• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications

    2022-02-24 08:59:08PengfeiWang王鵬飛MinhanMi宓珉瀚MengZhang張濛JiejieZhu祝杰杰YuweiZhou周雨威JielongLiu劉捷龍SijiaLiu劉思佳LingYang楊凌BinHou侯斌XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2022年2期
    關(guān)鍵詞:楊凌

    Pengfei Wang(王鵬飛) Minhan Mi(宓珉瀚) Meng Zhang(張濛) Jiejie Zhu(祝杰杰) Yuwei Zhou(周雨威)Jielong Liu(劉捷龍) Sijia Liu(劉思佳) Ling Yang(楊凌) Bin Hou(侯斌)Xiaohua Ma(馬曉華) and Yue Hao(郝躍)

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China2School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China3Xidian University Guangzhou Institute of Technology,Guangzhou 510555,China

    We demonstrated an AlGaN/GaN high electron mobility transistor (HEMT) namely double-Vth coupling HEMT(DVC-HEMT) fabricated by connecting different threshold voltage (Vth) values including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm. Furthermore,the proposed architecture also features an exceptional linearity performance with 1-dB compression point(P1 dB)of 28 dBm,whereas that of the Fin-like HEMT is 25.2 dBm. The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.

    Keywords: AlGaN/GaN,linearity,1-dB compression point,millimeter-wave application

    1. Introduction

    The surging demand for the Internet of things (IoT)has promoted the development of modern wireless communication technologies.[1–3]High data transfer rate and spectrum efficiency have becoming significant index parameters for modern mobile communication equipment in power amplifiers (PAs), which imposes higher linearity requirements on PAs.[4,5]Gallium nitride (GaN)-based high-electron mobility transistors (GaN HEMTs) have been the most promising devices for PAs in telecommunication applications due to superior material properties.[6,7]However, the conventional AlGaN/GaN HEMT suffers from nonlinearities with a bell-shaped transconductance (Gm) profile, which may be attributed to several physical origins including (i) self-heating effects,[8](ii) parasitic capacitance,[9](iii) source resistance nonlinearity,[10–12]and (iv) electron saturation velocity.[13,14]Several approaches have been employed to address theGmroll-off at high drain current level.[15–19]Choi[20]obtained a composite device withGmplateau>6 V and OIP3/Pdcis 8.2 dB at 30 GHz by optimizing the fin width and number of fins along the gate direction. Sohel[21]has reported the polarization-graded transistors by employing a threedimensional electron gas channel (3DEG) with OIP3/Pdcof 13.3 dB at 10 GHz.

    Additionally,we have recently proposed a novel architecture with transconductance plateau>5.6 V by tailoring a flatGmprofile.[22]Such structures have been proven to be able to effectively suppress theGmroll-off at high drain current and thus enhance the linearity. However, the off-state current induced by etching is deteriorated about 2 orders compared with conventional planar HEMT, which severely impedes device reliability and deteriorates power efficiency.[23]It has been found that the plasma treatment such as N2O can effectively suppress the leakage current.[24–26]

    In this work, we optimized the structure reported in our previous work[22]by connecting differentVthvalues including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The architecture of such scheme is named as double-Vthcoupling-HEMT(DVC-HEMT).In comparison with Fin-like HEMT, the linearity of DC and RF characteristics has been significantly promoted for DVC-HEMT.The fabricated DVCHEMT shows a gate voltage swing (GVS) of the transconductance plateau larger than 7 V and a constantfT/fmaxof 40 GHz/60 GHz over a wide gate voltage range. Due to the thin oxide layer formed by N2O treatment, the DVC-HEMT demonstrates an on/off ratio of over 108, associated with a maximum current collapse (CC) of as low as 3.2%. At theoperating frequency of 30 GHz, the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm atVd=20 V is obtained by the DVC-HEMT,as well as that of Fin-like HEMT is 34% accompanied by 4 W/mm atVd= 2 V. Furthermore, the proposed architecture also features an exceptional linearity performance with 1-dB compression point(P1dB)of 28 dBm at 30 GHz,whereas that of the Fin-like HEMT is 25.2 dBm. Therefore,the DVCHEMT is believed to be an attractive alternative approach for millimeter-wave application requiring high linearity and high efficiency.

    2. Device structure and fabrication

    The devices in this work were fabricated on an Al-GaN/GaN heterostructure grown on SiC substructure by metalorganic chemical vapor deposition (MOCVD). Figure 1 shows the schematic of the devices. Its epilayers include a 1.3-μm GaN buffer layer, a 1-nm AlN interlayer, and a 24-nm AlGaN barrier. The measured two-dimensional electron gas (2DEG) mobility and density are 2096 cm2·V?1·s?1and 1.04×1013cm?2,respectively.

    Fig. 1. The structure diagram of (a) Fin-like HEMT and (b) DVC HEMT;(c)the TEM micrograph of the surface plasma treatment formed by oxide on AlGaN barrier;(d)process flow for the fabricated DVC-HEMT.

    Four different devices including a convention planar HEMT(the inset 1 in Fig.2(b)),recess-gate HEMT(the inset 2 in Fig.2(b)),Fin-like HEMT(as shown in Fig.1(a)),and the DVC-HEMT(as shown in Fig.1(b))were fabricated together for comparison.Device fabrication started with the source and the drain Ohmic contact formation using Ti/Al/Ni/Au evaporation process followed by rapid annealing at 850°C for 50 s in ambient N2. After the device’s electrical isolation was formed through nitrogen ion implantation,an Ohmic contact resistance of 0.36 Ω·mm was achieved and verified using transmission-line measurement (TLM). A 120-nm SiN layer was deposited by plasma-enhanced chemical vapor deposition(PECVD), and electron beam lithography (EBL) was used to define the gate foot. For the detailed information of planar HEMT,recess-gate HEMT and Fin-like HEMT is described in our previous work.[22]

    Fig.2. Comparison of(a)transfer characteristics and(b)Schottky characteristics among planar HEMT, recess-gate HEMT, and Fin-like HEMT. Inset:cross section of 1 the planar HEMT and 2 gate-recess HEMT.

    Significantly,for the DVC-HEMT as shown in Fig.2(b),after removing the SiN in the gate region, a second EBL lithography was employed to define slant recess. Since SiN served as a hard mask during the Cl2-based etching process,the periodic slant recess features the same length as the gate foot. After that, the gate region was treated by N2O plasma.The N2O plasma treatment was carried out in the PECVD system. The chamber pressure was 600 mTorr (1 Torr =1.33322×102Pa),the flow rate of N2O was 80 sccm,the ambient temperature was 250°C,the plasma power was 200 W,and the treatment time was 30 min. This process is aimed to form a layer of oxide instead of deposition or thermal growth using additional process. The thickness of the oxide was estimated to be around 3 nm by using the transmission electron microscopy (TEM) image as shown in Fig. 1(c). Finally, a gate cap based on Ni/Au/Ni metal stacks was deposited using electron beam evaporation. The process flow for DVC-HEMT fabrication is shown in Fig.1(d). For a direct comparison,all devices have the same gate length (Lg) of 200 nm, a source drain distance (Lsd) of 3 μm. In particularly, the etch depth(HR) of recess-gate HEMT (the inset 2 in Fig. 2(b)) and Finlike HEMT is 7.5 nm.

    3. Results and discussion

    The DC measurement of the fabricated devices are measured by Keithley 4200 semiconductor analyzer. Figure 2(a)shows the comparison of transfer characteristics among planar HEMT, recess-gate HEMT, and Fin-like HEMT. It could be notably observed that the GVS(the difference in gate voltage corresponding to 80%of the peakGm)of Fin-like HEMT is significantly improved in comparison with that of planar HEMT and recess-gate HEMT.The flatterGmprofile of Finlike HEMT implies that the architecture can effectively inhibitGmroll-off at high drain current. However, as shown in Fig. 2(b), the off-state leakage current of planar HEMT is at the order of 10?4mA/mm,whereas,that of Fin-like HEMT and recess-gate HEMT is up to 10?2mA/mm. The deterioration of leakage current is mainly attributed to the dry etching which may result in the interface scattering[27]and the increment of tunneling current.[28]

    In order to comparatively investigate the DC characteristics of DVC-HEMT,we selected the Fin-like HEMT as reference. As shown in Fig.3(a),due to a thin oxide layer formed on the gate region of DVC-HEMT,the gate leakage current at least 4 orders of magnitude lower than that of Fin-like HEMT,leading to an ultralow off-state current of 9.3×10?6mA/mm accompanied by an on/off ratio of over 108. Interestingly, a higher RF linearity performance will be manifested for HEMT when the first- and second-order derivatives of transconductance is close to zero,[20]which means that it is key to reduce the derivative characteristics for fabricating high linearity device. Figure 3(b)compares the transconductance(Gm)and it is derivative characteristics (G′mandG′′m) of the two kinds of devices.It could be noted that the peak transconductance(Gmmax)is 201 mS/mm for DVC-HEMT and 205 mS/mm for Finlike HEMT, respectively. The slightly reduction of the peakGmis attributed to the increased gate-to-channel separation for DVC-HEMT. However, as seen from in Fig. 3(b), the DVCHEMT displays dramatically more constantGmprofile with GVS of 7 V,in contrast,that of Fin-like HEMT is 5.7 V.Thus,the enhanced GVS of DVC-HEMT leads to a lowerG′mof 0.25 S/mm·V accompanied by anG′′mof 0.5 S/mm·V2,which are evidently improved by 0.08 S/mm·V and 0.4 S/mm·V2compared to those of Fin-like HEMT, respectively. That is to say,the DVC-HEMT shows significant improvement in the transitive region from the subthreshold to the peak value. In the linearly increasing region, DVC-HEMT exhibits the flattestGmprofile,thereby suppressing undesirable harmonic elements. The results imply that DVC-HEMT improve theGmlinearity effectively and have great advantages in device-level linearization.

    Figure 3(c)shows the Schottky characteristics of the two kinds of devices,it could be observed that the gate current of DVC-HEMT is at least 4 orders of magnitude lower than that of Fin-like HEMT atVg=?8 V, and 3 orders of magnitude lower than that of Fin-like HEMT atVg=2 V,which furtherly validates the above observations from transfer characteristics in Fig.3(a). In short,the physical central idea of DVC-HEMT is“double-Vthcoupling”technology,which integrates the double elements with different gate-overdrive(VG–Vth)quiescent bias voltages in parallel along the gate width to suppress the premature roll-off ofGm. Meanwhile, accounting for the insertion of 3-nm oxide gate insulator between gate-to-channel,the DVC-HEMT exhibits a flattenedGmprofile and decreased gate leakage current,which should result in lower levels of the RF distortions and enhance the output power and efficiency of AlGaN/GaN HEMT at the elevated power levels.[29,30]

    Fig.3. Comparison of(a)transfer characteristics(log),(b)transconductance(Gm)and high order transconductance( and ),and(c)Schottky characteristics between Fin-like HEMT and DVC-HEMT.

    In addition to the improved DC characteristics, the current collapse (CC) of HEMT, severely limits the maximum output powers and deteriorates the device linearity, thus, the CC of DVC-HEMT was also calculated by the pulsed measurement. The pulsed measurements were performed by using the pulse of 500 ns in width and 1 ms in period(as shown in Fig. 4) to investigate the current dispersion of the device. At the bias point(VGSQ,VDSQ)=(?8 V,0 V),there is a potential difference between gate and drain,so the electrons in the gate electrode could be captured by the trap state. Therefore, the bias point(VGSQ,VDSQ)=(?8 V,0 V)is selected to evaluate the trap state and avoid the self-heating effect. Figure 4 shows that an 8.8% drain current (Id) reduction of Fin-like HEMT(as shown in Fig.4(b))happens atVGS=2 V andVDS=10 V while that of the DVC-HEMT(as shown in Fig.4(a))reduces by 3.2% at the same bias condition. Furthermore, the CC of DVC-HEMT is 5.0%at(VGSQ,VDSQ)=(8 V,20 V)while that of Fin-like HEMT is 11.2% at (VGSQ,VDSQ)=(8 V, 20 V),The results indicate that the N2O plasma pre-treatment can essentially suppress the trap state-related carrier trapping and thus contribute to the RF efficiency.[30]

    Fig. 4. Double-pulse characteristics of (a) DVC-HEMT and (b) Fin-like HEMT.

    As shown in Fig.5(a),the maximum current–gain cutoff frequency(fT)and the maximum power gain cutoff frequency(fmax) of the DVC-HEMT are 40 GHz and 60 GHz, respectively. Due to increased gate-to-channel separation and lowerGmpeak for DVC-HEMT, the peakfTandfmaxare slightly lower than those of Fin-like HEMT.However,as demonstrated in Fig.5(b),fTandfmaxyield a flatter curve over a wider range of gate bias,which is associated with the increasedGmflatness of DVC-HEMT. Based on good agreement between theGmand small signal profile, we conclude that the modulation ofGmcharacteristics is advantages to improvefT/fmaxlinearity of DVC-HEMT compared to Fin-like HEMT.

    To corroborate the device power characteristics and their effect on the millimeter-wave application performance,power measurement of HEMT at 30 GHz was performed in continuous wave using an on-wafer load pull system.The load and the source impendence were tuned for the optimum PAE, so that the power linear gain was lower than the small signal gain.Figures 6(a)and 6(b)illustrate the output power density(Pout),the power gain (Gain), and the PAE as a function of the input power (Pin) for the DVC-HEMT and Fin-like HEMT, respectively, both of which are characterized at deep-class AB operation atVd=20 V. Due to the excellent pinch-off characteristics, minimized gate current and suppressed CC,aPoutof 5.3 W/mm and a peak PAE of 41% are notably observed from Fig.6(a),whereas,those of Fin-like HEMT as shown in Fig.6(b)are 4 W/mm and 34%,respectively.Furthermore,the DVC-HEMT device exhibits a more flattened gain curve with the compression between the linear gain and associated gain is as low as 0.8 dB,as well as,for Fin-like HEMT,the gain compression is up to 2.7 dB.Due to the improvement of gain compression, aP1dBof 28 dBm is obtained by the DVC-HEMT,in contrast, Fin-like HEMT shows aP1dBof 25.2 dBm, indicating the smaller distortion of RF linearity in DVC-HEMT.The improvement of RF linearity performance is mainly attributed to the flatterGmprofile,which indicates that the proposed architecture has an obvious potentiality in the high linearity millimeter-wave application.

    Fig.5. (a)Small signal characteristics of DVC-HEMT and Fin-like HEMT.(b) Gate voltage dependence of fT and fmax for DVC-HEMT, Fin-like HEMT,and planar HEMT at Vd=6 V.

    Fig.6. Comparison of output power characteristics after a load-pull at frequency of 30 GHz and Vd=20 V:(a)DVC-HEMT and(b)Fin-like HEMT.

    4. Conclusion

    This work presents a novel device namely DVC-HEMT obtained by integrating differentVthvalues including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region, to produce a device with high linearity performance in millimeterwave application. The fabricated DVC-HEMT exhibits a steadyGmandfT/fmaxplate curve with GVS of 7 V and a constantfT/fmaxof 40 GHz/60 GHz. Furtherly, it also features an exceptional linearity performance withP1dBof 28 dBm at frequency=30 GHz,Vd=20 V whereas that of the Fin-like HEMT is 25.2 dBm at same bias condition. The proposed architecture has an obvious potentiality in millimeter-wave application requiring good linearity and high efficiency.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB1804902),the Fundamental Research Funds for the Central Universities,the Innovation Fund of Xidian University,the National Natural Science Foundation of China(Grant No.61904135),the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Research and Development Plan of Key Fields in Guangzhou(Grant No.202103020002).

    猜你喜歡
    楊凌
    一場馬拉松激活一座城
    金秋(2023年20期)2024-01-19 02:38:38
    楊凌金海生物技術(shù)有限公司
    陜西楊凌成立彩色小麥團隊
    陜西楊凌:打響麥田“保衛(wèi)戰(zhàn)”
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    當代陜西(2020年14期)2021-01-08 09:30:32
    第二十七屆中國楊凌農(nóng)業(yè)高新科技成果博覽會
    陜西楊凌:打造線上線下融合智慧展會
    楊凌深耕服務(wù)“田園”
    當代陜西(2019年12期)2019-07-12 09:12:08
    楊凌農(nóng)科 讓普通口糧變“地下黃金”
    亚洲,一卡二卡三卡| 亚洲少妇的诱惑av| 欧美性感艳星| 中国三级夫妇交换| 国产免费福利视频在线观看| 亚洲欧美一区二区三区国产| 成人国语在线视频| 永久网站在线| 久久久久国产网址| 中文字幕制服av| 午夜免费鲁丝| 一级片'在线观看视频| 极品人妻少妇av视频| 中文字幕另类日韩欧美亚洲嫩草| 蜜桃在线观看..| 久久国产精品男人的天堂亚洲 | 97人妻天天添夜夜摸| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 久久精品夜色国产| 九色亚洲精品在线播放| 卡戴珊不雅视频在线播放| 搡女人真爽免费视频火全软件| 免费女性裸体啪啪无遮挡网站| 麻豆乱淫一区二区| av卡一久久| 9色porny在线观看| av一本久久久久| 国产成人91sexporn| 国产极品天堂在线| 免费高清在线观看日韩| 欧美激情国产日韩精品一区| 精品亚洲乱码少妇综合久久| 中文乱码字字幕精品一区二区三区| 七月丁香在线播放| 精品人妻在线不人妻| 熟女人妻精品中文字幕| 欧美另类一区| 天天躁夜夜躁狠狠久久av| 久久鲁丝午夜福利片| 国产色爽女视频免费观看| 少妇人妻精品综合一区二区| 丝袜美足系列| 伦理电影免费视频| 日韩伦理黄色片| 国产高清不卡午夜福利| 精品少妇黑人巨大在线播放| 国内精品宾馆在线| 国产一区二区在线观看日韩| 国产毛片在线视频| 免费看av在线观看网站| 99热这里只有是精品在线观看| 一二三四在线观看免费中文在 | 99久久精品国产国产毛片| 久久午夜福利片| 日本与韩国留学比较| 日韩精品免费视频一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 亚洲高清免费不卡视频| 国产成人精品婷婷| 精品国产乱码久久久久久小说| 午夜日本视频在线| 伊人亚洲综合成人网| 满18在线观看网站| 男女下面插进去视频免费观看 | 97在线视频观看| 99热国产这里只有精品6| 美女大奶头黄色视频| 在线观看一区二区三区激情| 国产av国产精品国产| 国产一区亚洲一区在线观看| 丝袜人妻中文字幕| 伊人久久国产一区二区| 99久久综合免费| 国产片内射在线| 久久久久精品久久久久真实原创| 黄色一级大片看看| 欧美97在线视频| 久久精品国产a三级三级三级| 中文字幕制服av| 亚洲成人一二三区av| 九色亚洲精品在线播放| 亚洲国产精品成人久久小说| 熟女人妻精品中文字幕| 亚洲精品456在线播放app| 久久久久人妻精品一区果冻| 日日撸夜夜添| 汤姆久久久久久久影院中文字幕| 亚洲成色77777| 日本91视频免费播放| 插逼视频在线观看| 人妻一区二区av| 国产乱来视频区| 国产日韩欧美视频二区| 成年人午夜在线观看视频| 嫩草影院入口| 欧美日韩视频高清一区二区三区二| 亚洲av福利一区| 国产欧美日韩综合在线一区二区| av免费观看日本| 久久精品国产自在天天线| 最新中文字幕久久久久| 一本—道久久a久久精品蜜桃钙片| 爱豆传媒免费全集在线观看| 少妇被粗大猛烈的视频| 性高湖久久久久久久久免费观看| 18+在线观看网站| 一级爰片在线观看| 精品亚洲乱码少妇综合久久| 伊人久久国产一区二区| 97在线人人人人妻| 在线观看www视频免费| 国产成人aa在线观看| 狂野欧美激情性bbbbbb| 欧美精品亚洲一区二区| a级毛色黄片| 一边摸一边做爽爽视频免费| 婷婷色av中文字幕| 看免费av毛片| 日本爱情动作片www.在线观看| 成人毛片60女人毛片免费| 亚洲精品久久成人aⅴ小说| 亚洲伊人色综图| 国内精品宾馆在线| 最近最新中文字幕免费大全7| 如日韩欧美国产精品一区二区三区| 久久精品国产亚洲av涩爱| 日韩制服丝袜自拍偷拍| 国产精品久久久久久久久免| 亚洲国产精品成人久久小说| 国产精品99久久99久久久不卡 | 伦精品一区二区三区| 免费大片黄手机在线观看| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 久久久久久久久久人人人人人人| 大香蕉久久网| 大陆偷拍与自拍| 成人亚洲精品一区在线观看| 亚洲丝袜综合中文字幕| 女人被躁到高潮嗷嗷叫费观| 一二三四在线观看免费中文在 | 久久99热6这里只有精品| 侵犯人妻中文字幕一二三四区| 曰老女人黄片| 国产精品一区www在线观看| 97人妻天天添夜夜摸| a 毛片基地| 最近的中文字幕免费完整| 国产精品国产三级国产专区5o| 一二三四在线观看免费中文在 | 亚洲av在线观看美女高潮| 女的被弄到高潮叫床怎么办| 欧美亚洲日本最大视频资源| 三级国产精品片| 亚洲综合精品二区| 午夜91福利影院| 高清欧美精品videossex| 国产精品一区www在线观看| 久久人人爽人人片av| 成人二区视频| 国产精品蜜桃在线观看| 午夜激情av网站| 日韩免费高清中文字幕av| av在线播放精品| 久久97久久精品| 日韩欧美精品免费久久| 中文字幕av电影在线播放| 亚洲欧美日韩卡通动漫| 欧美 亚洲 国产 日韩一| 国产黄色视频一区二区在线观看| 婷婷色av中文字幕| 精品人妻一区二区三区麻豆| 夜夜爽夜夜爽视频| 亚洲在久久综合| 香蕉丝袜av| 日韩av不卡免费在线播放| 日本wwww免费看| 国产男人的电影天堂91| 国产永久视频网站| 成人免费观看视频高清| 久久ye,这里只有精品| 成人黄色视频免费在线看| 欧美激情极品国产一区二区三区 | 狠狠婷婷综合久久久久久88av| 欧美日本中文国产一区发布| 国产成人精品福利久久| 久久久国产精品麻豆| 成人亚洲欧美一区二区av| 最近最新中文字幕大全免费视频 | 久久99一区二区三区| 观看av在线不卡| 国产男人的电影天堂91| 日韩免费高清中文字幕av| 黄色视频在线播放观看不卡| 黄色 视频免费看| 精品国产一区二区三区四区第35| 精品人妻熟女毛片av久久网站| 狠狠婷婷综合久久久久久88av| 边亲边吃奶的免费视频| 国产精品无大码| 亚洲伊人久久精品综合| 亚洲精品色激情综合| 国产精品免费大片| 777米奇影视久久| 有码 亚洲区| 亚洲国产精品一区三区| 久久影院123| 高清不卡的av网站| 国产1区2区3区精品| 日韩免费高清中文字幕av| 久久精品夜色国产| 精品99又大又爽又粗少妇毛片| 亚洲国产毛片av蜜桃av| 国产午夜精品一二区理论片| 久久精品国产亚洲av涩爱| 99国产综合亚洲精品| 日韩av不卡免费在线播放| 日韩伦理黄色片| 各种免费的搞黄视频| 夫妻午夜视频| 亚洲欧美日韩卡通动漫| 一级毛片我不卡| 一边摸一边做爽爽视频免费| 精品99又大又爽又粗少妇毛片| 久热这里只有精品99| 在线天堂中文资源库| 国产女主播在线喷水免费视频网站| 成人手机av| 一级毛片 在线播放| 亚洲国产精品专区欧美| 一级毛片 在线播放| 日韩av免费高清视频| av一本久久久久| 18禁在线无遮挡免费观看视频| 在现免费观看毛片| 侵犯人妻中文字幕一二三四区| 黑人巨大精品欧美一区二区蜜桃 | 一区二区三区精品91| 99久久中文字幕三级久久日本| 男女边吃奶边做爰视频| 国产成人a∨麻豆精品| 久久99精品国语久久久| 男的添女的下面高潮视频| 永久网站在线| 亚洲天堂av无毛| 成人手机av| 日本与韩国留学比较| 男人操女人黄网站| 超色免费av| 一本—道久久a久久精品蜜桃钙片| 日本vs欧美在线观看视频| 亚洲一级一片aⅴ在线观看| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三区在线| 日韩视频在线欧美| 国产免费现黄频在线看| 免费观看a级毛片全部| 男女高潮啪啪啪动态图| 性色avwww在线观看| 欧美丝袜亚洲另类| 最黄视频免费看| 少妇人妻久久综合中文| 日本wwww免费看| 黄片播放在线免费| 国产片特级美女逼逼视频| a级毛色黄片| 精品国产一区二区三区四区第35| 国产一区二区三区综合在线观看 | 国产视频首页在线观看| 中文字幕av电影在线播放| 9热在线视频观看99| 国产乱人偷精品视频| 久久av网站| 男女下面插进去视频免费观看 | 欧美丝袜亚洲另类| 18+在线观看网站| 你懂的网址亚洲精品在线观看| 国内精品宾馆在线| 一二三四在线观看免费中文在 | 欧美97在线视频| www.av在线官网国产| 国产熟女欧美一区二区| 只有这里有精品99| 我的女老师完整版在线观看| av卡一久久| 自线自在国产av| 91精品三级在线观看| 只有这里有精品99| 丰满乱子伦码专区| 一二三四在线观看免费中文在 | 精品视频人人做人人爽| 九九在线视频观看精品| 69精品国产乱码久久久| 我的女老师完整版在线观看| 成人18禁高潮啪啪吃奶动态图| 日本欧美国产在线视频| av女优亚洲男人天堂| 熟妇人妻不卡中文字幕| 国产毛片在线视频| 一级,二级,三级黄色视频| av免费在线看不卡| 亚洲,一卡二卡三卡| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 久久久国产精品麻豆| 哪个播放器可以免费观看大片| 制服人妻中文乱码| 97精品久久久久久久久久精品| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 免费不卡的大黄色大毛片视频在线观看| 免费观看无遮挡的男女| 综合色丁香网| 香蕉精品网在线| 久久精品国产a三级三级三级| 成人免费观看视频高清| 天堂中文最新版在线下载| av在线观看视频网站免费| 午夜av观看不卡| 亚洲精品色激情综合| 青春草亚洲视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 另类亚洲欧美激情| 波野结衣二区三区在线| 哪个播放器可以免费观看大片| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 午夜福利,免费看| 国产精品成人在线| 日本av手机在线免费观看| 国产日韩欧美视频二区| 97超碰精品成人国产| 精品福利永久在线观看| 国产精品三级大全| 国产免费一区二区三区四区乱码| 亚洲av综合色区一区| 日韩在线高清观看一区二区三区| 国产男女超爽视频在线观看| 五月伊人婷婷丁香| 啦啦啦中文免费视频观看日本| 麻豆精品久久久久久蜜桃| 日韩一区二区视频免费看| 免费av不卡在线播放| 在线观看免费日韩欧美大片| 欧美精品av麻豆av| 中文乱码字字幕精品一区二区三区| 国产高清三级在线| 中文字幕另类日韩欧美亚洲嫩草| www.色视频.com| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 老司机影院毛片| 国产成人免费观看mmmm| 久久国产亚洲av麻豆专区| 香蕉精品网在线| 国产在线免费精品| 美女主播在线视频| 天堂8中文在线网| 亚洲精品456在线播放app| 不卡视频在线观看欧美| 国产免费一级a男人的天堂| 大片电影免费在线观看免费| 2021少妇久久久久久久久久久| 亚洲欧美色中文字幕在线| 日本黄大片高清| 一级毛片电影观看| 国产精品国产三级国产专区5o| 欧美+日韩+精品| 精品一区二区三区四区五区乱码 | 久久久久久久久久久免费av| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 国产69精品久久久久777片| 另类亚洲欧美激情| 亚洲精品视频女| 国国产精品蜜臀av免费| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 亚洲精品国产av蜜桃| 日韩熟女老妇一区二区性免费视频| 一区二区av电影网| 一级毛片我不卡| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 日韩制服骚丝袜av| 久久综合国产亚洲精品| www日本在线高清视频| 亚洲伊人色综图| 亚洲精品美女久久久久99蜜臀 | 婷婷色综合www| 老熟女久久久| 久久99一区二区三区| 在线观看国产h片| 国产成人欧美| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 亚洲综合精品二区| 亚洲欧美色中文字幕在线| 亚洲av国产av综合av卡| 人人澡人人妻人| 久久精品国产亚洲av天美| 亚洲国产精品一区二区三区在线| 激情五月婷婷亚洲| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 精品第一国产精品| 秋霞伦理黄片| 国产 一区精品| 曰老女人黄片| 97超碰精品成人国产| 日韩中字成人| 高清欧美精品videossex| 日韩成人伦理影院| 色吧在线观看| 大香蕉97超碰在线| 免费人成在线观看视频色| a级毛片在线看网站| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 国产精品.久久久| 国产一区二区在线观看av| 久久国内精品自在自线图片| 久久婷婷青草| 日本与韩国留学比较| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 欧美性感艳星| 自线自在国产av| 在线看a的网站| 国产精品一区二区在线不卡| 久久久久久人妻| 在线看a的网站| 日韩成人av中文字幕在线观看| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 国产成人av激情在线播放| 久久精品国产a三级三级三级| 国产免费一级a男人的天堂| 久久午夜综合久久蜜桃| 老熟女久久久| 亚洲激情五月婷婷啪啪| 美女福利国产在线| 国产精品久久久av美女十八| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 成人18禁高潮啪啪吃奶动态图| 黄色怎么调成土黄色| 国产一级毛片在线| 中文天堂在线官网| 精品久久国产蜜桃| 久久久久国产精品人妻一区二区| kizo精华| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 看免费av毛片| 国产乱人偷精品视频| 欧美精品一区二区大全| 国产视频首页在线观看| 夜夜爽夜夜爽视频| 草草在线视频免费看| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 91午夜精品亚洲一区二区三区| 精品卡一卡二卡四卡免费| 赤兔流量卡办理| 亚洲国产av新网站| 国产乱来视频区| 国产av精品麻豆| 久久综合国产亚洲精品| 国产色婷婷99| 最黄视频免费看| 少妇人妻精品综合一区二区| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线不卡| 少妇精品久久久久久久| 五月伊人婷婷丁香| 亚洲欧美一区二区三区国产| 免费高清在线观看日韩| 久久热在线av| 午夜影院在线不卡| 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 少妇高潮的动态图| 国产高清国产精品国产三级| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 99久久精品国产国产毛片| a级片在线免费高清观看视频| 日本wwww免费看| 在线观看www视频免费| 男女下面插进去视频免费观看 | 热re99久久精品国产66热6| 亚洲av日韩在线播放| 精品少妇内射三级| 熟女av电影| 高清av免费在线| 欧美精品高潮呻吟av久久| 日韩精品有码人妻一区| 成人手机av| 热99国产精品久久久久久7| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 精品视频人人做人人爽| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 久久免费观看电影| a级毛片黄视频| 欧美日韩一区二区视频在线观看视频在线| 91在线精品国自产拍蜜月| 欧美激情 高清一区二区三区| 久久久国产一区二区| 亚洲国产精品国产精品| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 十八禁网站网址无遮挡| 最近中文字幕高清免费大全6| 国产淫语在线视频| 精品久久国产蜜桃| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 日本免费在线观看一区| 美女福利国产在线| 免费在线观看完整版高清| 日本猛色少妇xxxxx猛交久久| 高清在线视频一区二区三区| 日本午夜av视频| 丰满饥渴人妻一区二区三| 最近中文字幕2019免费版| 中文字幕av电影在线播放| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 欧美变态另类bdsm刘玥| 久久久国产一区二区| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 国产 一区精品| 欧美3d第一页| 国产精品偷伦视频观看了| 久久精品久久久久久久性| 日韩人妻精品一区2区三区| 美女内射精品一级片tv| 国产伦理片在线播放av一区| 一级片'在线观看视频| 国产在线一区二区三区精| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 美国免费a级毛片| 国产成人精品在线电影| 人人妻人人添人人爽欧美一区卜| 成年动漫av网址| 日韩中文字幕视频在线看片| 国产欧美日韩一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 精品熟女少妇av免费看| av不卡在线播放| 最近中文字幕2019免费版| 午夜91福利影院| 99精国产麻豆久久婷婷| 咕卡用的链子| 插逼视频在线观看| 日韩欧美精品免费久久| 精品国产一区二区三区久久久樱花| 亚洲高清免费不卡视频| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 国产精品.久久久| 美女福利国产在线| 精品酒店卫生间| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 亚洲欧美日韩卡通动漫| 国产一区二区激情短视频 | 天天躁夜夜躁狠狠躁躁| 看非洲黑人一级黄片| 精品99又大又爽又粗少妇毛片| 亚洲国产av影院在线观看| 乱码一卡2卡4卡精品| 成人国语在线视频| 亚洲国产看品久久| 成人影院久久| 国产成人一区二区在线| 日本av手机在线免费观看| 国产一区二区三区综合在线观看 | 国产又色又爽无遮挡免|