摘要:為研究不同緩凝劑(葡萄糖、蔗糖、葡萄糖酸鈉和檸檬酸鉀)對(duì)堿激發(fā)粉煤灰-礦粉基地質(zhì)聚合物流動(dòng)度、凝結(jié)時(shí)間、黏度和力學(xué)強(qiáng)度的影響規(guī)律,對(duì)緩凝劑對(duì)堿激發(fā)地質(zhì)聚合物的緩凝機(jī)理進(jìn)行研究。結(jié)果表明:4種緩凝劑對(duì)地質(zhì)聚合物漿體流動(dòng)度的影響均在10%以內(nèi);葡萄糖酸鈉對(duì)地質(zhì)聚合物漿體凝固時(shí)間的延長(zhǎng)幅度最大,葡萄糖和蔗糖較大,檸檬酸鉀較??;葡萄糖和蔗糖均有增大黏度的作用,且隨摻量增加而逐漸增大,葡萄糖酸鈉和檸檬酸鉀均有減小黏度的作用,且隨摻量提高而逐漸減??;緩凝劑延緩了地質(zhì)聚合物水化作用以及水化物的生長(zhǎng),導(dǎo)致力學(xué)性能降低。
關(guān)鍵詞:堿激發(fā)地質(zhì)聚合物涂層;緩凝劑;流動(dòng)度;凝結(jié)時(shí)間;黏度;力學(xué)性能
中圖分類號(hào):TU528.042.3 文獻(xiàn)標(biāo)識(shí)碼: A" " "文章編號(hào): 1004-0935(2025)01-0087-06
堿激發(fā)粉煤灰-礦粉基地質(zhì)聚合物(alkali-activated fly ash-slag powder base geopolymers,AFSG)是以粉煤灰、礦粉為原料[1],以氫氧化鈉或水玻璃為堿性激發(fā)劑[2]制備的新型綠色膠凝材料[3],是由不同數(shù)量的硅氧四面體與鋁氧四面體聚合而成的一種三維結(jié)構(gòu)體[4],具有能耗低、CO2排放低、利廢等優(yōu)點(diǎn)。地質(zhì)聚合物無機(jī)涂料是以地質(zhì)聚合物為主要成膜物質(zhì)的涂料,具有較好的耐水性、耐蝕性及耐火性[5-7],且原料來源豐富、成本低廉、工藝簡(jiǎn)單、綠色環(huán)保,應(yīng)用前景廣闊[8-10]。
但是,AFSG中礦粉的Ca-O鍵斷裂會(huì)釋放大量熱量,使得反應(yīng)溫度升高速度增大,促進(jìn)反應(yīng)進(jìn)程,大大降低了凝結(jié)時(shí)間[11],同時(shí)流動(dòng)性損失較快、黏度不足等缺點(diǎn)也限制了其在涂層方面的應(yīng)用,其中凝結(jié)硬化的調(diào)控是目前迫切需要解決的問題[12-14]。近年來,許多學(xué)者針對(duì)礦粉緩凝問題開展了大量研究。Dupuy等[15]發(fā)現(xiàn)添加2.8%的正磷酸、硼酸或10%的四硼酸鋰可以得到需要的黏度要求并控制凝固的時(shí)間。陳迎曉[16]發(fā)現(xiàn)BaCl2緩凝效果最好,但會(huì)阻礙后期的強(qiáng)度發(fā)展。王駿[17]研究了不同類型的緩凝劑對(duì)地質(zhì)聚合物凝結(jié)時(shí)間影響,發(fā)現(xiàn)單摻硝酸鋇最為有效。Zhang等[18]發(fā)現(xiàn)添加硅烷可以顯著地降低地質(zhì)聚合物的水合作用,延長(zhǎng)凝結(jié)時(shí)間,同時(shí)讓地質(zhì)聚合物微觀結(jié)構(gòu)向致密化方向轉(zhuǎn)變。Wang等[19]在鋰渣基地質(zhì)聚合物中加入四硼酸鈉來研究其凝結(jié)情況,發(fā)現(xiàn)四硼酸鈉有效地改善了地質(zhì)聚合物流變性能而不影響其力學(xué)性能??梢?,針對(duì)不同體系的地質(zhì)聚合物,不同緩凝劑的作用仍有很大差別。本實(shí)驗(yàn)研究了不同緩凝劑對(duì)AFSG性能的影響,并探討了緩凝劑對(duì)AFSG的緩凝機(jī)理。
1" 實(shí)驗(yàn)部分
1.1" 實(shí)驗(yàn)材料
實(shí)驗(yàn)所用粉煤灰來自五蓮泰宇石材有限公司,屬于F類低鈣粉煤灰;礦粉由河北潤(rùn)華邦新材料科技有限公司提供。使用ZSX Primus-Ⅱ X射線熒光光譜儀測(cè)定了粉煤灰和礦粉的化學(xué)成分,結(jié)果如表1所示。
試驗(yàn)中選用的水玻璃質(zhì)量分?jǐn)?shù)為39.5%,模數(shù)為3.3。氫氧化鈉、葡萄糖、蔗糖、葡萄糖酸鈉、檸檬酸鉀和聚丙烯纖維(纖維平均長(zhǎng)度為5.0 mm)等均為化學(xué)純?cè)噭?。試?yàn)中選用的水為自來水。
1.2 AFSG的制備
1.2.1堿激發(fā)劑
在水玻璃中加入氫氧化鈉(純度gt;99%)調(diào)節(jié)模數(shù)至1.50,加入去離子水調(diào)節(jié)濃度。堿激發(fā)劑配制后,室溫靜置24 h用于試樣制備。
1.2.2 AFSG膠砂試樣
表2為添加了不同緩凝劑的AFSG的配合比。AFSG的基本配比為粉煤灰:礦粉=4:3,Na2O添加劑量占原料的8%,水膠比為0.5,纖維占原料的0.3%,膠砂比1:1。在基本配比的基礎(chǔ)上添加不同的緩凝劑。將不同原料及標(biāo)準(zhǔn)砂加入攪拌機(jī)中干拌2 min,然后緩慢加入堿溶液,先低速攪拌2 min,再高速攪拌2 min,得到新拌AFSG膠砂漿體。將新拌AFSG膠砂漿體澆注到40 mm×40 mm×160 mm模具中,振實(shí)成型,覆膜室溫放置24 h后拆模,然后在標(biāo)準(zhǔn)條件下養(yǎng)護(hù)至不同齡期,得到AFSG膠砂樣品。膠砂漿體成型前進(jìn)行流動(dòng)度、凝結(jié)時(shí)間和黏度測(cè)定。不同齡期試樣的抗折強(qiáng)度和抗壓強(qiáng)度在WAW-4000D萬能試驗(yàn)機(jī)測(cè)定。
2" 結(jié)果與討論
2.1" 緩凝劑對(duì)流動(dòng)度和凝結(jié)時(shí)間的影響
圖1~圖4分別為不同緩凝劑對(duì)AFSG膠砂漿體流動(dòng)度和凝結(jié)時(shí)間的影響。由圖1~圖4可見,空白對(duì)照漿體流動(dòng)度為226 mm,隨著檸檬酸鉀和葡萄糖酸鈉摻量的提高,漿體的流動(dòng)度逐漸提高。當(dāng)檸檬酸鉀的摻量為3%時(shí)流動(dòng)度達(dá)到245 mm,相比對(duì)照樣品提高了8.4%;葡萄糖酸鈉的摻量為3%時(shí),流動(dòng)度達(dá)到238 mm,提高了5.3%。而葡萄糖和蔗糖的添加則降低了漿體的流動(dòng)度。當(dāng)葡萄糖的摻量為5%時(shí),流動(dòng)度降到218 mm,降低了3.5%;蔗糖摻量為5%時(shí),流動(dòng)度降到216 mm,降低了4.4%。
試驗(yàn)結(jié)果表明葡萄糖酸鈉和檸檬酸鉀提高了AFSG漿體的流動(dòng)度,而葡萄糖和蔗糖卻降低了AFSG漿體的流動(dòng)度。
糖類緩凝劑可通過降低AFSG反應(yīng)時(shí)離子的擴(kuò)散速率或降低OH-遷移速率,與堿激發(fā)劑作用提高AFSG漿體的黏度,葡萄糖和蔗糖的增黏作用則是使得AFSG漿體流動(dòng)度降低的主要原因[20-22]。
葡萄糖酸鈉和檸檬酸鉀分子上羥基、羧基等緩凝型的官能團(tuán)可以絡(luò)合Ca2+形成絡(luò)合物,同時(shí)在活性顆粒表面形成包覆膜,阻止地聚物的水化,這使AFSG漿體具有較好的流動(dòng)保持能力從而使流動(dòng)度得到一定的提高[22-24]。
同時(shí),不同緩凝劑對(duì)AFSG膠砂漿體的凝結(jié)時(shí)間的影響也有很大差別。其中葡萄糖酸鈉對(duì)凝結(jié)時(shí)間的影響最大,摻量為3%時(shí)初凝時(shí)間為53 min,相比對(duì)照樣品提高了76.6%;終凝時(shí)間為89 min,提高了56%。葡萄糖和蔗糖對(duì)AFSG膠砂漿體的凝結(jié)時(shí)間也有較大影響。摻量為5%時(shí)初凝時(shí)間分別為45 min和46min,提高了50.0%和53.3%;終凝時(shí)間為78 min和77 min,提高了39.3%和37.5%。而檸檬酸鉀對(duì)AFSG膠砂漿體的凝結(jié)時(shí)間影響較小,摻量為3%時(shí)初凝時(shí)間為33 min,提高了10%;終凝時(shí)間為63 min,提高了8%。參照GB175—2007通用硅酸鹽水泥[25]中凝結(jié)時(shí)間的標(biāo)準(zhǔn),即初凝時(shí)間不小于45 min,終凝時(shí)間不大于600 min,可以判斷葡萄糖、蔗糖摻量為5%,葡萄糖酸鈉摻量為1%、3%時(shí)滿足該標(biāo)準(zhǔn)的要求。
葡萄糖和蔗糖對(duì)AFSG水化反應(yīng)過程的抑制作用體現(xiàn)在兩個(gè)方面。一方面,其強(qiáng)大的絡(luò)合能力使它們能夠容易地與Ca2+反應(yīng)形成絡(luò)合物,從而延緩水化產(chǎn)物的沉淀生成[26];另一方面,羥基可與O2-形成氫鍵,進(jìn)而在活性粉體顆粒表面形成保護(hù)層,使活性粉體顆粒不能接觸激發(fā)劑,無法溶解,實(shí)現(xiàn)阻滯過程[27-28]。這樣最終會(huì)導(dǎo)致AFSG的水化過程受到阻滯。
葡萄糖酸鈉對(duì)AFSG水化反應(yīng)過程的抑制作用體現(xiàn)在兩個(gè)方面。一方面,葡萄糖酸鈉與系統(tǒng)中溶解的Ca2+形成絡(luò)合物,降低了Ca2+的離子濃度,并阻止了溶解單體的進(jìn)一步反應(yīng),從而導(dǎo)致水化反應(yīng)延遲[29-30];另一方面,離子中的羥基和羧基吸附在未溶解的前體材料顆粒以及反應(yīng)生成的凝膠表面,從而削弱了前驅(qū)體活性物質(zhì)的溶解和水化產(chǎn)物之間的團(tuán)聚,進(jìn)一步阻礙了反應(yīng)進(jìn)行[31]。與只含有單官能團(tuán)(羥基)的葡萄糖的蔗糖相比,具備多種不同官能團(tuán)(羥基和羧基)的葡萄糖酸鈉其阻滯效果更為明顯[32]。
2.2" 緩凝劑對(duì)黏度的影響
圖5~圖8為緩凝劑對(duì)AFSG凈漿漿體黏度的影響。由圖5~8可見:漿體黏度隨轉(zhuǎn)速增大而迅速降低,但不同緩凝劑對(duì)黏度的作用有很大差別。葡萄糖和蔗糖均有增大黏度的作用且隨摻量提高而逐漸增大,葡萄糖摻量為5%時(shí)漿體黏度提高了18.5%;蔗糖摻量為5%時(shí)漿體黏度提高了24.2%。葡萄糖酸鈉和檸檬酸鉀均有減小黏度的作用且隨摻量提高而逐漸減小,檸檬酸鉀摻量為3%時(shí)黏度降低了23.6%;葡萄糖酸鈉摻量為3%時(shí)黏度降低了16.2%。
葡萄糖酸鈉和檸檬酸鉀的添加可以有效延緩了AFSG內(nèi)部的水化反應(yīng)速率,降低AFSG的凝固速率,減少水化反應(yīng)前期C-A-S-H和N-A-S-H凝膠的生成[33-34],在有效緩凝的同時(shí)降低了AFSG漿體的黏度。
2.3" 緩凝劑對(duì)力學(xué)性能的影響
表3為緩凝劑對(duì)AFSG膠砂漿體力學(xué)強(qiáng)度的影響。由表3可見,4種緩凝劑均有降低力學(xué)性能的作用且隨摻量提高降低幅度更大。其中葡萄糖酸鈉對(duì)強(qiáng)度的影響最大,摻量為3%時(shí),AFSG的3d抗折強(qiáng)度為1.2 MPa,相比對(duì)照樣品,降低了62.5%;3 d抗壓強(qiáng)度為15.6 MPa,降低了54.9%;7 d抗折強(qiáng)度和抗壓強(qiáng)度為2.9 MPa和27.8 MPa,分別降低了36.9%和37.6%;而28 d抗折強(qiáng)度和抗壓強(qiáng)度為6.1 MPa和45.5 MPa,分別降低了28.1%和35.4%。
葡萄糖酸鈉的添加延緩了地質(zhì)聚合物的早期強(qiáng)度增長(zhǎng)過程。AFSG在3、7、28d的強(qiáng)度均隨著緩凝劑摻量的增大而逐漸降低,這主要是由于緩凝劑延遲了水化反應(yīng)過程,限制了強(qiáng)度的發(fā)展。與對(duì)照組相比,3d時(shí)的抗折強(qiáng)度和抗壓強(qiáng)度僅為1.2 MPa和15.6 MPa,這是由于較高劑量的葡萄糖酸鈉對(duì)地質(zhì)聚合物的早期反應(yīng)有相當(dāng)大的延緩作用,這延遲了AFSG的凝固和硬化時(shí)間,導(dǎo)致早期強(qiáng)度下降[35]。
葡萄糖和蔗糖對(duì)AFSG膠砂漿體力學(xué)強(qiáng)度也有較大影響。蔗糖和葡萄糖吸附在水化顆粒表面[36-37],抑制前驅(qū)體物質(zhì)的溶解,阻礙早期反應(yīng)中水化產(chǎn)物凝膠的形成[38]。隨著養(yǎng)護(hù)時(shí)間的延長(zhǎng),樣品強(qiáng)度逐漸增大,與對(duì)照樣品強(qiáng)度發(fā)展趨勢(shì)相似。然而,28d的抗壓強(qiáng)度仍低于對(duì)照組。從表3中可以看出,葡萄糖和蔗糖摻量為5%的AFSG的28d抗折強(qiáng)度和抗壓強(qiáng)度相對(duì)對(duì)照樣品分別下降了12.9%、31.9%和29.4%、33.9%,這表明添加緩凝劑對(duì)后期強(qiáng)度也有不利的影響[39-40]。
葡萄糖酸鈉摻量低的AFSG強(qiáng)度隨著固化齡期的延長(zhǎng)而逐漸增大說明適量添加葡萄糖酸鈉對(duì)后期強(qiáng)度發(fā)展沒有顯著影響(見表3)。其他研究也報(bào)道了這一趨勢(shì),雖然加入低摻量葡萄糖酸鈉或其他緩凝劑導(dǎo)致早期地質(zhì)聚合物水化反應(yīng)延遲,但在后期仍能表現(xiàn)出良好的水化特性,甚至表現(xiàn)出更高的強(qiáng)度[38-39],這種現(xiàn)象可歸因于緩凝劑促進(jìn)的早期地聚物水化速率較低,從而促進(jìn)水化產(chǎn)物更均勻的生長(zhǎng)和分布,從而形成更致密的結(jié)構(gòu)和更低的孔隙率[39,41]。
檸檬酸鉀對(duì)AFSG膠砂漿體力學(xué)強(qiáng)度影響較小,當(dāng)摻量為3%時(shí),AFSG的28d抗折強(qiáng)度和抗壓強(qiáng)度分別為7.2 MPa和61.4 MPa,相對(duì)對(duì)照樣品分別下降了15.3%和13.3%,這與緩凝劑對(duì)凝結(jié)時(shí)間的影響基本一致。
可見,緩凝劑的添加對(duì)AFSG膠砂漿體的強(qiáng)度產(chǎn)生的不利影響在發(fā)展的強(qiáng)度早期階段尤為明顯。從緩凝劑對(duì)凝固時(shí)間的影響中可以看出(見圖1~圖4),高濃度的緩凝劑導(dǎo)致試樣的凝固時(shí)間顯著增加,從而影響了早期強(qiáng)度,這可歸因于添加了緩凝劑的樣品中AFSG凝膠的百分比較低[42]。
3" 結(jié)論
1)4種緩凝劑對(duì)AFSG漿體流動(dòng)度影響幅度均小于10%,檸檬酸鉀的提高幅度最大,摻量為3%時(shí)流動(dòng)度為245 mm,提升了8.4%。
2)4種緩凝劑對(duì)AFSG漿體凝固時(shí)間均有提高,葡萄糖酸鈉的提高幅度最大,摻量為3%時(shí)初凝時(shí)間為53 min,提高了76.6%;終凝時(shí)間為89 min,提高了56%。
3)葡萄糖和蔗糖會(huì)提高AFSG漿體黏度且隨摻量提高而逐漸增強(qiáng),而葡萄糖酸鈉和檸檬酸鉀則會(huì)降低AFSG漿體黏度且隨摻量提高而逐漸增強(qiáng)。蔗糖摻量為5%時(shí)黏度最大,提升了26.9%。
4)4種緩凝劑均使AFSG砂漿漿體的抗壓強(qiáng)度和抗折強(qiáng)度降低。葡萄糖酸鈉的降低幅度最大,摻量為3%時(shí)3d抗折強(qiáng)度為1.2 MPa,降低了62.5%;3 d抗壓強(qiáng)度為15.6 MPa,降低了54.9%。
參考文獻(xiàn):
[1] MCLELLAN B C, WILLIAMS R P, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090.
[2] LIU X, LONG Y, WU Q, et al. Preparation and performance of AACM with red mud and GGBFS: effectiveness of alkali activator[J]. Materials and Structures, 2023, 56: 88.
[3] ONG S W, HEAH C Y, LIEW Y M, et al. Green development of fly ash geopolymer via casting and pressing approaches: strength, morphology, efflorescence and ecological properties[J]. Construction and Building Materials, 2023,398: 132446.
[4] AILAR H, TUAN N, ALIREZA K. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders[J]. Journal of Cleaner Production, 2018: 193.
[5] SHARKAWI A, TAMAN M, AFEFY M H, et al. Efficiency of geopolymer vs. high-strength grout as repairing material for reinforced cementitious elements[J]. Structures, 2020, 27: 330-342.
[6] FIRDOUS R, STEPHAN D, DJOBO J N Y. Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics[J]. Construction and Building Materials, 2018, 190: 1251-1263.
[7] SINGH N B, SAXENA S K, KUMAR M. Effect of nanomaterials on the properties of geopolymer mortars and concrete[J]. Materials Today, 2018, 5(3): 9035-9040.
[8] GEORGY L, ANTON K, TATIANA N. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: a review[J]. Construction and Building Materials, 2021, 288: 123115.
[9] ZHANG Z H, YAO X, ZHU H J. Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties[J]. Applied Clay Science, 2010, 49: 1-6.
[10] Lü X S, WANG K T, HE Y, et al. A green drying powder inorganic coating based on geopolymer technology[J]. Construction and Building Materials, 2019, 214: 441-448.
[11] LI N, SHI C J, WANG Q, et al. Composition design and performance of alkali-activated cements[J]. Materials and Structures, 2017, 50(3): 178-180.
[12] 張大旺,王棟民. 地質(zhì)聚合物混凝土研究現(xiàn)狀[J].材料導(dǎo)報(bào),2018,32(9):1519-1527,1540.
[13] KAJA A M, LAZARO A, YU Q L. Effects of portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions[J].Construction and Building Materials, 2018, 189: 1113.
[14] ZUNINO F, BENTZ D P, CASTRO J. Reducing setting time of blended cement paste containing high-SO3 fly ash (HSFA) using chemical/physical accelerators and by fly ash pre-washing[J]. Cementand Concrete Composites, 2018, 90: 14.
[15] DUPUY C, HAVETTE J, GHARZOUNI A, et al. Metakaolin-based geopolymer: formation of new phases influencing the setting time with the use of additives[J]. Construction and Building Materials, 2019, 200: 272-281.
[16] 陳迎曉. 礦渣-偏高嶺土基地聚合物凝結(jié)時(shí)間可控性研究[D].重慶:重慶大學(xué),2018.
[17] 王駿. 堿激發(fā)礦渣地質(zhì)聚合物的性能調(diào)控研究[D].西安:西安建筑科技大學(xué),2017.
[18] ZHANG C, HU Z, ZHU H, et al. Effects of silane on reaction process and microstructure of metakaolin-based geopolymer composites[J]. Journal of Building Engineering, 2020, 32: 101695.
[19] WANG J, HAN L, LIU Z, et al. Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties[J]. Cement and Concrete Composites, 2020, 110: 103598.
[20] NARITSARA T, PAJAREE T, SIRITHAN J. Effect of additives on the setting time and compressive strength of activated high-calcium fly ash-based geopolymers[J]. Construction and Building Materials, 2024, 417: 135035.
[21] CHEN X, MONDAL P. Sucrose retards the reaction of non-calcium geopolymers: an implication for developing kinetics-controlling admixtures[J]. Journal of the American Ceramic Society, 2021, 104: 2894.
[22] GUINDANI E N, ONGHERO L, SOUZA M T, et al. Assessing the interactions of retarding admixtures and fine materials in long-term flowability of cement pastes[J]. Case Studies in Construction Materials, 2024, 20: e02896.
[23] 繆昌文.高性能混凝土外加劑[M].北京:化學(xué)工業(yè)出版社,2008.
[24] LI Z X, TANG J W. The appropriate chemical admixture for alkali-activated cementitious material[J]. Advanced Materials Research, 2012, 534: 34-41.
[25] 中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 通用硅酸鹽水泥:GB 175—2007[S].北京:質(zhì)檢出版社,2007.
[26] PLANK J, SACHSENHAUSER B. Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution[J]. Cement and Concrete Research, 2009, 39(1):
1-5.
[27] KOCHOVA K, SCHOLLBACH K, GAUVIN F, et al. Effect of saccharides on the hydration of ordinary Portland cement[J]. Construction and Building Materials, 2017, 150: 268-275.
[28] MA X B, SHI D Q, XIA Y, et al. Controllable setting time of alkali-activated materials incorporating sewage sludge ash and GGBS: the role of retarders[J]. Construction and Building Materials, 2024, 412: 134857.
[29] ZHAO J J, LI S. Study on processability, compressive strength, drying shrinkage and evolution mechanisms of microstructures of alkali-activated slag-glass powder cementitious material[J]. Construction and Building Materials, 2022, 344: 128196.
[30] GAO Y F, GUO T, LI Z F, et al. Mechanism of retarder on hydration process and mechanical properties of red mud-based geopolymer cementitious materials[J]. Construction and Building Materials, 2022, 356: 129306.
[31] ZOU F B, TAN H B, GUO Y L, et al. Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain[J]. Journal of Industrial and Engineering Chemistry, 2017, 55: 91-100.
[32] KUSBIANTORO A, IBRAHIM M S, MUTHUSAMY K, et al. Development of sucrose and citric acid as the natural based admixture for fly ash based geopolymer[J]. Procedia Environmental Sciences, 2013, 17: 596-602.
[33] RATTANASAK U, PANKHET K, CHINDAPRASIRT P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer[J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18: 364-369.
[34] 馬小兵. 緩凝劑對(duì)礦渣-污泥灰地質(zhì)聚合物性能的影響[D].哈爾濱:哈爾濱工業(yè)大學(xué),2021.
[35] LI B X, Lü X D, DONG Y, et al. Comparison of the retarding mechanisms of sodium gluconate and amino trimethylene phosphonic acid on cement hydration and the influence on cement performance[J]. Construction and Building Materials, 2018, 168: 958-965.
[36] PETERSON V K, GARCI M C. Time-resolved quasielastic neutron scattering study of the hydration of tricalcium silicate: effects of CaCl2 and sucrose[J]. Physica B: Condensed Matter, 2006, 385/386: 222-224.
[37] GARCIA J, OLIVEIRA D I, PANDOLFELLI V. Hidration process and the mechanisms of retarding and accelerating the setting time of calcium aluminate cement[J]. Ceramica, 2007, 53: 42-56.
[38] SINHA A K, TALUKDAR S. Enhancement of the properties of silicate activated ultrafine-slag based geopolymer mortar using retarder[J]. Construction and Building Materials, 2021, 313: 125380.
[39] GAO Y, GUO T, LI Z, Z, et al. Mechanism of retarder on hydration process and mechanical properties of red mud-based geopolymer cementitious materials[J]. Construction and Building Materials, 2022, 356: 129306.
[40] MA X B, ZHAO Y D, LIU M H, et al. Sodium gluconate as a retarder modified sewage sludge ash-based geopolymers: mechanism and environmental assessment[J]. Journal of Cleaner Production, 2023, 419: 138317.
[41] MA S H, LI W F, ZHANG S B, et al. Influence of sodium gluconate on the performance and hydration of Portland cement[J]. Construction and Building Materials, 2015, 91: 138-144.
[42] COSTA R, CARDOSO T, DEGEN M, et al. Influence of retarder admixtures on the hydration, rheology, and compressive strength of white Portland cements under different temperatures[J]. Cement, 2023, 11: 100057.
Effect of Retarders on the Properties of Alkali-activated Geopolymer Coatings
REN Chengxin, YU Xin, XU Wenlong, XU Li’na, TIAN Qingbo
(School of Materials Science and Engineering,Shandong Jianzhu University, Jinan 250101, China)
Abstract: In this paper, the effects of retarders (glucose, sucrose, sodium gluconate, and potassium citrate) on the fluidity, setting time, viscosity and mechanical strength of alkali-activated fly ash-slag powder based geopolymers were studied, and the retarding mechanism of retarders was analyzed. The results show that the effects of the four retarders on the fluidity of the geopolymer slurry are all within 10%, the sodium gluconate has the largest extension of the solidification time of the geopolymer slurry, the glucose and sucrose are larger, and the potassium citrate is smaller, the viscosity of glucose and sucrose increases and gradually increases with the increase of the dosage, the sodium gluconate and potassium citrate both have the effect of decreasing the viscosity and gradually decreases with the increase of the dosage, and the retarder delays the hydration of the geopolymer and the growth of hydrate, resulting in the decrease of mechanical properties.
Key words:Alkali-activated geopolymers coating;Retarders;Fluidity; Setting time;Viscosity; Mechanical properties