摘 要:
疥螨宿主廣泛,呈全球分布,疥螨感染可威脅宿主健康,并對養(yǎng)殖業(yè)造成嚴重經(jīng)濟損失。目前疥螨致病機制尚未明確,疥螨感染仍無理想的診治措施,而研究疥螨基因功能對解決這一難題意義重大。近年來,隨著分子生物學的不斷發(fā)展,促進了疥螨基因功能和致病機制的深入研究,為疥螨研究奠定了數(shù)據(jù)基礎。本文主要綜述迄今疥螨重要功能基因及其在防治應用上的研究進展,以期為從分子水平上深入了解疥螨致病機制、尋找高效診治手段提供新思路。
關鍵詞:
疥螨;功能基因;防治;進展
中圖分類號:
S852.746 """"文獻標志碼: A """"文章編號: 0366-6964(2025)02-0492-09
收稿日期:2024-03-20
基金項目:四川省自然科學基金項目(2024NSFSC1276)
作者簡介:郭茂川(1997-),女,佤族,四川射洪人,碩士,主要從事動物寄生蟲病研究,E-mail: 2022303116@stu.sicau.edu.cn
*通信作者:何 冉,主要從事動物寄生蟲病學研究,E-mail: ranhe1991@sicau.edu.cn
Research Progress of Functional Genes in Sarcoptes scabiei and Its Application
GUO" Maochuan, HE" Ran*
(College of Veterinary Medicine,Sichuan Agricultural University, Chengdu 611130," China)
Abstract:
The hosts of Sarcoptes scabiei (S. scabiei) are extensive and distributed globally. Scabies infections can threaten the health of the host and result in significant economic losses to the aquaculture industry. Currently, the pathogenic mechanism of the S.scabiei remains unclear, and there are no ideal diagnostic or treatment strategies for S.scabiei infections. Investigating the gene function of the S.scabiei is crucial for addressing this issue. Advances in molecular biology over recent years have facilitated an in-depth exploration of the gene function and pathogenic mechanism of S.scabiei, providing a robust data foundation for further study. This review encapsulates the latest research on the applications of genomics, transcriptomics, and proteomics, as well as significant functional genes in S.scabiei, with the aim of offering novel insights into understanding the pathogenesis of S.scabiei and identifying effective molecular-level treatment approaches.
Key words:
Sarcoptes scabiei; functional gene; prevention and control; advancement
*Corresponding author: HE Ran,E-mail: ranhe1991@sicau.edu.cn
疥瘡(Scabies)是由寄生在人和動物表皮內的疥螨(Sarcoptes scabiei,S.scabiei)感染而引起的一種接觸性、傳染性寄生蟲病,其主要的臨床癥狀表現(xiàn)為劇癢、脫毛和結痂。不同的動物感染疥螨時主要侵害部位有所不同,如豬疥螨感染從眼周、頰部和耳根開始,后蔓延到背部、后肢內側;兔疥螨常發(fā)生于四肢,后蔓延至口鼻及周圍;犬、貓疥螨則先發(fā)于頭部,后擴散至全身等,疥螨感染對動物體危害程度也不盡相同,但在后期繼發(fā)感染嚴重時可導致動物死亡。疥瘡威脅著人類、野生動物及家畜的健康,影響?zhàn)B殖業(yè)發(fā)展,在2017年被世衛(wèi)組織列入全球被忽視的熱帶病之一[1]。然而,疥瘡至今仍無理想的診斷和防治手段,其根本原因在于疥螨致病機制尚未明確。
探索疥螨基因的功能對了解疥螨致病機制及其防治至關重要。早期的疥螨研究依據(jù)表達序列標簽(expressed sequence tags,ESTs)進行克隆表達、蛋白免疫原性分析和診斷價值、免疫保護效果評估等基礎研究,隨著高通量測序技術的普及,不同宿主來源的疥螨基因組和轉錄組的信息逐漸得到完善,促進了疥螨特定基因(基因家族)功能及其應用的深入研究,迄今為止已獲得人、犬、豬和兔源等疥螨基因組和轉錄組數(shù)據(jù)[2]。犬疥螨基因組草圖約為56.2 Mb,包含一個線粒體基因組重疊群,該基因組重復序列超過140 000個,編碼10 644個預測蛋白質(其中67%的蛋白質在其他物種中具有明確的同源性),而線粒體基因組包含13個蛋白質編碼位點和20個轉運RNA[3]。人疥螨和豬疥螨的基因組草圖則分別包含13 226個假定編碼序列和3 351個預測蛋白[4-5]。近年來,首個高質量豬疥螨的核基因組和兔疥螨染色體水平參考基因組都已見報道,豬疥螨的核基因組大小為56.6 Mb,重復序列含量為10.6%,含9 174個編碼蛋白質,其中822個蛋白編碼基因為疥螨特有;兔疥螨染色體水平參考基因組,其重疊群N50大小為5.92 Mb,總組裝長度為57.30 Mb,約含12.65%的重復序列和9 333個預測蛋白編碼基因[6-7]。在轉錄組數(shù)據(jù)中,犬疥螨轉錄組數(shù)據(jù)最早公布,其轉錄組共有20 826個unigenes;總unigenes占基因組(56.26 Mb)的62.98%,其中15 034個unigenes被注釋,61個unigenes與19個塵螨過敏原基因匹配,含13 122個預測編碼區(qū)[8]。兔疥螨轉錄組測序結果共有51 694個unigenes,其中14 198條有GO注釋,篩選得到738個塵螨過敏原同源序列和264個水解酶unigenes[9]。豬疥螨轉錄組推測的過敏原是基因組中轉錄水平最高的基因之一,其中22個似乎是疥螨特有[6]。貉疥螨轉錄組共有162 918個重疊群,其中98.4%為犬疥螨同源基因序列,注釋基因為11 033個,其預測的屋塵螨同源過敏原數(shù)量與犬疥螨基因組草圖發(fā)表的一致。綜上,疥螨基因組和轉錄組數(shù)據(jù)為功能基因的研究奠定了基礎,也為疥螨致病機制的深入探究和疥螨病的防治研究提供了新的方向[10]。
隨著現(xiàn)代分子生物學的不斷發(fā)展,促進了國內外對疥螨功能基因的分子鑒定、克隆分析及功能探究,以疥螨功能基因為靶標的疥螨診斷、防治研究也取得了一定的研究成果。因此,本文將對迄今為止已有的疥螨功能基因研究及應用進展作一綜述,以期為后續(xù)研究疥螨的致病機制、探索理想的防治方法提供參考依據(jù)。
1 疥螨功能基因的基礎研究
1.1 疥螨耐藥性
目前,人疥瘡的首選治療方案為局部使用氯菊酯,其次為全身使用伊維菌素和外用克羅米通或苯甲酸芐酯,氯菊酯和伊維菌素組合使用則通常用于結痂性疥瘡的治療;伴侶動物(犬貓)則首選大環(huán)內酯類藥物(如伊維菌素、塞拉菌素和莫昔克丁等)進行全身治療,需要注意的是,伊維菌素在柯利犬犬種中禁用;家畜豬全身治療同樣多使用大環(huán)內酯類藥物(如多拉菌素和伊維菌素)進行全身治療,局部使用氯菊酯[11-12]。但是疥螨對伊維菌素和氯菊酯已產(chǎn)生了耐藥性[13]。相關研究表明,疥螨ATP結合盒(ABC)轉運蛋白(ATP-binding cassette (ABC) transporter)、谷胱甘肽S-轉移酶(glutathione S-transferase,GST)、電壓門控鈉通道(voltage-sensitive sodium channel,Vssc)以及配體門控氯離子通道(ligand gated ion channels,LGICs)可能與疥螨的伊維菌素和氯菊酯耐藥性機制有關。
伊維菌素作用于抑制性遞質γ-氨基丁酸(γ-aminobutyric acid,GABA)和谷氨酸門控離子通道,最終使蟲體神經(jīng)麻痹和死亡[14]。有研究發(fā)現(xiàn)了一種結構與配體門控通道相似的疥螨氯離子通道,該通道對谷氨酸、GABA和其他已知的此類通道配體無反應,但對細胞外pH非常敏感,在pH為5.5的條件下,氯離子通道基因仍能被伊維菌素激活,表明該通道可能在疥螨的伊維菌素耐藥性中發(fā)揮作用[15]。
ABC轉運蛋白分為8個亞家族(A-G),其中最著名的是B亞家族,也稱為滲透性糖蛋白(P-糖蛋白)或多藥耐藥蛋白(multidrug-resistant protein,MDRP)[16]。單劑量伊維菌素處理疥螨后,其P-糖蛋白轉錄水平增加近3倍,提示ABC轉運蛋白在疥螨伊維菌素耐藥機制存在潛在作用[17]。
疥螨GST(SsGST)分布于成蟲表皮和內臟周圍空腔,與結痂型疥瘡的致病機制有關[18-19]。重組SsGST(recombinant SsGST,rSsGST)參與了疥螨對殺螨劑的代謝,與疥螨耐藥性有關;在氯菊酯和伊維菌素都存在時,SsGST轉錄水平均不同程度升高,以及單劑量伊維菌素后疥螨P-糖蛋白轉錄水平的隨之升高,進一步支持藥物代謝和排泄增加介導疥螨對氯菊酯和伊維菌素耐藥性的假設[17,20]。GST參與寄生蟲的入侵、發(fā)育和繁殖及免疫逃避,具備免疫調節(jié)功能,作為寄生蟲的一種保護性抗原,GST已成為多種寄生蟲的診斷抗原、疫苗候選和藥物靶點[21],而目前尚無GST在疥螨防治方面的研究,未來或可成為疥螨病防治方面的重點候選抗原。
擬除蟲菊酯耐藥性與不同節(jié)肢動物Vssc基因突變有關,對人疥螨測序發(fā)現(xiàn),Vssc基因包含與擬除蟲菊酯類耐藥性有關的氨基酸編碼序列,而氯菊酯治療多年的犬疥螨Vssc基因Ⅲ S6區(qū)發(fā)生甘氨酸轉變?yōu)樘於彼岬耐蛔?,擁有該突變基因的犬疥螨體外試驗表現(xiàn)出耐藥性[22]。此外,近期有研究還發(fā)現(xiàn)人疥螨的Vssc基因Ⅱ區(qū)出現(xiàn)蛋氨酸到亮氨酸的非同義替換,即M918L突變,這是一種在其他節(jié)肢動物中已知的擊倒抗性突變[23]。
1.2 疥螨代謝途徑
疥螨寄生于宿主表皮層,以宿主淋巴液和組織液為食,整個發(fā)育過程包括蟲卵、幼螨、若螨和成螨4個階段,均在宿主身上進行。疥螨從宿主皮膚組織中攝食以促進其生長,而氨基肽酶、羧基肽酶、內肽酶、金屬肽酶和絲氨酸肽酶等肽酶,則被認為是皮膚組織(表皮和真皮層)、皮脂和皮膚滲出液降解的關鍵分子,可能對疥螨的生長、發(fā)育和生存至關重要[6]。對疥螨早期蟲卵、晚期蟲卵和成年雌蟲三個階段進行蛋白質組學分析,發(fā)現(xiàn)疥螨一旦在宿主皮膚建立寄生生活,成蟲的生存就嚴重依賴碳水化合物、脂類、氨基酸和核苷酸的分解代謝,轉錄組研究結果也表明,氨基肽酶、二肽酶、金屬肽酶和絲氨酸肽酶等多種酶類在其中一個或多個發(fā)育階段中顯著存在[6,24]。
絲氨酸蛋白酶在生物系統(tǒng)中具有廣泛的作用,包括在寄生蟲中具有參與免疫逃避、宿主入侵和凝血調節(jié)的功能[25]。疥螨絲氨酸蛋白酶(Sar s 3)存在于螨的消化系統(tǒng)和表皮螨洞內的螨糞,具有胰蛋白酶樣活性,可裂解人聚絲蛋白,而聚絲蛋白作為角質層的關鍵成分,是維持皮膚屏障的基礎[26]。這種獨特的底物特異性突出了寄生蟲蛋白酶對寄生蟲微環(huán)境生態(tài)位的特異性適應[27]。
疥螨天冬氨酸蛋白酶(aspartic proteases,AP)能夠消化人血紅蛋白、血清白蛋白、纖維連接蛋白和纖維蛋白原,但無法消化Ⅲ型膠原蛋白或層黏連蛋白[28]。皮膚的基底膜是表皮與真皮間重要的承接結構,而Ⅲ型膠原蛋白或層黏連蛋白是基底膜的組成成分之一[29],因此,SsAP的分解能力可能與疥螨僅在表皮層生存而不能進入真皮層有關。天冬氨酸蛋白酶與寄生蟲的宿主選擇性、生長發(fā)育、入侵與錨定、營養(yǎng)獲取、改造宿主環(huán)境和免疫逃逸等有關[30],SsAP的多種生物學功能使其成為重要的藥物靶點,目前已有研究基于SsAP的結構評估殺螨藥物的有效性[31-32]。
1.3 疥螨免疫逃避
寄生蟲可以入侵免疫功能正常的宿主體內,并能逃避宿主免疫效應,在宿主體內定居、發(fā)育、繁殖和生存,這種現(xiàn)象被稱為免疫逃避。在疥螨研究中,已證明疥螨絲氨酸蛋白酶抑制劑超家族(scabies mite serine protease inhibitors,SMSs)與疥螨非活性絲氨酸蛋白酶旁系同源物(scabies mite proteolytically inactive serine protease paralogues,SMIPP-Ss)抑制宿主的補體途徑,疥螨圍食膜蛋白(peritrophin,PTP)似乎具有消耗補體分子的作用,三者參與保護疥螨免受補體介導的腸道損傷[33-38]。此外,有學者提出疥螨非活性半胱氨酸蛋白酶家族(scabies mite inactivated cysteine protease paralogues,SMIPP-Cs)的抗凝血活性與SMIPP-Ss和SMSs的抗補體活性共同構成疥螨的基本免疫逃避機制[39]。
SMIPP-Ss分布于疥螨腸道與排泄到上表皮的糞便顆粒中,除Sar s 3外,其家族成員都因活性中心攜帶突變而失去催化活性[40]。SMIPP-Ss失去了以經(jīng)典的“規(guī)范”方式結合底物的能力,在疥螨的生命周期中進化出了替代功能,并與C1q、甘露糖結合凝集素(mannose-binding lectin,MBL)和備解素三種不同的啟動補體機制的分子結合,抑制人類補體系統(tǒng)的經(jīng)典(classical pathways,CP)、替代(alternative pathways,AP)和凝集素(lectin pathways,LP)途徑[33-34]。其中,SMIPP-Ss的兩種異構體通過不同機制與MBL結合,顯著抑制宿主LP途徑[35]。
SMSs對螨蟲的絲氨酸蛋白酶和半胱氨酸蛋白酶無抑制作用,但對哺乳動物的絲氨酸蛋白酶和補體系統(tǒng)三種途徑產(chǎn)生抑制作用,可使疥螨免受由宿主補體介導的腸道損傷[41-42]。疥螨感染時瘙癢引起宿主抓撓,機械損傷為細菌入侵提供機會,可促進機會性細菌感染。研究發(fā)現(xiàn)該過程與SMSs蛋白家族有關,SMSs家族中的SMSB4能通過干擾中性粒細胞的補體依賴性殺傷功能和抑制CP及AP的激活,分別促進金黃色葡萄球菌和化膿性鏈球菌的體外生長[36-37]。皮膚是一個動態(tài)的微環(huán)境,疥螨可能也存在著一個獨特的微生物群,促進細菌感染的建立,并可使宿主并發(fā)膿皮病、蜂窩織炎、敗血癥、急性風濕熱、風濕性心臟病和急性鏈球菌后腎小球腎炎等疾病。健康的微生物組對于預防感染和免疫失調后的并發(fā)癥具有重要意義,微生物組已成為疥瘡控制策略的新方向。因此,深入研究疥螨蟲體內及其生存環(huán)境(宿主皮膚)微生物的種群變化,兩者微生物組之間的相互影響,細菌與疥螨之間是否存在潛在的免疫逃避協(xié)同作用以克服宿主防御反應,將為疥螨-宿主-微生物之間相互作用的研究以及尋找新的治療或診斷靶標提供基礎理論[43-46]。
PTP是具有能夠結合幾丁質相關結構域的蛋白質,與幾丁質共同組成昆蟲消化道內半透膜的基本結構,可促進昆蟲腸道消化,抵御寄生蟲和微生物入侵,在昆蟲和寄生蟲中有很強的抗原性[47]。位于疥螨腸道和糞便顆粒的疥螨PTP(SsPTP),去糖基化后可靶向并消耗腸腔內的MBL,MBL是人補體激活的凝集素途徑識別分子,MBL的消耗會減少膜攻擊復合體(membrane attack complex,MAC)的形成,進而保護疥螨腸道免受由宿主補體介導的腸道損傷[38]。
SMIPP-Cs與疥螨水解酶活性半胱氨酸蛋白(Sar s 1a-e)密切相關,是一組因活性位點發(fā)生突變(Cys-Ser和His-Gln/Leu)而失去水解活性的假蛋白酶,定位于螨的腸道和螨糞中,在犬、豬和人疥螨的所有穴居生活階段均表達[48]。疥螨病皮膚組織學常見無血管炎的淺表性皮膚微血栓,研究發(fā)現(xiàn)SMIPP-Cs可促進血液凝固并改變纖維蛋白凝塊的結構和密度,使其抵抗纖維蛋白溶解,從而保護疥螨免受宿主免疫系統(tǒng)的侵害,這一發(fā)現(xiàn)同時解釋了疥瘡感染皮膚中常見微血栓的病理生理學[39]。
1.4 疥螨-宿主免疫互作
疥螨的排泄/分泌蛋白(excretory/secretory proteins,ESPs)參與調節(jié)宿主炎癥和免疫反應,使得疥螨在與宿主的長期進化中能夠適應宿主免疫反應。重組疥螨精氨酸激酶(arginine kinase,AK)通過激活NF-κB信號通路促進兔外周血單個核細胞(peripheral blood mononuclear cell,PBMC)增殖,并誘導PBMC向感染部位遷移,使Th1/Th2平衡向Th2轉移,改變Th17/Treg平衡;重組疥螨翻譯控制腫瘤蛋白(translationally controlled tumor protein,TCTP)則刺激人源嗜堿性粒細胞白血病細胞系(KU812)組胺的釋放,不同程度地增加白介素-4(IL-4)、白介素-6(IL-6)、白介素-13(IL-13)的表達,增強Th2炎癥反應,這些結果為深入了解疥螨引起宿主超敏反應中Th1和Th2反應偏移或是重疊,以及如何調節(jié)宿主免疫提供更多依據(jù)[49-51]。此外,疥螨半乳糖凝集素(galectins)能促進小鼠巨噬細胞M1型相關極化因子白介素-1β(IL-1β)、IL-6、誘導型一氧化氮合酶(iNOS)及M2型極化因子白介素-10(IL-10)的轉錄和分泌水平不同程度地升高,在巨噬細胞極化上主要促進其向M2型極化,促進宿主炎癥反應發(fā)生[52]。
2 疥螨功能基因的應用研究
2.1 診斷方法
疥螨診斷臨床上主要以病原學(光學顯微鏡鏡檢發(fā)現(xiàn)刮取的患處痂皮中存在疥螨或螨卵)為主要診斷依據(jù),但該方法要求檢驗人員具備相應的專業(yè)知識。此外,疥螨早期或隱性感染時螨蟲數(shù)量較少,鏡檢難以發(fā)現(xiàn)疥螨或螨卵,存在一定的局限性。隨著分子生物學的發(fā)展,血清學和PCR診斷等具有高敏感性和特異性的方法已成為建立疥螨病早期診斷方法的研究方向。寄生蟲的ESPs是重要的抗原,有研究對多種疥螨ESPs作為血清學診斷抗原的潛力進行了探究,但建立的血清學診斷方法檢測率各不相同,其結果主要取決于感染程度和持續(xù)時間以及目標抗原。因此,本部分將呈現(xiàn)近年來疥螨蛋白及其建立的檢測方法,為后續(xù)研究提供理論依據(jù)。
2.1.1 酶聯(lián)免疫吸附試驗
目前已有豬、山羊和犬疥螨等的商用酶聯(lián)免疫吸附試驗(enzyme-linked immunosorbent assay,ELISA)試劑盒,主要應用于個體動物的臨床診斷,為疥螨流行病學研究提供數(shù)據(jù)[53-55]。此外,以疥螨重組蛋白建立的ELISA診斷方法雖未得到商品化使用,但可為推進開發(fā)具有高效、高特異性及高敏感性的疥螨診斷方法提供數(shù)據(jù)基礎。如以疥螨酪氨酸激酶(protein tyrosine kinase,PTK)、疥螨無機焦磷酸酶(inorganic pyrophosphatase,PYP-1)、疥螨α-烯醇化酶(enolase protein,eno)、疥螨幾丁質酶樣蛋白(chitinase-like protein,CLP)和載脂蛋白(Sar 14.3)重組蛋白作為診斷性抗原建立的間接酶聯(lián)免疫吸附試驗(indirect enzyme-linked immunosorbent assay,iELISA)檢測方法,具有高達90%以上的敏感性和特異性,以及診斷疥螨病早期感染的能力[56-60]。其中,rSsCLP 12比rSsCLP 5具有更強的過敏特性,豬疥螨Sar 14.3重組抗原則被認為可以診斷不同宿主的疥螨病[61-62]。而以疥螨副肌球蛋白(paramyosin,PAR)、絲切蛋白(cofilin)和Ssλ20ΔB3重組蛋白為診斷性抗原建立的間接ELISA檢測方法,敏感性和特異性則均不低于80%。其中,PAR重疊片段Sspara2重組蛋白的血清學診斷敏感性和特異性高于其他兩個片段(Sspara1和3),以rSsλ20ΔB3建立間接ELISA具有較高的可重復性[63-65]。以疥螨鈣調蛋白建立的ELISA診斷方法雖然具有較高的敏感性(87.5%),但其22.5%的特異性使得其不適合成為診斷抗原[66]。
除間接ELISA外,在對疥螨的早期研究中也嘗試了建立斑點酶聯(lián)免疫吸附試驗(Dot-ELISA)檢測方法,并表現(xiàn)出良好的效果,如以疥螨硫氧還蛋白(thioredoxin peroxidase,TPx)為診斷抗原建立的Dot-ELISA具有較高的敏感性(95.3%)和特異性(93.8%),擁有較好的血清學診斷潛力[67]。
2.1.2 橫向流動免疫分析
卵黃蛋白原樣蛋白是一種在螨蟲裂解物中大量發(fā)現(xiàn)的可溶性蛋白,將貉疥螨卵黃蛋白原樣蛋白作為診斷抗原建立橫向流動免疫分析(lateral flow immunoassay,LFIA),其敏感性和特異性均為100%,但因該試驗僅評估了少數(shù)樣本,所以目前為止該方法仍為初始模型[10]。LFIA具有高效、操作簡單和價格低廉等優(yōu)點,已在食品安全、病毒檢測和藥物殘留檢測領域使用,是迄今為止對目標物質進行現(xiàn)場檢測最成功的分析平臺之一,未來或成為獸醫(yī)領域的重要研究和應用技術[68]。
2.2 疫苗接種
疫苗接種作為一種有效的預防方法,已成為預防寄生蟲病的重要手段[69]。雖然關于疥螨疫苗的研究有一定的進展,但是尚無商品化的疫苗。因此,這部分將呈現(xiàn)近年來具有較好免疫保護效果的重組抗原,為疥螨防治提供有效參考信息。
用副肌球蛋白DNA疫苗及其重組蛋白疫苗分別免疫小鼠,發(fā)現(xiàn)重組蛋白疫苗組主要引起小鼠的Th2免疫應答,DNA疫苗+不同的細胞因子組可分別引起小鼠的Th1和Th2免疫應答;進一步研究表明副肌球蛋白DNA疫苗可誘導體液和細胞免疫反應[70-71]。rSsCLP 5疫苗接種新西蘭兔后,74.3%(26/35)的新西蘭兔在感染疥螨后未出現(xiàn)可檢測到的病變,有較好的免疫保護效果;此外,rSsCLP 5和rSsCLP 12雞尾酒疫苗,可誘導強有力的免疫保護且顯著減少螨的數(shù)量及其在家兔之間的直接傳播;對重組疥螨絲氨酸蛋白酶抑制劑(rSs-serpin)、rSsCLP 5和rSsCLP 12三者融合制備的雞尾酒疫苗和這三種蛋白基因的多表位蛋白疫苗免疫效果進行評估,發(fā)現(xiàn)前者具有顯著免疫保護效果,而后者表現(xiàn)出的作用有限[72-74]。
單一重組蛋白免疫保護效果各有不同,混合后的多個重組蛋白免疫保護效果則明顯增強,并比多表位疫苗作用顯著,表明多個重組蛋白融合的雞尾酒疫苗是一種很有前景的疫苗研發(fā)方向,而選擇合適的佐劑能夠使其發(fā)揮更好的免疫保護效果,未來或將考慮尋找不同的新型佐劑以聯(lián)合疫苗使用,促進疫苗研發(fā)的進一步發(fā)展。
3 展 望
ESPs是宿主-疥螨的關系核心,已獲得的豬疥螨ESPs組支持了研究疥螨-宿主分子相互作用的研究[6],而疥螨關鍵發(fā)育階段卵和雌蟲的差異表達蛋白質組數(shù)據(jù)則使疥螨早期發(fā)育階段的分子、生化和生理研究成為可能,也為針對疥螨蟲卵的干預提供了方向[24]。疥螨組學的發(fā)展,從分子水平支持了疥螨的基礎和應用研究,但在疥螨生長發(fā)育、繁殖及致病等方面的具體調控機制研究還較少,在尋找理想的診治手段等應用方面也有待加強;此外,許多生命活動發(fā)生在代謝物層面,研究與疥螨代謝途徑有關的關鍵功能基因,對疥螨藥物靶標研究具有重要意義。基因編輯、RNAi干擾及基因敲除等技術已在多種寄生蟲病研究中采用,推進了寄生蟲重要功能基因研究進展,目前僅有RNAi干擾技術在疥螨病研究中得到初步應用[75],未來新技術的應用將進一步推進疥螨致病機制的研究。
參考文獻(References):
[1] MORONI B,ROSSI L,BERNIGAUD C,et al.Zoonotic episodes of scabies:a global overview[J].Pathogens,2022,11(2):213.
[2] FISCHER K,LU H,F(xiàn)ERNANDO D D,et al.Scabies multi-omics to identify novel diagnostic or therapeutic targets[M]//FISCHER K,CHOSIDOW O.Scabies.Cham:Springer,2023:91-102.
[3] RIDER S D,MORGAN M S,ARLIAN L G.Draft genome of the scabies mite[J].Parasit Vectors,2015,8:585.
[4] MOFIZ E,DEBORAH C,SEEMANN T,et al.Genomic resources and draft assemblies of the human and porcine varieties of scabies mites,Sarcoptes scabiei var.hominis and var.suis[J].GigaScience,2016,5(1):23.
[5] MOFIZ E,SEEMANN T,BAHLO M,et al.Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections[J].PLoS Negl Trop Dis,2016,10(2):e0004384.
[6] KORHONEN P K,GASSER R B,MA G X,et al.High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite[J].PLoS Negl Trop Dis,2020,14(10):e0008720.
[7] XU J,WANG Q H,WANG S,et al.Comparative genomics of Sarcoptes scabiei provide new insights into adaptation to permanent parasitism and within-host species divergence[J].Transbound Emerg Dis,2022,69(6):3468-3484.
[8] HU L,ZHAO Y E,YANG Y J,et al.De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis[J].Parasitol Res,2016,115(7):2661-2670.
[9] HE R,GU X B,LAI W M,et al.Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response[J].PLoS One,2017,12(5):e0177733.
[10] AKUTA T,MINEGISHI D,KIDO N,et al.Development of a rapid scabies immunodiagnostic assay based on transcriptomic analysis of Sarcoptes scabiei var.nyctereutis[J].Sci Rep,2021,11(1):6455.
[11] AL-DABBAGH J,YOUNIS R,ISMAIL N.The currently available diagnostic tools and treatments of scabies and scabies variants:an updated narrative review[J].Medicine (Baltimore),2023,102(21):e33805.
[12] GUILLOT J,LOSSON B,DELSART M,et al.Sarcoptic mange in wild and domestic animals[M]//FISCHER K,CHOSIDOW O.Scabies.Cham:Springer,2023:313-343.
[13] ABSIL G,LEBAS E,LIBON F,et al.Scabies and therapeutic resistance:current knowledge and future perspectives[J].JEADV Clin Pract,2022,1(3):157-164.
[14] JOHNSON-ARBOR K.Ivermectin:a mini-review[J].Clin Toxicol (Phila),2022,60(5):571-575.
[15] MOUNSEY K E,DENT J A,HOLT D C,et al.Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei[J].Invert Neurosci,2007,7(3):149-156.
[16] KHALIL S,ABBAS O,KIBBI A G,et al.Scabies in the age of increasing drug resistance[J].PLoS Negl Trop Dis,2017,11(11):e0005920.
[17] MOUNSEY K E,PASAY C J,ARLIAN L G,et al.Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites[J].Parasit Vectors,2010,3:43.
[18] PETTERSSON E U,LJUNGGREN E L,MORRISON D A,et al.Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei[J].Int J Parasitol,2005,35(1):39-48.
[19] DOUGALL A,HOLT D C,F(xiàn)ISCHER K,et al.Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases:implication as a potential major allergen in crusted scabies[J].Am J Trop Med Hyg,2005,73(5):977-984.
[20] MOLIN E U,MATTSSON J G.Effect of acaricides on the activity of glutathione transferases from the parasitic mite Sarcoptes scabiei[J].Parasitology,2008,135(Pt 1):115-123.
[21] 李 爽,劉 群.寄生蟲谷胱甘肽轉移酶的研究進展[J].中國獸醫(yī)科學,2021,51(1):113-118.
LI S,LIU Q.Advances in the research of glutathione S-transferase in parasites[J].Chinese Veterinary Science,2021,51(1):113-118.(in Chinese)
[22] PASAY C,ARLIAN L,MORGAN M,et al.High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites[J].Med Vet Entomol,2008,22(1):82-88.
[23] RIEBENBAUER K,PURKHAUSER K,WALOCHNIK J,et al.Detection of a knockdown mutation in the voltage-sensitive sodium channel associated with permethrin tolerance in Sarcoptes scabiei var. hominis mites[J].J Eur Acad Dermatol Venereol,2023,37(11):2355-2361.
[24] WANG T,GASSER R B,KORHONEN P K,et al.Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing,metabolism and/or host-parasite interactions[J].PLoS Negl Trop Dis,2022,16(12):e0010946.
[25] 陳奕君,周 璇,謝 躍.動物內寄生蟲絲氨酸蛋白酶研究進展[J].動物醫(yī)學進展,2023,44(10):80-84.
CHEN Y J,ZHOU X,XIE Y.Advance in serine proteases of animal endoparasites[J].Progress in Veterinary Medicine,2023,44(10):80-84.(in Chinese)
[26] BECKHAM S A,BOYD S E,REYNOLDS S,et al.Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei[J].J Biol Chem,2009,284(49):34413-34422.
[27] FERNANDO D D,F(xiàn)ISCHER K.Proteases and pseudoproteases in parasitic arthropods of clinical importance[J].FEBS J,2020,287(19):4284-4299.
[28] MAHMOOD W,VIBERG L T,F(xiàn)ISCHER K,et al.An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules[J].PLoS Negl Trop Dis,2013,7(11):e2525.
[29] JALOLIDINOVNA I Z.Morphology and histology of skin[J].Texas J Med Sci,2023,16:52-56.
[30] 楊妙賢,黃 灝,黃一諾,等.天冬氨酸蛋白酶與寄生蟲[J].熱帶醫(yī)學雜志,2019,19(7):932-936.
YANG M X,HUANG H,HUANG Y N,et al.Aspartic proteases of parasites[J].Journal of Tropical Medicine,2019,19(7):932-936.(in Chinese)
[31] INAM W,WALTON S,KHAN S,et al.Molecular drug targets for scabies:a medicinal chemistry perspective[J].Future Med Chem,2020,12(24):2225-2238.
[32] KHAN A,SOHAIB M,ULLAH R,et al.Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var.cuniculi[J].Parasitol Res,2022,121(10):2901-2915.
[33] FISCHER K,LANGENDORF C G,IRVING J A,et al.Structural mechanisms of inactivation in scabies mite serine protease paralogues[J].J Mol Biol,2009,390(4):635-645.
[34] BERGSTRM F C,REYNOLDS S,JOHNSTONE M,et al.Scabies mite inactivated serine protease paralogs inhibit the human complement system[J].J Immunol,2009,182(12):7809-7817.
[35] REYNOLDS S L,PIKE R N,MIKA A,et al.Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway[J].PLoS Negl Trop Dis,2014,8(5):e2872.
[36] SWE P M,F(xiàn)ISCHER K.A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth[J].PLoS Negl Trop Dis,2014,8(6):e2928.
[37] SWE P M,CHRISTIAN L D,LU H C,et al.Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes- An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S.pyogenes to infect mite-induced skin lesions[J].PLoS Negl Trop Dis,2017,11(3):e0005437.
[38] MIKA A,GOH P,HOLT D C,et al.Scabies mite peritrophins are potential targets of human host innate immunity[J].PLoS Negl Trop Dis,2011,5(9):e1331.
[39] FERNANDO D D,REYNOLDS S L,HARTEL G,et al.A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis[J].PLoS Negl Trop Dis,2021,15(1):e0008997.
[40] WILLIS C,F(xiàn)ISCHER K,WALTON S F,et al.Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces[J].Am J Trop Med Hyg,2006,75(4):683-687.
[41] MIKA A,REYNOLDS S L,MOHLIN F C,et al.Novel scabies mite serpins inhibit the three pathways of the human complement system[J].PLoS One,2012,7(7):e40489.
[42] MIKA A,REYNOLDS S L,PICKERING D,et al.Complement inhibitors from scabies mites promote streptococcal growth-a novel mechanism in infected epidermis?[J].PLoS Negl Trop Dis,2012,6(7):e1563.
[43] BERNIGAUD C,TAYLOR S,F(xiàn)ISCHER K.Scabies-associated microbiota[M]//FISCHER K,CHOSIDOW O.Scabies.Cham:Springer,2023:103-117.
[44] SWE P M,ZAKRZEWSKI M,WADDELL R,et al.High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp.[J].Sci Rep,2019,9(1):11744.
[45] BERNIGAUD C,ZAKRZEWSKI M,TAYLOR S,et al.First description of the composition and the functional capabilities of the skin microbial community accompanying severe scabies infestation in humans[J].Microorganisms,2021,9(5):907.
[46] NSBORG-NIELSEN C,EISENHOFER R,F(xiàn)RASER T A,et al.Sarcoptic mange changes bacterial and fungal microbiota of bare-nosed wombats (Vombatus ursinus)[J].Parasit Vectors,2022,15(1):323.
[47] LI S R,WANG J,TIAN X,et al.Immunometabolic regulation during the presence of microorganisms and parasitoids in insects[J].Front Immunol,2023,14:905467.
[48] FERNANDO D D,REYNOLDS S L,ZAKRZEWSKI M,et al.Phylogenetic relationships,stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei[J].Parasit Vectors,2018,11(1):301.
[49] XU Y T,XU Z Y,GU X B,et al.Immunomodulatory effects of two recombinant arginine kinases in Sarcoptes Scabiei on host peripheral blood mononuclear cells[J].Front Immunol,2022,13:1035729.
[50] XU Z Y,XU Y T,GU X B,et al.Effects of Sarcoptes scabiei translationally controlled tumor protein (TCTP) on histamine release and degranulation of KU812 cells[J].Int J Mol Sci,2022,23(21):12865.
[51] NSBORG-NIELSEN C,WILKINSON V,MEJIA-PACHECO N,et al.Evidence underscoring immunological and clinical pathological changes associated with Sarcoptes scabiei infection:synthesis and meta-analysis[J].BMC Infect Dis,2022,22(1):658.
[52] HE R,ZHANG Q,XU L Y,et al.Characterization of a novel galectin in Sarcoptes scabiei and its role in regulating macrophage functions[J].Front Microbiol,2023,14:1251475.
[53] NWUFOH O C,SADIQ A N,EMIKPE B O.The seroprevalence of Sarcoptes scabiei var.canis and its associated risk factors in dogs in Ibadan,Southwest Nigeria[J].J Immunoassay Immunochem,2019,40(5):473-484.
[54] HAAS C,ROSSI S,MEIER R,et al.Evaluation of a commercial ELISA for the detection of antibodies to Sarcoptes scabiei in wild boar (Sus scrofa)[J].J Wildl Dis,2015,51(3):729-733.
[55] RAMBOZZI L,MENZANO A,LAVIN S,et al.Biotin-avidin amplified ELISA for detection of antibodies to Sarcoptes scabiei in chamois (Rupicapra spp.)[J].Vet Res,2004,35(6):701-708.
[56] SHEN N X,HE R,LIANG Y Q,et al.Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis[J].Sci Rep,2017,7(1):9639.
[57] XU J,HUANG X,HE M L,et al.Identification of a novel PYP-1 gene in Sarcoptes scabiei and its potential as a serodiagnostic candidate by indirect-ELISA[J].Parasitology,2018,145(6):752-761.
[58] XU J,HUANG X,DONG X W,et al.Serodiagnostic potential of alpha-enolase from Sarcoptes scabiei and its possible role in host-mite interactions[J].Front Microbiol,2018,9:1024.
[59] HE R,SHEN N X,ZHANG H J,et al.Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei[J].Oncotarget,2017,8(48):83995-84005.
[60] RAMPTON M,WALTON S F,HOLT D C,et al.Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model:relevance to immunodiagnosis of recent infection[J].PLoS One,2013,8(6):e65354.
[61] SHEN N X,CHEN Y H,WEI W R,et al.Comparative analysis of the allergenic characteristics and serodiagnostic potential of recombinant chitinase-like protein-5 and -12 from Sarcoptes scabiei[J].Parasit Vectors,2021,14(1):148.
[62] 李 鑫,唐志強,張浩吉,等.疥螨Sar s 14.3過敏原蛋白原核表達及間接ELISA方法的建立[J].中國人獸共患病學報,2023,39(1):28-37.
LI X,TANG Z Q,ZHANG H J,et al.Prokaryotic expression of Sar s 14.3 allergen from Sarcoptes scabiei and establishment of an indirect ELISA method[J].Chinese Journal of Zoonoses,2023,39(1):28-37.(in Chinese)
[63] NAZ S,DESCLOZEAUX M,MOUNSEY K E,et al.Characterization of Sarcoptes scabiei tropomyosin and paramyosin:immunoreactive allergens in scabies[J].Am J Trop Med Hyg,2017,97(3):851-860.
[64] CASAIS R,MILLN J,ROSELL J M,et al.Evaluation of an ELISA using recombinant Ssλ20ΔB3 antigen for the serological diagnosis of Sarcoptes scabiei infestation in domestic and wild rabbits[J].Vet Parasitol,2015,214(3-4):315-321.
[65] ZHENG Y,HE R,HE M L,et al.Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis[J].BMC Infect Dis,2016,16:21.
[66] HE R,SHEN N X,LIN H,et al.Molecular characterization of calmodulin from Sarcoptes scabiei[J].Parasitol Int,2017,66(2):1-6.
[67] ZHANG R H,ZHENG W P,WU X H,et al.Characterisation and analysis of thioredoxin peroxidase as a potential antigen for the serodiagnosis of sarcoptic mange in rabbits by dot-ELISA[J].BMC Infect Dis,2013,13:336.
[68] MA Z T,GUO J N,JIANG L,et al.Lateral flow immunoassay (LFIA) for dengue diagnosis:recent progress and prospect[J].Talanta,2024,267:125268.
[69] 賈新月,馬 靜,張艷艷,等.動物寄生蟲口服疫苗研究進展[J].中國畜牧獸醫(yī),2022,49(9):3569-3580.
JIA X Y,MA J,ZHANG Y Y,et al.Research progress on oral vaccine of animal parasites[J].China Animal Husbandry amp; Veterinary Medicine,2022,49(9):3569-3580.(in Chinese)
[70] 古小彬.兔疥螨蟲株的分子分類及其疫苗研究[D].雅安:四川農(nóng)業(yè)大學,2009.
GU X B.The study of molecular taxomomic status about scabies mites isolated from rabbits and vaccine in Sarcoptes scabiei[D].Ya’an:Sichuan Agricultural University,2009.(in Chinese)
[71] GU X B,XIE Y,WANG S X,et al.Immune response induced by candidate Sarcoptes scabiei var.cuniculi DNA vaccine encoding paramyosin in mice[J].Exp Appl Acarol,2014,63(3):401-412.
[72] SHEN N X,ZHANG H J,REN Y J,et al.A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits[J].Parasit Vectors,2018,11(1):599.
[73] SHEN N X,WEI W R,CHEN Y H,et al.An antibody persistent and protective two rSsCLP-based subunit cocktail vaccine against Sarcoptes scabiei in a rabbit model[J].Vaccines (Basel),2020,8(1):129.
[74] SHEN N X,WEI W R,CHEN Y H,et al.Vaccination with a cocktail vaccine elicits significant protection against Sarcoptes scabiei in rabbits,whereas the multi-epitope vaccine offers limited protection[J].Exp Parasitol,2023,245:108442.
[75] FERNANDO D D,KORHONEN P K,GASSER R B,et al.An RNA interference tool to silence genes in Sarcoptes scabiei eggs[J].Int J Mol Sci,2022,23(2):873.
(編輯 范子娟)