平與增殖期相比無(wú)顯著差異(P>0.05)。結(jié)果顯示,Sirt1可能參與了調(diào)控衛(wèi)星細(xì)胞的成肌分化過(guò)程。
2.2 Sirt1的干擾與過(guò)表達(dá)對(duì)細(xì)胞增殖的影響
為了探討Sirt1對(duì)衛(wèi)星細(xì)胞發(fā)育的作用,將siRNA和質(zhì)粒轉(zhuǎn)染后,提取RNA和蛋白進(jìn)行檢測(cè)(圖2):干擾和過(guò)表達(dá)Sirt1后,增殖標(biāo)志因子Pax7與Ki67的mRNA表達(dá)水平與陰性對(duì)照(NC組)相比差異均不顯著(P>0.05),Pax7蛋白表達(dá)水平也沒(méi)有顯著差異(P>0.05)。此外,EdU染色試驗(yàn)結(jié)果顯示(圖3),經(jīng)過(guò)兩種不同處理后,染色的陽(yáng)性細(xì)胞標(biāo)記指數(shù)與NC組相比差異不顯著(P>0.05)。以上結(jié)果表明,無(wú)論是Sirt1的干擾還是過(guò)表達(dá),對(duì)BSMSCs的增殖狀態(tài)均無(wú)顯著影響。
2.3 Sirt1的干擾與過(guò)表達(dá)對(duì)細(xì)胞分化的影響
為了評(píng)估Sirt1對(duì)衛(wèi)星細(xì)胞分化的影響。將轉(zhuǎn)染的細(xì)胞誘導(dǎo)分化后48 h提取樣品,qRT-PCR結(jié)果顯示(圖4):Sirt1干擾處理后,MyHC和MyoG的mRNA表達(dá)量與NC組相比極顯著增加(P<0.01)。在蛋白水平上,MyoG的相對(duì)表達(dá)量顯著上升(P<0.05),而MyHC的蛋白相對(duì)表達(dá)無(wú)顯著差異(P>0.05)。Sirt1過(guò)表達(dá)處理后,MyHC和MyoG在mRNA水平上與對(duì)照組相比無(wú)顯著差異(P>0.05)。但MyoG的蛋白相對(duì)表達(dá)水平極顯著下調(diào)(P<0.01)。此外,在40倍(40×)光鏡下觀察細(xì)胞形態(tài)(圖5),發(fā)現(xiàn)Sirt1敲低處理后的細(xì)胞,肌管數(shù)量明顯多于NC組,且肌管的直徑和長(zhǎng)度大于NC組。而過(guò)表達(dá)Sirt1后,肌管數(shù)量減少,變細(xì)且長(zhǎng)度變短。
3 討 論
當(dāng)衛(wèi)星細(xì)胞激活后,它們通過(guò)對(duì)稱分裂增加其數(shù)量,或通過(guò)不對(duì)稱分裂產(chǎn)生新的衛(wèi)星細(xì)胞群。隨后,這些細(xì)胞通過(guò)增殖、相互融合或分化,最終修復(fù)受損的肌纖維,恢復(fù)肌肉的完整性和功能[17-19]。衛(wèi)星細(xì)胞的增殖和分化不僅受到肌源性調(diào)節(jié)因子的影響,還受到許多轉(zhuǎn)錄因子的調(diào)控,各種信號(hào)通路的激活或抑制也會(huì)對(duì)衛(wèi)星細(xì)胞產(chǎn)生不同的影響,這些因素在調(diào)控骨骼肌生長(zhǎng)發(fā)育方面是不可或缺的,對(duì)肌肉細(xì)胞譜系的增殖、分化和肌纖維的形成至關(guān)重要[20-23]。Sirt1在其中的作用逐漸引起了眾多研究的關(guān)注。
本研究發(fā)現(xiàn)(圖6),Sirt1通過(guò)去乙?;饔秘?fù)向調(diào)節(jié)BSMSCs的成肌分化,這與Sirt1在調(diào)控其他細(xì)胞類(lèi)型中所展現(xiàn)的去乙?;δ芟嘁恢?。例如,Sirt1去乙?;附Y(jié)構(gòu)域的消融會(huì)使組蛋白H4K16的乙酰化修飾水平升高,從而促進(jìn)肌源性分化蛋白1(myogenic differentiation 1,MyoD1)的表達(dá),導(dǎo)致C2C12過(guò)早分化[24,25]。這一機(jī)制表明Sirt1通過(guò)調(diào)控成肌相關(guān)轉(zhuǎn)錄因子的乙酰化狀態(tài),影響肌細(xì)胞的分化進(jìn)程。此外,Sirt1還通過(guò)與AMPK的協(xié)同作用影響肌肉的能量代謝,AMPK激活后可提高細(xì)胞內(nèi)NAD+的水平,從而上調(diào)Sirt1的表達(dá),進(jìn)而通過(guò)去乙酰化調(diào)節(jié)PGC-1α的活性,最終影響線粒體的功能和骨骼肌的能量代謝[26,27]。這一機(jī)制進(jìn)一步表明,Sirt1不僅在肌肉發(fā)育中具有關(guān)鍵調(diào)控作用,還在能量代謝和肌肉功能維持方面起著重要作用。另外,它的功能不僅限于肌肉發(fā)育,還擴(kuò)展至骨穩(wěn)態(tài)的調(diào)節(jié)。有研究發(fā)現(xiàn),Sirt1基因敲除會(huì)導(dǎo)致幼鼠的皮質(zhì)骨和小梁骨發(fā)育延遲[28,29]。并且Sirt1基因敲除的小鼠表現(xiàn)出骨量減少和成骨細(xì)胞與破骨細(xì)胞比例失衡的現(xiàn)象,導(dǎo)致肌肉萎縮甚至死亡[30]。研究還表明,在人軟骨細(xì)胞中,Sirt1及其天然激活劑白藜蘆醇在骨關(guān)節(jié)炎(OA)的發(fā)病機(jī)制中起著關(guān)鍵作用,白藜蘆醇通過(guò)提高軟骨中Sirt1的表達(dá),影響腫瘤壞死因子(tumor necrosis factor,TNF-α)引起核因子κB(nuclear factor kappa-B,NF-κB)的高表達(dá),從而保護(hù)細(xì)胞免受炎性因子的刺激,對(duì)骨關(guān)節(jié)起到抗炎作用,抑制OA疾病的進(jìn)展[31,32]。這些研究結(jié)果提示,Sirt1可能是肌肉和骨相關(guān)疾病的潛在治療靶點(diǎn),特別是在骨質(zhì)疏松和骨關(guān)節(jié)炎等疾病中,Sirt1的激活可以通過(guò)多種機(jī)制減緩疾病進(jìn)展??偟膩?lái)說(shuō),Sirt1在哺乳動(dòng)物的骨骼肌中,無(wú)論是肌肉的正常發(fā)育、能量代謝調(diào)控還是骨相關(guān)疾病的治療方面都發(fā)揮著重要作用。
4 結(jié) 論
本試驗(yàn)強(qiáng)調(diào)了Sirt1在調(diào)節(jié)肌肉發(fā)育中的關(guān)鍵作用,它抑制BSMSCs的成肌分化;干擾Sirt1能有效促進(jìn)肌衛(wèi)星細(xì)胞的分化進(jìn)程,而過(guò)表達(dá)則抑制該過(guò)程,且對(duì)細(xì)胞增殖未產(chǎn)生顯著影響。本研究結(jié)果為治療牛肌肉肌源性缺陷和骨相關(guān)疾病提供了一定的理論基礎(chǔ),也為后續(xù)探索組蛋白去乙酰化酶Sirt1對(duì)BSMSCs成肌分化調(diào)控作用的具體機(jī)制提供了研究依據(jù)。
參考文獻(xiàn)(References):
[1] ALVES-FERNANDES D K,JASIULIONIS M G.The role of SIRT1 on DNA damage response and epigenetic alterations in cancer[J].Int J Mol Sci,2019,20(13):3153.
[2] IMAI S I,ARMSTRONG C M,KAEBERLEIN M,et al.Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase[J].Nature,2000,403(6771):795-800.
[3] HAJJI N,WALLENBORG K,VLACHOS P,et al.Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide[J].Oncogene,2010,29(15):2192-2204.
[4] VAQUERO A,SCHER M,LEE D,et al.Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin[J].Mol Cell,2004,16(1):93-105.
[5] KARBASFOROOSHAN H,ROOHBAKHSH A,KARIMI G.SIRT1 and microRNAs:the role in breast,lung and prostate cancers[J].Exp Cell Res,2018,367(1):1-6.
[6] CHEN H,LIN X P,YI X H,et al.SIRT1-mediated p53 deacetylation inhibits ferroptosis and alleviates heat stress-induced lung epithelial cells injury[J].Int J Hyperthermia,2022,39(1):977-986.
[7] DILMAC S,KUSCU N,CANER A,et al.SIRT1/FOXO signaling pathway in breast cancer progression and metastasis[J].Int J Mol Sci,2022,23(18):10227.
[8] HAO Y J,REN Z N,YU L,et al.p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis[J]. Aging Cell,2022,21(8):e13677.
[9] HAN X,DING C,SANG X N,et al.Targeting Sirtuin1 to treat aging-related tissue fibrosis:From prevention to therapy[J]. Pharmacol Ther, 2022,229:107983.
[10] MA J Y,YANG H,LIU L,et al.Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway[J].Theriogenology,2021,173:83-92.
[11] XU G Q,DONG Y Y Y,WANG Z,et al.Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J].Int J Mol Sci,2023,24(16):12854.
[12] ZHANG W J,HUANG Q B,ZENG Z H,et al.Sirt1 inhibits oxidative stress in vascular endothelial cells[J].Oxid Med Cell Longev,2017,2017:7543973.
[13] WANG L,XU C Y,JOHANSEN T,et al.SIRT1- a new mammalian substrate of nuclear autophagy[J].Autophagy,2021,17(2): 593-595.
[14] LU Z Y,WANG H Z,ISHFAQ M,et al.Quercetin and AMPK:a dynamic duo in alleviating MG-induced inflammation via the AMPK/SIRT1/NF-κB pathway[J].Molecules,2023,28(21):7388.
[15] MA Z X,XU H,XIANG W,et al.Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9[J].Eur Rev Med Pharmacol Sci,2021,25(2):626-635.
[16] 王軼敏,代 陽(yáng),劉新峰,等.牛骨骼肌衛(wèi)星細(xì)胞的分離鑒定和誘導(dǎo)分化[J].中國(guó)畜牧獸醫(yī),2014,41(7):142-147.
WANG Y M,DAI Y,LIU X F,et al.Isolation,identification and induced differentiation of bovine skeletal muscle satellite cells[J].China Animal Husbandry amp; Veterinary Medicine,2014,41(7):142-147.(in Chinese)
[17] DUMONT N A,BENTZINGER C F,SINCENNES M C,et al.Satellite cells and skeletal muscle regeneration[J].Compr Physiol, 2015,5(3):1027-1059.
[18] SOUSA-VICTOR P,GARCA-PRAT L,MUOZ-CNOVES P.Control of satellite cell function in muscle regeneration and its disruption in ageing[J].Nat Rev Mol Cell Biol,2022,23(3):204-226.
[19] 劉 媛,李溪月,張維婭.MMP14調(diào)控骨骼肌衛(wèi)星細(xì)胞分化的分子機(jī)制研究[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(4):1592-1604.
LIU Y,LI X Y,ZHANG W Y.Molecular mechanism of MMP14 regulating skeletal muscle satellite cell differentiation[J].Acta Veterinaria et Zootechnica Sinica,2024,55(4):1592-1604.(in Chinese)
[20] SCHIAFFINO S,DYAR K A,CICILIOT S,et al.Mechanisms regulating skeletal muscle growth and atrophy[J].FEBS J,2013, 280(17): 4294-4314.
[21] RELAIX F,BENCZE M,BOROK M J,et al.Perspectives on skeletal muscle stem cells[J].Nat Commun,2021,12(1):692.
[22] WANG S C,ZHAO X,LIU Q Q,et al.Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation[J].Redox Biol,2022,50:102255.
[23] 王子巖,王亞慧,吳天弋,等.INTS11通過(guò)介導(dǎo)CDK2和CYCLIND1的轉(zhuǎn)錄促進(jìn)牛成肌細(xì)胞增殖[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(7):2927-2939.
WANG Z Y,WANG Y H,WU T Y,et al.INTS11 promotes the proliferation of bovine myoblasts by mediating the transcription of CDK2 and CYCLIND1[J].Acta Veterinaria et Zootechnica Sinica,2024,55(7):2927-2939.(in Chinese)
[24] RYALL J G,DELL′ORSO S,DERFOUL A,et al.The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells[J].Cell Stem Cell,2015,16(2):171-183.
[25] AMAT R,PLANAVILA A,CHEN S L,et al.SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ Co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD[J].J Biol Chem,2009,284(33):21872-21880.
[26] CANT C,JIANG L Q,DESHMUKH A S,et al.Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle[J].Cell Metab,2010,11(3):213-219.
[27] GURD B J.Deacetylation of PGC-1α by SIRT1:importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J].Appl Physiol Nutr Metab,2011,36(5):589-597.
[28] MCBURNEY M W,YANG X F,JARDINE K,et al.The mammalian SIR2α protein has a role in embryogenesis and gametogenesis[J]. Mol Cell Biol,2003,23(1):38-54.
[29] JIN X X,SUN X L,MA X,et al.SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1[J].Cell Mol Life Sci,2024,81(1):204.
[30] ZAINABADI K,LIU C J,CALDWELL A L M,et al.SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis[J].PLoS One,2017,12(9):e0185236.
[31] MOON M H,JEONG J K,LEE Y J,et al.SIRT1,a class III histone deacetylase,regulates TNF-α-induced inflammation in human chondrocytes[J].Osteoarthritis Cartilage,2013,21(3):470-480.
[32] BUHRMANN C,BUSCH F,SHAYAN P,et al.Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells[J].J Biol Chem,2014,289(32):22048-22062.
(編輯 郭云雁)