摘 要:
旨在分析動(dòng)物遺傳評(píng)估模型中加入顯性效應(yīng)是否可以有效提高內(nèi)蒙古絨山羊絨毛性狀育種值預(yù)測(cè)的準(zhǔn)確性。本研究基于課題組前期積累的健康狀況良好的內(nèi)蒙古絨山羊(阿爾巴斯型)2 256只個(gè)體的70K SNP芯片測(cè)序數(shù)據(jù),收集整理1至8歲個(gè)體的絨毛性狀(絨纖維直徑和產(chǎn)絨量)生產(chǎn)性能數(shù)據(jù)和系譜記錄,根據(jù)是否考慮顯性效應(yīng),建立兩個(gè)動(dòng)物模型,利用BLUP和GBLUP方法進(jìn)行遺傳參數(shù)及育種值的估計(jì),進(jìn)一步通過交叉驗(yàn)證的方法評(píng)價(jià)絨毛性狀育種值估計(jì)的準(zhǔn)確性,確定最佳遺傳評(píng)估模型。最后建立多變量動(dòng)物模型進(jìn)行兩個(gè)性狀的遺傳相關(guān)及育種值準(zhǔn)確性估計(jì),對(duì)比單性狀和多性狀模型下估計(jì)遺傳參數(shù)及育種值準(zhǔn)確性的差異。研究結(jié)果表明:當(dāng)遺傳評(píng)估模型中不考慮顯性效應(yīng)時(shí),基于BLUP和GBLUP法估計(jì)產(chǎn)絨量的加性遺傳力分別為0.156和0.215,育種值估計(jì)準(zhǔn)確性分別為27.58%和60.33%;絨纖維直徑的加性遺傳力為0.252和0.292,育種值估計(jì)準(zhǔn)確性為28.08%和62.33%。在動(dòng)物模型中同時(shí)考慮加性和顯性效應(yīng)時(shí),基于BLUP和GBLUP法估計(jì)產(chǎn)絨量的加性遺傳力分別為0.150和0.200,顯性遺傳力為0.147和0.070,育種值估計(jì)準(zhǔn)確性分別為38.50%和72.62%;絨纖維直徑的加性遺傳力為0.263和0.290,顯性遺傳力為0.288和0.026,育種值估計(jì)準(zhǔn)確性為39.66%和65.97%。最佳模型下,產(chǎn)絨量和絨纖維直徑的遺傳相關(guān)為0.340 0,表型相關(guān)為0.038 5。產(chǎn)絨量和絨纖維直徑育種值估計(jì)準(zhǔn)確性比基于單性狀下的育種值估計(jì)準(zhǔn)確性分別提高9.81%~19.43%和14.01%~21.97%。綜上所述,產(chǎn)絨量屬于中等偏低遺傳力,絨纖維直徑屬于中等偏高遺傳力,兩個(gè)性狀的遺傳相關(guān)相對(duì)較小,說明對(duì)產(chǎn)絨量的選育提高不會(huì)造成絨纖維直徑的變粗。GBLUP法的估計(jì)的各性狀育種值準(zhǔn)確性顯著高于BLUP法,產(chǎn)絨量提高了10.92%~12.29%,絨纖維直徑提高了3.64% ~11.58%?;诙嘈誀顒?dòng)物模型下育種值估計(jì)準(zhǔn)確性高于單性狀動(dòng)物模型。當(dāng)模型中同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),可以顯著提高基因組預(yù)測(cè)準(zhǔn)確性,說明對(duì)內(nèi)蒙古絨山羊產(chǎn)絨量和絨纖維直徑進(jìn)行選育過程中應(yīng)該考慮顯性效應(yīng)的影響。
關(guān)鍵詞:
內(nèi)蒙古絨山羊;絨纖維直徑;產(chǎn)絨量;顯性效應(yīng);育種值估計(jì)準(zhǔn)確性
中圖分類號(hào):
S827.2"""" 文獻(xiàn)標(biāo)志碼:A """"文章編號(hào): 0366-6964(2025)02-0571-11
收稿日期:2024-06-14
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1300201;2022YFD1300204);內(nèi)蒙古自治區(qū)高等學(xué)?!扒嗄昕萍加⒉胖С钟?jì)劃”(NJYT22038);財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家絨毛用羊產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-39);內(nèi)蒙古農(nóng)業(yè)大學(xué)高水平成果培育專項(xiàng)(QT202201);內(nèi)蒙古自治區(qū)高等學(xué)校創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(NMGIRT2322);內(nèi)蒙古自治區(qū)直屬高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(BR220112)
作者簡(jiǎn)介:習(xí)海嬌(2001-),女,吉林四平人,碩士生,主要從事羊遺傳資源保護(hù)與育種方面的研究,E-mail:xihaijiao456@163.com
*通信作者:王志英,主要從事羊遺傳資源保護(hù)與育種方面的研究,E-mail:wzhy0321@126.com
Influence of Dominance Effects on the Accuracy of Breeding Value Estimation of Cashmere
Production and Cashmere Diameter in Inner Mongolia Cashmere Goats
XI" Haijiao1, LI" Jinquan1,2, ZHANG" Yanjun1, WANG" Ruijun1, L Qi1, MEI" Bujun4, WANG" Na5, SU" Rui1, WANG" Zhiying1,3*
(1.College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018," China;
2.Key Laboratory of Meat Sheep Genetic Breeding of the Ministry of Agriculture and Rural Affairs, Hohhot 010018," China;
3.Key Laboratory of Sheep Genetic Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018," China;
4.Department of Agriculture, Hetao University, Bayannur 015000," China;
5.Inner Mongolia Yi-Wei White Down Goat Limited Liability Company, Erdos 016105," China)
Abstract:
The aim of this study was to analyze that whether the accuracy of breeding value prediction for cashmere traits in Inner Mongolia cashmere goats was improved if dominance effects were added in animal genetic evaluation models. Based on the Illumina GGP_Goat_70K BeadChip sequencing data from 2 256 individuals of Inner Mongolia cashmere goats (Aerbas type), the phenotype and pedigree records of cashmere traits(cashmere diameter,cashmere production) were collected from individuals at age 1 to 8 years old.Two animal models were established according to whether dominance effects were taken into account or not. The genetic parameters and breeding values were estimated using the BLUP and GBLUP methods.And the accuracy of the estimated breeding values of cashmere traits was further evaluated by the cross-validation method, which was used to determine the optimal model. Finally, a multivariate animal model was established to estimate the genetic correlation and accuracy of breeding value prediction for both of the traits.And the differences in genetic parameters and breeding value accuracy between single trait and multi trait models were compared. The results showed that when the dominance effects were not considered in the animal model, the additive heritabilities for cashmere production using the BLUP and GBLUP methods were 0.156 and 0.215, and the accuracy of breeding value estimation was 27.58% and 60.33%, respectively; and the additive heritabilities for cashmere diameter were 0.252 and 0.292, and the accuracy of breeding value estimation was 28.08% and 62.33%,
respectively. When both additive and dominance effects were considered in the animal model, the additive heritabilities for cashmere production using the BLUP and GBLUP methods were 0.150 and 0.200, and the dominant heritabilities were 0.147 and 0.070, with breeding value estimation accuracies of 38.50%and 72.62%, respectively; And the additive heritabilities for cashmere diameter were 0.263 and 0.290, and the dominant heritabilities were 0.288 and 0.026, and the accuracy of breeding value estimation was 39.66% and 65.97%, respectively.Under the best model,the genetic correlation between cashmere production and cashmere diameter was 0.340 0, and the phenotypic correlation was 0.038 5.Compared to that in single trait animal model, the accuracy of breeding value estimation for cashmere production and cashmere diameter was increased by 9.81%-19.43% and 14.01%-21.97%,respectively. In summary, the cashmere production have moderate to low heritability, and the cashmere diameter have moderate to high heritability. The genetic correlation between the two traits is relatively small, indicating that genetic improving for cashmere production will not cause thickening of cashmere diameter. The accuracy of breeding values estimation for the two traits by GBLUP method is significantly higher than that with BLUP method, with a 10.92% to 12.29% increase in cashmere production and a 3.64% to 11.58% increase in cashmere diameter. The accuracy of breeding value estimation under multi trait animal models is higher than that with single trait animal models. When both additive and dominance effects are considered in the animal model, the accuracy of genomic prediction can be significantly improved, indicating that the influence of dominance effects should be considered in the breeding process of Inner Mongolia cashmere goats in terms of cashmere production and cashmere diameter.
Key words:
Inner Mongolia cashmere goat; cashmere diameter; cashmere production; dominance effects; accuracy of estimated breeding value
*Corresponding author: WANG Zhiying, E-mail:wzhy0321@126.com
內(nèi)蒙古絨山羊是我國(guó)重要的遺傳資源保護(hù)對(duì)象[1],分為阿爾巴斯型、二狼山型、阿拉善型三個(gè)類型。其中,內(nèi)蒙古絨山羊阿爾巴斯型屬于絨肉兼用型絨山羊,其羊絨細(xì)而柔軟、顏色潔白、富有光澤、手感細(xì)膩光滑,是紡織品的最佳原料[2]。因此,有必要對(duì)該品種的絨毛性狀進(jìn)行重點(diǎn)關(guān)注。合理的遺傳評(píng)估能夠?qū)崿F(xiàn)經(jīng)濟(jì)性狀的快速遺傳改良,進(jìn)一步縮短世代間隔,加快種群遺傳進(jìn)展。相對(duì)于其它物種而言,絨山羊的選育工作起步較晚,基因組育種應(yīng)用相對(duì)落后。隨著育種信息數(shù)據(jù)的積累,其育種工作在逐漸推進(jìn)[3]。王鳳紅[4]基于70K SNP芯片數(shù)據(jù)對(duì)內(nèi)蒙古絨山羊絨毛性狀進(jìn)行基因組選擇研究,發(fā)現(xiàn)基因組預(yù)測(cè)準(zhǔn)確性為45%~82%。顯性效應(yīng)作為一個(gè)重要的非加性遺傳效應(yīng),有研究表明在估計(jì)育種值時(shí)將其加入動(dòng)物模型中,可以有效提高預(yù)測(cè)的準(zhǔn)確性[5,6] 。目前,在牛、豬等物種中均已經(jīng)進(jìn)行了顯性效應(yīng)對(duì)育種值估計(jì)準(zhǔn)確性影響的研究[7]。Nishio和Satoh[8]基于模擬數(shù)據(jù)評(píng)估顯性效應(yīng)對(duì)估計(jì)育種值的影響,發(fā)現(xiàn)加入顯性效應(yīng)后,性狀育種值估計(jì)準(zhǔn)確性提高了1.2%。Da等[9]基于荷斯坦奶牛的基因組數(shù)據(jù),利用GBLUP方法研究顯性效應(yīng)對(duì)產(chǎn)奶性狀基因組育種值(GEBV)估計(jì)準(zhǔn)確性的影響,分析發(fā)現(xiàn)同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),GEBV預(yù)測(cè)精確度會(huì)提高。Aliloo等[10]對(duì)澳大利亞荷斯坦奶牛和澤西奶牛的產(chǎn)奶性狀進(jìn)行遺傳評(píng)估,發(fā)現(xiàn)模型中考慮顯性效應(yīng)可以提高產(chǎn)奶性狀的擬合優(yōu)度和預(yù)測(cè)精度。因此,在個(gè)體基因組遺傳評(píng)估中,有必要考慮顯性效應(yīng)對(duì)基因組育種值估計(jì)準(zhǔn)確性的影響。
內(nèi)蒙古絨山羊絨毛性狀已經(jīng)開展了大量的遺傳評(píng)估工作,李學(xué)武等[11]采用WOMBAT軟件的AIREML算法進(jìn)行方差組分分析和遺傳參數(shù)估計(jì),結(jié)果表明短毛型、中間型和長(zhǎng)毛型的遺傳力分別是0.11、0.16和0.22。Yan等[12]使用 GBLUP 和貝葉斯方法對(duì)絨毛性狀的遺傳參數(shù)和基因組育種值進(jìn)行估計(jì),發(fā)現(xiàn)GBLUP 方法對(duì)絨毛性狀的基因組預(yù)測(cè)準(zhǔn)確性最高。王志英[13]利用重復(fù)力動(dòng)物模型對(duì)內(nèi)蒙古絨山羊毛長(zhǎng)、絨長(zhǎng)和絨細(xì)的遺傳力進(jìn)行估計(jì),其遺傳力分別為0.30、0.12和0.32。然而在前期的研究中,遺傳評(píng)估模型中只考慮加性遺傳效應(yīng),尚未討論顯性效應(yīng)對(duì)絨山羊重要經(jīng)濟(jì)性狀遺傳參數(shù)和育種值估計(jì)準(zhǔn)確性的影響。本研究基于內(nèi)蒙古絨山羊的系譜、基因型以及絨毛性狀的表型、系統(tǒng)環(huán)境數(shù)據(jù),根據(jù)是否考慮顯性效應(yīng)建立不同的動(dòng)物模型,利用BLUP法和GBLUP法估計(jì)其相應(yīng)的方差組分、遺傳參數(shù)及育種值,進(jìn)一步估計(jì)育種值預(yù)測(cè)的準(zhǔn)確性,旨在確定內(nèi)蒙古絨山羊絨毛性狀(產(chǎn)絨量、絨纖維直徑)遺傳評(píng)估的最優(yōu)方法和模型,設(shè)計(jì)合理的育種方案,加快種群進(jìn)展,縮短世代間隔。
1 材料與方法
1.1 樣品采集及表型測(cè)定
本研究所用數(shù)據(jù)來源于內(nèi)蒙古億維白絨山羊有限責(zé)任公司,該羊場(chǎng)位于內(nèi)蒙古西南部,所有個(gè)體常年放牧,公、母羊分群飼養(yǎng),系譜、表型及環(huán)境數(shù)據(jù)檔案完整清晰。根據(jù)羊絨的生長(zhǎng)周期,于每年5月份進(jìn)行抓絨,抓絨前對(duì)個(gè)體表面較長(zhǎng)的羊毛進(jìn)行處理,然后使用標(biāo)準(zhǔn)金屬梳子搜集絨樣,反復(fù)順毛梳理直至逆毛梳理將羊絨梳凈為止,記錄個(gè)體抓絨量(g)。通常在抓絨前取每個(gè)個(gè)體肩胛骨后緣一掌處10 cm2的絨毛樣品,做好耳號(hào)標(biāo)記,帶回內(nèi)蒙古農(nóng)業(yè)大學(xué)羊遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室,利用便攜式全天候毛絨快速檢測(cè)一體機(jī)進(jìn)行絨纖維直徑(μm)等相關(guān)參數(shù)的測(cè)量。本研究產(chǎn)絨量和絨纖維直徑性狀所用表型數(shù)據(jù)來源于2010—2019年的內(nèi)蒙古絨山羊(阿爾巴斯型)生產(chǎn)性能記錄,遺傳評(píng)估所用的系譜記錄來源于2008—2019年共24 790條記錄。該羊場(chǎng)管理嚴(yán)格,檔案記錄清晰,數(shù)據(jù)可靠,可用于下一步的遺傳評(píng)估分析。
1.2 基因型數(shù)據(jù)及其質(zhì)量控制
對(duì)課題組前期儲(chǔ)備的2 299只個(gè)體頸靜脈血液進(jìn)行基因組DNA提取,所有樣本基于Illumina平臺(tái)的山羊70K SNP芯片[4]進(jìn)行基因分型,使用PLINK軟件對(duì)基因型數(shù)據(jù)進(jìn)行質(zhì)量控制[14],質(zhì)控標(biāo)準(zhǔn)為:最小等位基因頻率小于0.05,Hardy-Weinberg平衡Plt;10-5,位點(diǎn)缺失率大于10%,個(gè)體缺失率高于10%。最終,保留了2 256個(gè)個(gè)體共50 728個(gè)SNPs位點(diǎn),進(jìn)一步使用plink軟件將質(zhì)控后數(shù)據(jù)的基因型格式轉(zhuǎn)換為0、1、2用于后續(xù)分析。
1.3 單性狀動(dòng)物模型估計(jì)遺傳參數(shù)
本研究基于前期整理好的個(gè)體系譜、系統(tǒng)環(huán)境效應(yīng)、基因型和性狀表型數(shù)據(jù),根據(jù)是否考慮顯性效應(yīng),建立兩個(gè)重復(fù)力動(dòng)物模型,利用BLUP和GBLUP法對(duì)內(nèi)蒙古絨山羊絨毛性狀進(jìn)行遺傳參數(shù)和育種值的估計(jì)。BLUP法由Henderson[15]提出,相對(duì)應(yīng)的方程組如下:
XTXXTZZTXI+λA-1
b^ ebv^add=
XTyZTy(1)
X與XT為固定效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,Z與ZT為個(gè)體加性效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,b^為固定效應(yīng)值, ebv^add為隨機(jī)效應(yīng)值,λ是遺傳力的相關(guān)參數(shù),y為性狀的觀測(cè)值,A為基于系譜關(guān)系建立的親緣關(guān)系矩陣。
在BLUP的基礎(chǔ)上,Meuwissen等[16]提出了GBULP模型,即使用基因型數(shù)據(jù)建立親緣關(guān)系矩陣G,其余模型和算法與BLUP相同。
XTXXTZZTXI+λG-1
b^Gebv^add=
XTyZTy(2)
X與XT為固定效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,Z與ZT為個(gè)體加性效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,b^為固定效應(yīng)值,ebv^add為隨機(jī)效應(yīng)值,λ是遺傳力的相關(guān)參數(shù),y為性狀的觀測(cè)值,G為基于全基因組遺傳標(biāo)記建立的遺傳關(guān)系矩陣。
本研究共包含兩個(gè)動(dòng)物模型,模型中的系統(tǒng)環(huán)境效應(yīng)均為測(cè)定年份(2011—2021年)、群(1~12∶1個(gè)牧工負(fù)責(zé)一個(gè)群)、個(gè)體年齡(1~8歲)、性別(1/2,公/母)和出生類型(單羔、雙羔和三羔)。模型Ⅰ的隨機(jī)效應(yīng)只考慮個(gè)體加性遺傳效應(yīng)、個(gè)體永久環(huán)境效應(yīng)和殘差效應(yīng),模型Ⅱ考慮個(gè)體加性遺傳效應(yīng)、個(gè)體顯性遺傳效應(yīng)、個(gè)體永久環(huán)境效應(yīng)和殘差效應(yīng)。統(tǒng)計(jì)模型Ⅰ為:
y=Xb+Zu+Wp+e
(3)
其中,y為個(gè)體的性狀觀測(cè)值,b為性狀的固定效應(yīng),u為個(gè)體加性遺傳效應(yīng),p為個(gè)體永久環(huán)境效應(yīng),X為固定效應(yīng)的結(jié)構(gòu)矩陣,Z為個(gè)體加性效應(yīng)的結(jié)構(gòu)矩陣,W為個(gè)體永久環(huán)境效應(yīng)的結(jié)構(gòu)矩陣,e為性狀的殘差效應(yīng)。
在公式(3)基礎(chǔ)上進(jìn)一步考慮顯性遺傳效應(yīng)。因此,模型Ⅱ?yàn)椋?/p>
y=Xb+Zu+Wp+Vd+e
(4)
其中,d~N(0,σ2dom)也是隨機(jī)效應(yīng),在此時(shí)d^=eb^vdom是每個(gè)個(gè)體顯性育種值所組成的向量,V是顯性效應(yīng)d所對(duì)應(yīng)的結(jié)構(gòu)矩陣。
當(dāng)考慮顯性效應(yīng)時(shí),混合線性模型方程式變?yōu)椋?/p>
XTXXTZXTVZTXI+λG-1ZTXVTXVTZI+λdD-1
b^Gebv^addGebv^dom=
XTyZTyVTy
(5)
X與XT為固定效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,Z與ZT為個(gè)體加性效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,V與VT為個(gè)體顯性遺傳效應(yīng)的結(jié)構(gòu)矩陣及其轉(zhuǎn)置矩陣,b^為固定效應(yīng)值,ebv^add為個(gè)體加性效應(yīng)值,ebv^dom為個(gè)體顯性效應(yīng)值,λ是遺傳力的相關(guān)參數(shù),y為性狀的觀測(cè)值,D為基于顯性效應(yīng)建立的親緣關(guān)系矩陣。
基于以上建立的模型,利用R語(yǔ)言的hiblup包(https://www.hiblup.com/)進(jìn)行產(chǎn)絨量和絨纖維直徑的遺傳參數(shù)和育種值估計(jì)[17]。
1.4 多性狀動(dòng)物模型估計(jì)遺傳參數(shù)
基于已經(jīng)確定的最佳模型,即顯性遺傳效應(yīng)被作為隨機(jī)效應(yīng)加入動(dòng)物模型,進(jìn)一步建立多性狀動(dòng)物模型如下:
yi=Xibi+Ziai+Wipi+Vidi+ei
其中,yi為第ith個(gè)性狀的觀測(cè)值向量,bi為第ith個(gè)性狀的固定效應(yīng)向量,ai為第ith個(gè)性狀的個(gè)體加性遺傳效應(yīng)向量,pi為第ith個(gè)性狀的個(gè)體永久環(huán)境效應(yīng)向量,di為第ith個(gè)性狀的個(gè)體顯性遺傳效應(yīng)向量,Xi、Zi、Wi、Vi分別為第ith個(gè)性狀對(duì)應(yīng)的固定效應(yīng)、個(gè)體加性遺傳效應(yīng)、個(gè)體永久環(huán)境效應(yīng)、個(gè)體顯性遺傳效應(yīng)的結(jié)構(gòu)矩陣,ei為第ith個(gè)性狀的殘差效應(yīng)向量。
基于多性狀動(dòng)物模型,利用R語(yǔ)言的hiblup包(https://www.hiblup.com/)進(jìn)行產(chǎn)絨量和絨纖維直徑遺傳參數(shù)的估計(jì)[17]。
1.5 育種值估計(jì)準(zhǔn)確性的評(píng)價(jià)
本研究采用五倍交叉驗(yàn)證的方法來評(píng)價(jià)育種值的預(yù)測(cè)效果,將所有個(gè)體分為5組,其中4組個(gè)體做參考群,1組個(gè)體做驗(yàn)證群體,參考群個(gè)體同時(shí)具有表型和基因型,驗(yàn)證群只有基因型,參考群和驗(yàn)證群的抽取反復(fù)5次,進(jìn)行交叉驗(yàn)證。用驗(yàn)證群體的校正表型值和估計(jì)育種值的相關(guān)性除以遺傳力的開方來計(jì)算基因組育種值準(zhǔn)確性評(píng)價(jià)。
r=cov(a,p)h2
其中,a為性狀的估計(jì)育種值,p為性狀的表型值,cov(a,p)是性狀估計(jì)育種值和表型值的協(xié)方差,h2是性狀的估計(jì)遺傳力。
2 結(jié) 果
2.1 內(nèi)蒙古絨山羊絨毛性狀表型記錄統(tǒng)計(jì)分析
本研究對(duì)2010—2019年內(nèi)蒙古絨山羊絨毛性" 狀的整體統(tǒng)計(jì)分析見表1,產(chǎn)絨量性狀平均值為740.31g,標(biāo)準(zhǔn)差為215.28g,變異系數(shù)為29.07%,絨纖維直徑性狀平均值為15.23μm,標(biāo)準(zhǔn)差為0.81μm,變異系數(shù)為5.31%。說明個(gè)體間產(chǎn)絨量的差異相對(duì)較大,羊絨纖維直徑差異相對(duì)較小。對(duì)這兩個(gè)性狀的表型值進(jìn)行正態(tài)性檢驗(yàn),發(fā)現(xiàn)其均服從正態(tài)分布(圖1)。
2.2 內(nèi)蒙古絨山羊絨毛性狀方差組分及遺傳參數(shù)估計(jì)
2.2.1 內(nèi)蒙古絨山羊產(chǎn)絨量方差組分及遺傳參數(shù)估計(jì)
本研究利用BLUP、GBLUP法對(duì)個(gè)體產(chǎn)絨量進(jìn)行遺傳評(píng)估分析,各組分效應(yīng)的方差組分及遺傳參數(shù)結(jié)果見表2。對(duì)于BLUP法,模型Ⅰ估計(jì)的加性遺傳力為0.156,重復(fù)力為0.35;模型Ⅱ估計(jì)
的加性遺傳力為0.150,顯性遺傳力為0.147,重復(fù)力為0.35。對(duì)于GBLUP法,模型Ⅰ估計(jì)的加性遺傳力為0.215,重復(fù)力為0.34;模型Ⅱ估計(jì)的加性遺傳力為0.200,顯性遺傳力為0.070,重復(fù)力為0.34,同時(shí)發(fā)現(xiàn)兩種方法模型Ⅱ的logL值小于模型Ⅰ。由此可見,產(chǎn)絨量屬于中等偏低遺傳力,且顯性效應(yīng)對(duì)于產(chǎn)絨量具有一定的貢獻(xiàn)。
2.2.2 內(nèi)蒙古絨山羊絨纖維直徑方差組分及遺傳參數(shù)估計(jì)
本研究分別利用BLUP、GBLUP法對(duì)個(gè)體絨纖維直徑進(jìn)行遺傳評(píng)估分析,各組分效應(yīng)的方差組分及遺傳參數(shù)結(jié)果見表3。對(duì)于BLUP法,模型Ⅰ估計(jì)的加性遺傳力為0.252,重復(fù)力為0.37;模型Ⅱ估計(jì)的加性遺傳力為0.263,顯性遺傳力為0.288,重復(fù)力為0.55。對(duì)于GBLUP法,模型Ⅰ估計(jì)的加性遺傳力為0.292,重復(fù)力為0.37;模型Ⅱ估計(jì)的加性遺傳力為0.290,顯性遺傳力為0.026,重復(fù)力為0.39,同時(shí)發(fā)現(xiàn)兩種方法模型Ⅱ的logL值小于模型Ⅰ,由此可見,絨纖維直徑屬于中等偏高遺傳力性狀,結(jié)合顯性遺傳力的估計(jì)結(jié)果,說明顯性效應(yīng)對(duì)絨纖維直徑具有一定的影響。
2.3 內(nèi)蒙古絨山羊絨毛性狀基因組預(yù)測(cè)準(zhǔn)確性的評(píng)價(jià)
2.3.1 內(nèi)蒙古絨山羊產(chǎn)絨量基因組育種值準(zhǔn)確性評(píng)價(jià)
本研究估計(jì)的內(nèi)蒙古絨山羊產(chǎn)絨量的基因組預(yù)測(cè)準(zhǔn)確性結(jié)果見表4。由此可見,BLUP方法中,當(dāng)僅考慮加性效應(yīng)時(shí),基因組預(yù)測(cè)準(zhǔn)確性為27.58%;同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),基因組預(yù)測(cè)準(zhǔn)確性為38.50%,提高了10.92%。GBLUP方法中,當(dāng)僅考慮加性效應(yīng)時(shí),準(zhǔn)確性為60.33%;同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),準(zhǔn)確性為72.62%,提高了12.29%。由此可見,GBLUP法估計(jì)的產(chǎn)絨量基因組預(yù)測(cè)準(zhǔn)確性顯著高于BLUP法,同時(shí)發(fā)現(xiàn)遺傳評(píng)估模型中加入顯性效應(yīng)可以提高產(chǎn)絨量育種值估計(jì)準(zhǔn)確性。
2.3.2 內(nèi)蒙古絨山羊絨纖維直徑基因組育種值準(zhǔn)確性評(píng)價(jià)
本研究估計(jì)的內(nèi)蒙古絨山羊絨纖維直徑的基因組預(yù)測(cè)準(zhǔn)確性見表5。由此可見,BLUP方法中,僅考慮加性效應(yīng)時(shí),基因組預(yù)測(cè)準(zhǔn)確性為28.08%;同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),基因組預(yù)測(cè)準(zhǔn)確性為39.66%,提高了11.58%。GBLUP方法中,考慮加性效應(yīng)時(shí),準(zhǔn)確性為62.33%;同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí),準(zhǔn)確性為65.97%,提高了3.64%。由此可見,GBLUP法估計(jì)的絨纖維直徑基因組預(yù)測(cè)準(zhǔn)確性顯著高于BLUP法,同時(shí)發(fā)現(xiàn)遺傳評(píng)估模型中加入顯性效應(yīng)可以提高絨纖維直徑的育種值估計(jì)準(zhǔn)確性。
2.4 基于多性狀動(dòng)物模型的內(nèi)蒙古絨山羊絨毛性狀遺傳參數(shù)的估計(jì)
在同時(shí)包含加性效應(yīng)和顯性效應(yīng)的最佳模型下,進(jìn)一步建立多變量動(dòng)物模型,利用 BLUP法和GBLUP法對(duì)內(nèi)蒙古絨山羊絨毛性狀的遺傳參數(shù)進(jìn)行估計(jì),結(jié)果見表6。發(fā)現(xiàn)基于BLUP法的絨纖維直徑和產(chǎn)絨量的遺傳力分別為 0.260 3、0.145 8,二者的遺傳相關(guān)為 0.386 8,表型相關(guān)為0.038 5?;贕BLUP法的纖維直徑和產(chǎn)絨量的遺傳力分別為 0.325 5、0.189 5,遺傳相關(guān)為 0.340 0,表型相關(guān)為0.038 5。由此可見,絨纖維直徑和產(chǎn)絨量存在正遺傳相關(guān)和表型相關(guān),且相關(guān)程度較小,說明對(duì)產(chǎn)絨量的遺傳選育不會(huì)顯著增粗羊絨纖維直徑。
2.5 基于多性狀動(dòng)物模型的內(nèi)蒙古絨山羊絨毛性狀基因組育種值估計(jì)準(zhǔn)確性評(píng)價(jià)
在同時(shí)包含加性效應(yīng)和顯性效應(yīng)的最佳模型下,利用 BLUP法和GBLUP法對(duì)內(nèi)蒙古絨山羊產(chǎn)絨量的育種值估計(jì)準(zhǔn)確性評(píng)價(jià)結(jié)果見表7,結(jié)果發(fā)現(xiàn),基于BLUP方法的基因組預(yù)測(cè)準(zhǔn)確性為57.93%,基于GBLUP法的基因組預(yù)測(cè)準(zhǔn)確性為82.43%,比基于單性狀動(dòng)物模型下的育種值估計(jì)準(zhǔn)確性分別提高了19.43%和9.81%。
在同時(shí)包含加性效應(yīng)和顯性效應(yīng)的最佳模型下,利用 BLUP法和GBLUP法對(duì)內(nèi)蒙古絨山羊絨纖維直徑的育種值估計(jì)準(zhǔn)確性評(píng)價(jià)結(jié)果見表8?;?/p>
于BLUP法的基因組預(yù)測(cè)準(zhǔn)確性為53.67%,基于GBLUP法的基因組預(yù)測(cè)準(zhǔn)確性為87.94%,比基于單性狀動(dòng)物模型下的育種值估計(jì)準(zhǔn)確性分別提高了14.01%和21.97%。
3 討 論
隨著全基因組選擇統(tǒng)計(jì)模型的不斷改進(jìn)優(yōu)化,模型的穩(wěn)定性及準(zhǔn)確性不斷提高,顯性效應(yīng)可能對(duì)個(gè)體的總體遺傳變異起關(guān)鍵作用[18,19]。但是,在進(jìn)行復(fù)雜性狀基因組預(yù)測(cè)中經(jīng)常忽略顯性效應(yīng)的影響。隨著基因組數(shù)據(jù)不斷增加,同時(shí)包含非加性遺傳效應(yīng)的動(dòng)物模型受到廣泛關(guān)注。在BLUP模型中,IBD系譜親緣關(guān)系矩陣數(shù)據(jù)量越多,則育種值估計(jì)準(zhǔn)確度越高,因此在BLUP選種中系譜信息的記錄和保存尤為重要。在BLUP的基礎(chǔ)上,將IBD系
譜親緣關(guān)系矩陣(A)替換為基因組親緣關(guān)系矩陣(G),即為GBLUP方法。GBLUP從計(jì)算速度和內(nèi)存消耗來看,比BLUP方法相對(duì)較慢。個(gè)體選擇的目標(biāo)在于獲得更準(zhǔn)確的估計(jì)育種值,前期個(gè)體選擇主要集中于加性效應(yīng)的估計(jì),并不剖分其他遺傳效應(yīng),對(duì)于大多數(shù)性狀的非加性效應(yīng)的研究較少。本試驗(yàn)在于進(jìn)一步剖分性狀的遺傳方差,估計(jì)性狀的顯性離差,研究顯性效應(yīng)與加性效應(yīng)對(duì)估計(jì)育種值的影響。當(dāng)BLUP和GBLUP模型中加入顯性效應(yīng)時(shí),其e~N(0,σ2e)誤差相對(duì)較小,對(duì)應(yīng)的育種值估計(jì)準(zhǔn)確性也越高。經(jīng)過試驗(yàn)證明,BLUP法和GBLUP法同時(shí)考慮加性效應(yīng)和顯性效應(yīng)時(shí)其育種值估計(jì)準(zhǔn)確性均高于只考慮加性效應(yīng)。因此,在今后的性狀遺傳評(píng)估中,考慮加入顯性效應(yīng)因素來優(yōu)化動(dòng)物模型會(huì)成為一種趨勢(shì)。表3顯示,BLUP與GBLUP顯性遺傳力估計(jì)值相差較大(0.288,0.026),這個(gè)可能是由于方法不同而造成的,不同方法利用的數(shù)據(jù)有所差異,導(dǎo)致兩種方法下估計(jì)結(jié)果存在顯著差異。并且由于系譜數(shù)據(jù)記錄較少以及HIBLUP適合涉及有基因組信息的模型,當(dāng)系譜中的基因型個(gè)體占比在15%~20%以上時(shí),使用HIBLUP軟件具有更明顯的計(jì)算優(yōu)勢(shì)[20]。
本研究對(duì)內(nèi)蒙古絨山羊絨毛性狀進(jìn)行遺傳評(píng)估,根據(jù)是否考慮顯性效應(yīng),建立兩個(gè)混合動(dòng)物模型,利用BLUP法、GBLUP法進(jìn)行方差組分、遺傳參數(shù)和育種值的估計(jì),期望提高基因組預(yù)測(cè)能力。遺傳參數(shù)估計(jì)結(jié)果顯示,產(chǎn)絨量的遺傳力為0.15~0.21,絨纖維直徑的遺傳力為0.25~0.29,均屬于中等偏低或者中等偏高遺傳力性狀。王志英[13]以內(nèi)蒙古絨山羊?yàn)檠芯繉?duì)象,以系譜信息為基礎(chǔ),利用單性狀動(dòng)物模型,估算了纖維直徑、絨產(chǎn)量的遺傳系數(shù),其遺傳力分別為0.22、0.15,與本研究結(jié)果一致。Bai等[21]利用MTDFREML程序分析內(nèi)蒙古絨山羊的絨纖維直徑的遺傳力為0.28,Zhang等[22]以內(nèi)蒙古絨山羊?yàn)檠芯繉?duì)象,利用單性狀重復(fù)力動(dòng)物模型估計(jì)絨纖維直徑的遺傳力,其結(jié)果為0.32,均屬于中等偏高遺傳力性狀。馬彩英等[23]通過父系半同胞組內(nèi)相關(guān)法估算陜北白絨山羊產(chǎn)絨量、絨細(xì)度的遺傳力,其結(jié)果為0.18、0.23、均屬于中等遺傳力,與本研究結(jié)果一致。
在動(dòng)物遺傳育種中,多性狀動(dòng)物模型可以利用性狀的表型相關(guān)及遺傳相關(guān)對(duì)兩個(gè)性狀或多性狀的動(dòng)物個(gè)體進(jìn)行遺傳評(píng)估。估計(jì)性狀間遺傳相關(guān)也是育種工作的重心,尤其對(duì)于難以測(cè)量的性狀可以根據(jù)性狀間的相關(guān)性進(jìn)行選擇[24]。本研究結(jié)果表明,絨纖維直徑和產(chǎn)絨量存在正遺傳相關(guān)。馬寧等[25]利用LSMLMW和MIXMDL程序?qū)|寧絨山羊產(chǎn)絨量與絨直徑進(jìn)行遺傳相關(guān)估計(jì),結(jié)果為0.685,呈強(qiáng)的正遺傳相關(guān)。李學(xué)武等[11]利用WOMBAT軟件的平均信息約束最大似然法(AIREML),以多性狀重復(fù)力模型進(jìn)行方差組分和遺傳參數(shù)估計(jì),結(jié)果表明,產(chǎn)絨量與絨細(xì)的遺傳相關(guān)為0.09,低于本研究的結(jié)果,這可能是由于群體結(jié)構(gòu)、數(shù)據(jù)量大小、模型的選擇和計(jì)算方法等不同所致。本研究同時(shí)也發(fā)現(xiàn)多性狀動(dòng)物模型下育種值估計(jì)的準(zhǔn)確性高于單性狀動(dòng)物模型。傳統(tǒng)的基因組選擇模型對(duì)單個(gè)性狀進(jìn)行選擇時(shí)往往忽略了性狀間相互作用,多性狀模型通過考慮遺傳相關(guān)從而提高育種值的準(zhǔn)確性[26]。多性狀動(dòng)物模型提供了更好的遺傳參數(shù)估計(jì),使育種者能夠更準(zhǔn)確有效地識(shí)別和選擇具有理想性狀的個(gè)體。Tang等[27]利用5 000個(gè)真實(shí)的50 K芯片數(shù)據(jù),在模擬后代和表型的基礎(chǔ)上,量化了不同遺傳參數(shù)下多性狀模型,發(fā)現(xiàn)多性狀下GBLUP的結(jié)果較好。Mehrban等[28]基于多性狀SSGBLUP模型預(yù)測(cè)對(duì)出生日期的影響,與單性狀模型下相比,準(zhǔn)確性提高了10%。
本研究基于BLUP和GBLUP方法考慮顯性效應(yīng)對(duì)內(nèi)蒙古絨山羊絨毛性狀遺傳參數(shù)及估計(jì)育種值準(zhǔn)確性的影響,結(jié)果顯示顯性方差占表型方差的比重相對(duì)較大,會(huì)影響絨毛性狀育種值估計(jì)的準(zhǔn)確度。王延暉等[29,30]研究表明,對(duì)低遺傳力性狀進(jìn)行選擇時(shí),模型中考慮顯性效應(yīng)可以提高育種值估計(jì)準(zhǔn)確性,同時(shí)發(fā)現(xiàn)模型中加入顯性效應(yīng)可以減緩隨著世代變化估計(jì)育種值的準(zhǔn)確性降低的現(xiàn)象,另外,估計(jì)育種值的準(zhǔn)確性與顯性遺傳力的大小成正比,這與本研究結(jié)果一致。Su等[31]在豬的平均日增重全基因組選擇研究中發(fā)現(xiàn),顯性方差占表型方差的比例為5.6%。當(dāng)排除非加性效應(yīng)時(shí),非加性效應(yīng)的方差會(huì)被分配到模型中其他的方差組分中,也就是說在育種值估計(jì)中如果不考慮顯性效應(yīng),會(huì)過高估計(jì)加性效應(yīng)。牟大林等[32]采用數(shù)量性狀“主基因+多基因”混合遺傳模型方法,發(fā)現(xiàn)顯性效應(yīng)大于加性效應(yīng),說明顯性效應(yīng)對(duì)個(gè)體準(zhǔn)確性的選擇具有一定的影響。在中國(guó)西門塔爾肉牛重要性狀顯性效應(yīng)模型的基因組選擇研究中,發(fā)現(xiàn)基于GBLUP-D的基因組育種值預(yù)測(cè)能力提高了0.5%~0.9%[33]。劉航等[34]對(duì)蘇淮豬肉色性狀進(jìn)行了遺傳評(píng)估,發(fā)現(xiàn)模型中加入顯性效應(yīng)時(shí),肉色性狀的GEBV預(yù)測(cè)準(zhǔn)確性有一定提高。由此可見,加性-顯性效應(yīng)模型對(duì)家畜生產(chǎn)性狀遺傳評(píng)估準(zhǔn)確性有一定影響。因此,在動(dòng)物遺傳評(píng)估模型中,顯性效應(yīng)應(yīng)該被考慮以提高個(gè)體選種的準(zhǔn)確性[35,36]。在雜交群體中,顯性效應(yīng)的作用尤其更為明顯[37] 。
4 結(jié) 論
本研究通過使用BLUP、GBLUP方法探討了顯性效應(yīng)對(duì)內(nèi)蒙古絨山羊絨毛性狀遺傳評(píng)估的影響,結(jié)果表明當(dāng)考慮顯性效應(yīng)時(shí),產(chǎn)絨量和羊絨纖維直徑的育種值估計(jì)準(zhǔn)確性均得到顯著提高,分別提高了10.92%~12.29%和3.64% ~11.58%。因此,對(duì)內(nèi)蒙古絨山羊產(chǎn)絨量和絨纖維直徑進(jìn)行遺傳評(píng)估時(shí),模型中應(yīng)該考慮顯性效應(yīng)。最佳模型下,絨毛性狀育種值估計(jì)準(zhǔn)確性比基于單性狀的育種值估計(jì)準(zhǔn)確性分別提高9.81%~19.43%和14.01%~21.97%。產(chǎn)絨量和羊絨纖維直徑屬于中等偏低或者中等偏高遺傳力性狀,說明通過遺傳選育這兩個(gè)性狀可以實(shí)現(xiàn)一定程度的遺傳改良。產(chǎn)絨量和羊絨纖維直徑的遺傳相關(guān)和表型相關(guān)相對(duì)較小,說明對(duì)產(chǎn)絨量的選擇不會(huì)造成羊絨的快速變粗。
參考文獻(xiàn)(References):
[1] 張嘉欣.基于GBLUP和Bayes方法對(duì)內(nèi)蒙古絨山羊絨毛性狀基因組預(yù)測(cè)準(zhǔn)確性研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2023.
ZHANG J X.Studies on the accuracy of genome prediction of cashmere traits in Inner Mongolia Cashmere Goats based on GBLUP and Bayes methods[D].Hohhot:Inner Mongolia Agricultural University,2023.(in Chinese)
[2] 史 越.內(nèi)蒙古白絨山羊早期生長(zhǎng)性狀遺傳參數(shù)的估計(jì)[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2023.
SHI Y.Estimation of genetic parameters for early growth traits in Inner Mongolia White Cashmere Goats[D].Hohhot:Inner Mongolia Agricultural University,2023.(in Chinese)
[3] YANG C H,DUAN C H,WU Z Y,et al.Effects of melatonin administration to cashmere goats on cashmere production and hair follicle characteristics in two consecutive cashmere growth cycles[J].Domest Anim Endocrinol,2021,74:106534.
[4] 王鳳紅.山羊SNP芯片設(shè)計(jì)與內(nèi)蒙古絨山羊重要經(jīng)濟(jì)性狀全基因組關(guān)聯(lián)分析及基因組選擇研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2021.
WANG F H.Design of goat SNP chip with applications in genome-wide association study and genomic selection of important economic traits in Inner Mongolia Cashmere Goat[D].Hohhot:Inner Mongolia Agricultural University,2021.(in Chinese)
[5] REYNOLDS E G M,LOPDELL T,WANG Y,et al.Non-additive QTL mapping of lactation traits in 124,000 cattle reveals novel recessive loci[J].Genet Sel Evol,2022,54(1):5.
[6] WEI C,ZENG H N,ZHONG Z M,et al.Integration of non-additive genome-wide association study with a multi-tissue transcriptome analysis of growth and carcass traits in Duroc pigs[J].Animal,2023,17(6):100817.
[7] HEIDARITABAR M,BINK M C A M,DERVISHI E,et al.Genome-wide association studies for additive and dominance effects for body composition traits in commercial crossbred Pitrain pigs[J].J Anim Breed Genet,2023,140(4):413-430.
[8] NISHIO M,SATOH M.Including dominance effects in the genomic BLUP method for genomic evaluation[J].PLoS One,2014, 9(1): e85792.
[9] DA Y,WANG C K,WANG S W,et al.Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers[J].PLoS One,2014,9(1):e87666.
[10] ALILOO H,PRYCE J E,GONZLEZ-RECIO O,et al.Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits[J].Genet Sel Evol,2016,48(1):8.
[11] 李學(xué)武,王瑞軍,王志英,等.內(nèi)蒙古絨山羊不同毛被類型遺傳參數(shù)估計(jì)及遺傳進(jìn)展研究[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,23(4):53-59.
LI X W,WANG R J,WANG Z Y,et al.Estimation of genetic parameters and research on the genetic progress of different staple length Inner Mongolian Cashmere goats[J].Journal of China Agricultural University,2018,23(4):53-59.(in Chinese)
[12] YAN X C,ZHANG J X,LI J Q,et al.Impacts of reference population size and methods on the accuracy of genomic prediction for fleece traits in Inner Mongolia cashmere goats[J].Front Vet Sci,2024,11:1325831.
[13] 王志英.內(nèi)蒙古絨山羊絨毛品質(zhì)性狀早期選擇原理與方法的研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2016.
WANG Z Y.Study on principle and method for early selection of fleece traits in Inner Mongolia Cashmere goats[D]. Hohhot:Inner Mongolia Agricultural University,2016.(in Chinese)
[14] CHANG C C,CHOW C C,TELLIER L C,et al.Second-generation PLINK:rising to the challenge of larger and richer datasets[J].GigaScience,2015,4:7.
[15] HENDERSON C R.Best linear unbiased estimation and prediction under a selection model[J].Biometrics,1975,31(2):423-447.
[16] MEUWISSEN T H E,HAYES B J,GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics,2001,157(4):1819-1829.
[17] VARONA L,LEGARRA A,TORO M A,et al.Non-additive effects in genomic selection[J].Front Genet,2018,9:78.
[18] 趙書紅,劉小磊,楊 翔,等.一種快速穩(wěn)定的動(dòng)物個(gè)體基因組育種值評(píng)估方法:CN201811620927.X[P].2018-12-28.
ZHAO S H,LIU X L,YANG X,et al.Rapid and stable animal individual genome breeding value evaluation method: CN201811620927.X[P].2018-12-28.(in Chinese)
[19] GARRICK D J,TAYLOR J F,F(xiàn)ERNANDO R L.Deregressing estimated breeding values and weighting information for genomic regression analyses[J].Genet Sel Evol,2009,41(1):55.
[20] YIN L L,ZHANG H H,TANG Z S,et al.HIBLUP:an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J].Nucleic Acids Res,2023,51(8):3501-3512.
[21] BAI J Y,QIN Z,LI J Q,et al.Estimates of genetic parameters and genetic trends for production traits of Inner Mongolian White Cashmere Goat[J].Asian-Aust J Anim Sci,2006,19(1):13-18.
[22] ZHANG Y J,WANG Z Y,LEI H,et al.Estimates of genetic parameters and genetic changes for fleece traits in Inner Mongolia cashmere goats[J].Small Ruminant Res,2014,117(1):41-46.
[23] 馬彩英,陳玉林,馮喜波,等.舍飼后陜北白絨山羊主要經(jīng)濟(jì)性狀遺傳力估計(jì)[J].家畜生態(tài)學(xué)報(bào),2019,40(7):75-77.
MA C Y,CHEN Y L,F(xiàn)ENG X B,et al.Estimation on heritability capacity of major economic traits of Shaanbei White Cashmere Goat after Indoor Feeding[J].Journal of Domestic Animal Ecology,2019,40(7):75-77.(in Chinese)
[24] 張夢(mèng)華.基于聯(lián)合參考群的新疆褐牛基因組選擇研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2021.
ZHANG M H.Genomic selection based on a joint reference population for the Xinjiang Brown Cattl[D].Urumqi:Xinjiang Agricultural University,2021.(in Chinese)
[25] 馬 寧,李永軍,宋雅芹,等.遼寧絨山羊主要經(jīng)濟(jì)性狀遺傳參數(shù)的估計(jì)[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2005,27(4):446-448,452.
MA N,LI Y J,SONG Y Q,et al.Estimates of genetic parameters of main economic traits in Liaoning Cashmere Goat[J].Journal of Jilin Agricultural University,2005,27(4):446-448,452.(in Chinese)
[26] CALUS M P,VEERKAMP R F.Accuracy of multi-trait genomic selection using different methods[J].Genet Sel Evol,2011,43(1):26.
[27] TANG X,XIAO S J,DING N S,et al.Comparative study of single-trait and multi-trait genomic prediction models[J].Animals (Basel),2024,14(20):2961.
[28] MEHRBAN H,NASERKHEIL M,LEE D,et al.Multi-trait single-step GBLUP improves accuracy of genomic prediction for carcass traits using yearling weight and ultrasound traits in Hanwoo[J].Front Genet,2021,12:692356.
[29] 王延暉,朱 波,李俊雅.基于顯性模型的基因組選擇中貝葉斯方法研究[J].畜牧獸醫(yī)學(xué)報(bào),2017,48(1):60-67.
WANG Y H,ZHU B,LI J Y.Bayesian models including dominant effects for genomic selection[J].Acta Veterinaria et Zootechnica Sinica,2017,48(1):60-67.(in Chinese)
[30] 王延暉.基于加性顯性模型的基因組選擇應(yīng)用于西門塔爾牛的初步研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
WANG Y H.Application of genomic selection with models including dominance effect in Simmental Cattle[D].Beijing:Chinese Academy of Agricultural Sciences,2014.(in Chinese)
[31] SU G S,CHRISTENSEN O F,OSTERSEN T,et al.Estimating additive and non-Additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers[J].PLoS One,2012,7(9):e45293.
[32] 牟大林,韓 笑,李雪瑩,等.花生主要品質(zhì)性狀的主基因+多基因遺傳分析[J].花生學(xué)報(bào),2021,50(1):41-44,49.
MOU D L,HAN X,LI X Y,et al.Genetic analysis of major gene plus polygene on main quality traits in peanut[J].Journal of Peanut Science,2021,50(1):41-44,49.(in Chinese)
[33] LIU Y,XU L,WANG Z Z,et al.Genomic prediction and association analysis with models including dominance effects for important traits in Chinese Simmental Beef Cattle[J].Animals,2019,9(12):1055.
[34] 劉 航,侯黎明,王彬彬,等.顯性效應(yīng)對(duì)蘇淮豬肉色性狀遺傳評(píng)估和基因組選擇的影響[J].畜牧與獸醫(yī),2021,53(6):1-6.
LIU H,HOU L M,WANG B B,et al.The influence of dominance effects on the estimation of meat color genetic parameters and genomic selection in Suhuai pigs[J].Animal Husbandry amp; Veterinary Medicine,2021,53(6):1-6.(in Chinese)
[35] WU Z Y,DOU T F,BAI L Y,et al.Genomic prediction and genome-wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high-density SNP genotypes in Yunong-black pigs[J].J Anim Breed Genet,2024,141(2):124-137.
[36] YANG W,WU J,YU J,et al.A genome-wide association study reveals additive and dominance effects on growth and fatness traits in large white pigs[J].Anim Genet,2021,52(5):749-753.
[37] CUI L L,YANG B,XIAO S J,et al.Dominance is common in mammals and is associated with trans-acting gene expression and alternative splicing[J].Genome Biol,2023,24(1):215.
(編輯 郭云雁)