摘要:通過分子動力學(xué)方法研究化學(xué)組分和溫度對水化硅鋁酸鈣(C-A-S-H)凝膠結(jié)構(gòu)和力學(xué)性能的影響規(guī)律,結(jié)合強(qiáng)度試驗(yàn)為超高溫固井水泥砂鋁配比提供試驗(yàn)指導(dǎo)。構(gòu)建 C-A-S-H凝膠模型,研究溫度、Ca/Si、Al/Si對硅氧四面體結(jié)構(gòu)Qn分布、平均鏈長的影響規(guī)律。通過C-A-S-H凝膠斷裂過程的應(yīng)力應(yīng)變關(guān)系,結(jié)合Al、Si原子平均受力特征,揭示富鋁相C-A-S-H的增強(qiáng)機(jī)制。結(jié)果表明:Al的加入能夠有效填補(bǔ)硅氧鏈橋位缺陷,增加平均鏈長,增強(qiáng)橋聯(lián)層間硅氧結(jié)構(gòu),促進(jìn)形成聚合度更高的硅氧四面體,進(jìn)而提升強(qiáng)度;超高溫220~260 ℃時,Ca、Si、Al物質(zhì)的量比為0.9∶1∶0.15~0.2,對應(yīng)加砂55%、鋁質(zhì)材料7%~10% BWOC,可滿足固井水泥強(qiáng)度要求。
關(guān)鍵詞:超高溫; 硅鋁酸鈣凝膠; 固井水泥設(shè)計; 力學(xué)性能; 分子動力學(xué)
中圖分類號:TQ 172""" 文獻(xiàn)標(biāo)志碼:A
收稿日期:2024-03-20
基金項(xiàng)目:中國石油天然氣股份有限公司科技項(xiàng)目(2023DQ0529)
第一作者:劉慧婷(1987-),女,高級工程師,博士,碩士研究生導(dǎo)師,研究方向?yàn)楦咝阅芄叹牧霞八酀{體系。E-mail: liuhtdr@cnpc.com.cn。
通信作者:李妍(1978-),女,講師,博士,研究生導(dǎo)師,研究方向?yàn)楣叹喽喑叨攘W(xué)性能。E-mail: liyancup@cup.edu.cn。
文章編號:1673-5005(2025)01-0211-09""" doi:10.3969/j.issn.1673-5005.2025.01.023
引用格式:劉慧婷,李妍,于永金,等.化學(xué)組分和溫度對水化硅鋁酸鈣凝膠結(jié)構(gòu)及力學(xué)性能影響的分子動力學(xué)研究[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2025,49(1):211-219.
LIU Huiting, LI Yan, YU Yongjin, et al. Influence of chemical composition and temperature on structural and mechanical properties of C-A-S-H with molecular dynamics[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(1):211-219.
Influence of chemical composition and temperature on structural
and mechanical properties of C-A-S-H with molecular dynamics
LIU Huiting1, LI Yan2, YU Yongjin1, ZHANG Chi1, XIA Xiujian1, ZHANG Jiaying1, ZHANG Hanqi3, DU Tao4
(1.CNPC Engineering Technology Ramp;D Company Limited, Beijing 102200, China;
2.School of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
3.College of Geoscience And Surveying Engineering, China University of Mining amp; Technology(Beijing), Beijing 102206, China;
4.School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)
Abstract:The influence of chemical composition and temperature on the structure and mechanical properties of calcium aluminosilicate hydrate (C-A-S-H) gel was studied by molecular dynamics method. Integrated into the compression experiments, the experimental guidance for the ratio of sand and aluminum in well cement at ultra-high temperature was" provided. The C-A-S-H gel model was constructed to study the influence of temperature, Ca/Si, Al/Si on the Qn distribution and the mean chain length of the silica tetrahedron structure. Subsequently, by analyzing the stress-strain curves during the fracture process of the C-A-S-H gel, along with the evolution of atomic stresses of Al and Si atoms, the mechanism behind the enhancement of mechanical properties in the aluminum-rich C-A-S-H phase was revealed. It is found that the incorporation of Al can effectively fill the defects at the bridging sites of silicon-oxygen dreierketten chains, increase the mean chain length, enhance the bridged interlayer silicon-oxygen structure, and promote the formation of higher polymerized silicon-oxygen tetrahedra, thereby improve the strength of cement. When the ultra-high temperature is 220-260 ℃, molar ratio of Ca,Si and Al is 0.9∶1∶0.15-0.2, corresponding to 55% sand and 7%-10% BWOC of aluminum material, can meet the strength requirements of well cement.
Keywords: ultra-high temperature; calcium aluminosilicate hydrate; well cement design; mechanical properties; molecular dynamics
隨著油氣勘探開發(fā)不斷向超深井拓展,超高溫下水泥石強(qiáng)度衰退問題嚴(yán)重,對提高超深井及地?zé)峋喹h(huán)密封完整性提出了巨大挑戰(zhàn)[1-4]。目前國內(nèi)外普遍采用方法是選取超過35% BWOC(質(zhì)量分?jǐn)?shù),下同)的適當(dāng)粒度、種類石英砂等硅質(zhì)外摻料加入G級油井水泥中,形成微觀結(jié)構(gòu)更致密的網(wǎng)絡(luò)狀水化產(chǎn)物,從而抑制強(qiáng)度衰退[2,5-8]。然而加砂水泥在 200 ℃以上超高溫下水化產(chǎn)物發(fā)生變化,致使其力學(xué)性能仍舊衰退[6-7,9],導(dǎo)致水泥環(huán)層間封隔失效,所以研發(fā)能夠抵抗超高溫的水泥對固井工程具有實(shí)際意義。鋁酸鹽水泥材料具有耐高溫、低碳、快硬高強(qiáng)和抗侵蝕等優(yōu)異特性,在抗高溫耐火材料行業(yè)中得到了廣泛應(yīng)用[7,10-11]。因此在油井水泥中加入硅鋁酸鹽膠凝材料抵抗超高溫強(qiáng)度衰退具有可行性[6,11-12],同時還可促進(jìn)推動固井水泥綠色低碳、可持續(xù)性發(fā)展[7,10]。油井水泥中加入鋁質(zhì)材料會形成水化產(chǎn)物硅鋁酸鈣(C-A-S-H)凝膠,利用分子動力學(xué)[13-14]研究其性能首先需要構(gòu)建C-A-S-H模型,而建模的基礎(chǔ)和關(guān)鍵是確定C-A-S-H凝膠結(jié)構(gòu)特性。在硅鋁酸鹽中Al原子以四配位Al(Ⅳ)、五配位Al(Ⅴ)和六配位Al(Ⅵ)三種形態(tài)存在,低鈣硅比時C-A-S-H中Al的穩(wěn)定形態(tài)是Al(Ⅳ)[15-17],這與試驗(yàn)結(jié)果[16-17]和理論研究[15,18-19]一致。29Si核磁(NMR)和27Al-NMR實(shí)驗(yàn)表明,四配位 Al(IV)在橋接位點(diǎn)處與硅氧鏈(C-S-H)結(jié)合[17,20],通過橋接相鄰的平行硅氧鏈增強(qiáng)了層間結(jié)構(gòu)交聯(lián),形成空間交聯(lián)的網(wǎng)狀凝膠結(jié)構(gòu)。C-A-S-H中硅鋁氧鏈的鋁氧單元在承受應(yīng)力時起到支撐作用,從而提高抗拉壓能力,增強(qiáng)凝膠體積模量[13,21-22]。鋁相加入會促進(jìn)硅氧結(jié)構(gòu)聚合,增加硅氧鏈平均長度以及支鏈和網(wǎng)絡(luò)結(jié)構(gòu)數(shù)量,從而提升凝膠的性能[15,20,23]。筆者運(yùn)用分子動力學(xué)理論研究溫度、Ca原子與Si原子物質(zhì)的量比(x1)、Al原子與Si原子物質(zhì)的量比(x2)對水化硅鋁酸鈣凝膠C-A-S-H力學(xué)性能的影響規(guī)律,分析C-A-S-H凝膠結(jié)構(gòu)的聚合度及增強(qiáng)機(jī)制。運(yùn)用以上規(guī)律并結(jié)合分子動力學(xué)模擬、強(qiáng)度試驗(yàn)方法對超高溫220~260 ℃固井水泥進(jìn)行Ca原子、Si原子、Al原子的物質(zhì)的量比(x3)的配比設(shè)計,優(yōu)化加砂量和加鋁量,提升超高溫條件水泥石的力學(xué)性能。
1" C-A-S-H分子動力學(xué)模擬與試驗(yàn)方法
1.1" C-A-S-H模型構(gòu)建及模擬方法
采用Pellenq等[24]的模擬方法建立C-S-H分子結(jié)構(gòu)模型,以11 Tobermorite [Ca4.5Si6O16(OH)·5H2O][25]作為起始構(gòu)型,其原子坐標(biāo)等信息見文獻(xiàn)[25]。采用Atomsk軟件[26]進(jìn)行晶格正交化,運(yùn)用OVITO軟件擴(kuò)大成超晶胞并完全去除晶胞內(nèi)水分子。將超晶胞中一半的橋接硅氧四面體替換成鋁氧四面體,形成x1=0.9、x2=0.2的C-A-S-H模型,然后隨機(jī)去除部分硅氧和鋁氧四面體,最終得到不同鈣硅比x1=0.9、1.8及x2=0、0.1、0.2的鋁氧骨架,并通過加入適量的氫原子來確保電荷平衡。通過LAMMPS軟件平臺,采用巨正則蒙特卡羅(Grand Canonical Monte Carlo)方法在C-A-S-H模型中進(jìn)行吸附水并使其達(dá)到平衡。
C-A-S-H模型中Ca/Si/Al考慮6種情況,分別為x3=0.9∶1∶0、0.9∶1∶0.1、0.9∶1∶0.2、1.8∶1∶0、1.8∶1∶0.1、1.8∶1∶0.2。文獻(xiàn)[2,5,9,27-28]表明,高溫下在固井水泥中增加砂量有助于提高其力學(xué)性能,最佳加砂量(質(zhì)量分?jǐn)?shù))為40%~70% BWOC,相應(yīng)x1約為0.83~1.0。取x1=0.9,接近于加砂量為55% BWOC。此外再取x1=1.8作為參考,對應(yīng)無砂或加砂量很少。低x1時C-A-S-H中鋁的配位數(shù)為4,用Al全部填補(bǔ)橋位Si時,完整的11 Tobermorite晶體中存在2/3的Q2單元和1/3 Q3單元(Qn表示硅氧四面體的聚合狀態(tài),n為四面體的橋位氧原子個數(shù))[15-17]。根據(jù)硅鋁氧結(jié)構(gòu)穩(wěn)定性,只有Q3位置能被Al替換,而且鋁氧單元不能直接相連,因此最多1/6 Q3單元能被Al取代,進(jìn)而x2理論最大比值為1/6∶5/6=0.2。x2的上限值0.2接近于實(shí)驗(yàn)結(jié)果[15-16,29]和理論分析[18-19],同時也符合Lowenstein規(guī)則的C-A-S-H模型的上限[22]。作為對照,選取其他兩種情況x2=0、0.1作為參考項(xiàng),分別代表無鋁和中間值。
采用LAMMPS軟件進(jìn)行分子動力學(xué)力學(xué)行為與斷裂性能模擬,其中原子間的相互作用采用反應(yīng)力場ReaxFF。反應(yīng)力場由van Duin等[30]開發(fā),通過計算原子之間的鍵級(Bond order)來判斷成鍵信息。所用反應(yīng)力場中鈣、硅、鋁、氫、氧參數(shù)來自文獻(xiàn)[31]。吸附水分子后的C-A-S-H模型在等溫等壓(NPT)系綜下,分別在目標(biāo)溫度27、90、110、150、180、240 ℃ 和零壓強(qiáng)下進(jìn)行結(jié)構(gòu)弛豫。C-A-S-H模型由于z方向?qū)娱g較弱的范德華作用所以其強(qiáng)度最弱,而x、y方向由于共價鍵結(jié)合,強(qiáng)度均高于z方向[32]。因此本文中對C-A-S-H模型在對應(yīng)溫度下進(jìn)行z向拉伸模擬,加載速率為應(yīng)變0.004/ps,用以研究C-A-S-H力學(xué)性能和斷裂行為。
采用分子動力學(xué)模擬,對C-A-S-H模型施加應(yīng)變,計算彈性性能變化分析獲得力學(xué)性能參數(shù),包括體積模量、剪切模量和拉伸模量。剛度矩陣C=(Cij)(i,j對應(yīng)不同方向)為能量(U)對應(yīng)變(ε)的二次偏導(dǎo)[33]:
Cij=1VUεiεj. (1)
式中,V為體積。柔度矩陣S為
S=C-1,(2)
體積模量B為
B-1=S11+S22+S33+2(S31+
S21+S32),(3)
剪切模量G為
G=154(S11+S22+S33-S12-S13-S23)+3(S44+S55+S66),(4)
拉伸模量E為
E-1k=Skk,k=1,2,3.(5)
1.2" 試驗(yàn)材料及方法
采用單軸壓縮試驗(yàn),測試超高溫下填加砂和鋁質(zhì)材料的固井水泥石的強(qiáng)度。采用G級嘉華油井水泥,水灰比0.44,填加二氧化硅粉(SF)和含氧化鋁(AF)填料。根據(jù)GB/T 19139-2012《油井水泥試驗(yàn)方法》制備和養(yǎng)護(hù)水泥漿,形成50.8 mm×50.8 mm×50.8 mm的立方體試樣。采用高溫養(yǎng)護(hù)釜對試件進(jìn)行養(yǎng)護(hù),試件的配比及養(yǎng)護(hù)條件見表1所示。其中x3是依據(jù)原料(水泥、SF和AF)計算得到的Ca原子、Si原子、Al原子的物質(zhì)的量比。
2" 結(jié)果分析
2.1" 模型合理性檢驗(yàn)
圖1為C-A-S-H模型對分布函數(shù)g(r),描述了給定體積內(nèi)包含的原子對之間的距離,分布其中峰位0.98 、1.64 和1.88 分別對應(yīng)H—O,Si—O和Al—O鍵的平均鍵長。文獻(xiàn)[13]中Si—O和Al—O鍵長分別為1.632~1.655 和1.873~1.894 ,文獻(xiàn)[34]實(shí)驗(yàn)結(jié)果顯示Si—O鍵長為1.639 ,因此與文獻(xiàn)結(jié)果吻合。
由圖1可知,模型整體呈現(xiàn)近程有序、遠(yuǎn)程無序的特點(diǎn),符合水泥無定型結(jié)構(gòu)形態(tài)特征。Al—O位置處,無Al時(x2=0)沒有峰值,隨Al的增多峰值變大,最高峰對應(yīng)x2=0.2。圖1計算的是體系中所有的原子對,由于Al—O間距在這個范圍內(nèi),故在該區(qū)域形成峰值。對比圖1(a)和(b),Si—O峰值隨Si的增多而升高。圖1(a)的H—O峰值比圖(b)的低,這是由于x1=0.9體系中的吸附水相對較少。x1=1.8的體系是在x1=0.9的基礎(chǔ)上移除了部分SiO2和AlO2單元,x1=1.8的體系會存在更多的孔隙和缺陷,在后續(xù)的水吸附模擬中能夠提供吸附位置更多,因此x1=1.8的體系吸附水含量相對較多,而x1=0.9的吸附水相對較少。H—O峰值隨x2增加而下降,說明C-A-S-H模型隨Al的增加吸附水量逐漸減少??傮w上g(r)中H—O、Al—O和Si—O峰值隨不同x1、x2的變化趨勢合理。因此,根據(jù)g(r)分析模型的結(jié)構(gòu)形態(tài)特征與變化特點(diǎn),說明所建C-A-S-H模型是合理的。
通過計算分析C-A-S-H模型Qn[35]分布和平均鏈長(MCL,其值為LMCL)[35]驗(yàn)證模型的合理性。雖然文獻(xiàn)中并無完全相同的組分作為對照,但是本文的研究結(jié)果和文獻(xiàn)相近組分的數(shù)據(jù)結(jié)果接近。常溫下,文獻(xiàn)[35]根據(jù)29Si核磁共振(NMR,29Si表示原子量為29的硅的同位素)測試,Q1為60%~70%,Q2為30%~40%,本文Q1為63%,Q2為36%;文獻(xiàn)[19]中Ca/(Al+Si)=1.7時LMCL=2.2,文獻(xiàn)[35]根據(jù)NMR測試算得x1=1.86時LMCL=3.2,本文x1=1.8時LMCL=2.2-3.5;文獻(xiàn)[36]中Ca/(Al+Si)=0.9時LMCL=9.3,本文x1=0.9、x2=0-0.1時LMCL=5.5~8.6;x1=0.9、x2=0.2時,計算LMCL=151,接近文獻(xiàn)[37]所提到的理論無限值。由此根據(jù)Qn分布和LMCL分析,可以進(jìn)一步證明所建C-A-S-H模型的合理性。此外模擬了27 ℃常溫條件下C-A-S-H拉伸過程,其應(yīng)力應(yīng)變曲線與文獻(xiàn)[22]是比較接近的,這進(jìn)一步證明了所建模型的可靠性。
2.2" Ca/Si/Al配比和溫度對C-A-S-H力學(xué)性能影響
采用分子動力學(xué)模擬研究C-A-S-H模型拉伸過程中的力學(xué)性能。分別考慮多種溫度(27~240 ℃)、x1(0.9、1.8)、x2(0、0.1、0.2)條件,獲得相應(yīng)的C-A-S-H應(yīng)力應(yīng)變曲線,如圖2所示。在每種x1、x2條件下,強(qiáng)度均隨溫度升高而降低,但卻隨x1的降低而增加,例如對比圖2(a)、(d),x1從1.8降為0.9,強(qiáng)度提高超過50%。增強(qiáng)效果更為明顯的是增加x2,對比圖2(a)~(c),高x1=1.8時,x2=0.1、0.2時強(qiáng)度分別比x2=0提高約60%、100%;低x1=0.9時,如圖2(d)~(f),x2=0.1、0.2時強(qiáng)度分別比x2=0提高約2倍和7倍。這說明低x1時加入Al增強(qiáng)效果更好。此外從圖2可以看到,應(yīng)力應(yīng)變曲線均有波動,但隨x2增加和x1降低,系統(tǒng)性能逐漸提高,因此曲線的信噪比也顯著增強(qiáng),例如x1=0.9、x2=0.2(圖2(f))的曲線波動明顯小于其他情況。模型隨著應(yīng)變的增加而斷裂,最終破壞發(fā)生在鈣氧層。
將圖2中部分溫度(T)及x3下的強(qiáng)度值繪于圖3中。若以27 ℃、x1=1.8、x2=0時C-A-S-H的強(qiáng)度作為滿足工程強(qiáng)度要求的標(biāo)準(zhǔn),則通過降低x1至0.9,即砂含量增至55%時,150、180 ℃強(qiáng)度基本不衰退,但240 ℃衰退,這與文獻(xiàn)試驗(yàn)結(jié)果一致[2,5-6],即高溫下可以通過增加砂含量提高水泥強(qiáng)度達(dá)到工程需要。通過加少量含鋁質(zhì)材料、多砂(x2=0.1、x1=0.9,對應(yīng)約7%氧化鋁,加砂約55%),能保證240 ℃強(qiáng)度不衰退。繼續(xù)增加含鋁質(zhì)材料、多砂(x2=0.2、x1=0.9,對應(yīng)約10%氧化鋁,加砂約55%),240 ℃強(qiáng)度會進(jìn)一步提高。說明在約240 ℃,設(shè)計抗高溫水泥時嘗試x1=0.9、x2=0.1~0.2的配比具有合理性,這與超高溫下通過加鋁質(zhì)材料能夠增強(qiáng)水泥的試驗(yàn)結(jié)果也是一致的[6,38-40]。
溫度、x2對C-A-S-H凝膠力學(xué)性能參數(shù)(體積模量B、剪切模量G和拉伸模量E)的影響如圖4所示。在相同x2下,體積模量、拉伸模量和剪切模量隨溫度升高而降低。增加x2會提升體積模量、拉伸模量和剪切模量。已有研究[32]表明降低x1,拉伸模量和剪切模量會增加。因此,通過增加x2、降低x1,會提升C-A-S-H力學(xué)性能。
2.3" C-A-S-H凝膠結(jié)構(gòu)聚合度及增強(qiáng)機(jī)制
圖5為不同x2時C-A-S-H模型結(jié)構(gòu)示意圖。如圖5(b)紅框所示,最多1/6 Q3單元被Al取代,因此x2理論最大值為1/6∶5/6=0.2。Al原子的加入填補(bǔ)了硅氧鏈層間橋位缺陷。隨著Al的增加,形成更長的高度聚合的硅鋁氧鏈,層間聯(lián)接結(jié)合增強(qiáng),提高了C-A-S-H抵抗外力和變形的能力,有利于宏觀強(qiáng)度的提升。
平均鏈長體現(xiàn)了硅氧鏈平均聚合度[16],采用文獻(xiàn)[41]方法計算C-A-S-H的MCL,如圖6(a)所示。相同x1下,隨著Al的增多MCL增長。低x1時MCL增長幅度更大,例如x1=0.9時x2為0.1比0時MCL增加55%。此外相同x2下,x1越低MCL越大,例如x2=0.1時,低x1時的MCL約是高x1的3倍。由于x1=0.9、x2=0.2時,計算MCL為151,接近理論無限值,故沒有在圖中顯示。Qn含量的變化表明了硅氧四面體聚合態(tài)的變化,n越大表明硅氧四面體聚合度越高,越有利于強(qiáng)度的提升[16]。在超高溫240 ℃時(圖6(b)),不加Al時僅有Q1(一個橋氧連接兩個硅氧四面體)和Q2(硅氧鏈中有兩個橋氧)[16],但隨著Al的加入Q2~Q4增多,其中x2=0.2時最多,而且此時Q1短鏈很少,表明Al原子的加入促進(jìn)形成聚合度更高的硅氧四面體。另外前期研究[32]已表明,隨x1降低Q2~Q4也會增多。其他溫度時Qn也具有相近的變化趨勢,不再圖示。由此可以看出,Al原子能夠有效地填補(bǔ)硅氧鏈橋位缺陷,促進(jìn)形成更穩(wěn)定的硅鋁氧鏈結(jié)構(gòu),例如Q3(1Al)、Q4(1Al)(硅氧四面體中分別有3個和4個橋氧,其中有1個橋氧與鋁氧四面體連接)[16]。由于C-A-S-H中的強(qiáng)度主要來源于硅鋁氧鏈,因此硅鋁氧鏈聚合度的提高是提升強(qiáng)度的關(guān)鍵。
為進(jìn)一步揭示Al填補(bǔ)橋位對強(qiáng)度的影響機(jī)制,分別計算了Si和Al原子在z方向的平均受力(σzz)隨應(yīng)變的變化。如圖7(a)所示,在沒有Al原子時,Si原子的受力基本不因應(yīng)變變化而受到影響,說明硅氧鏈對z方向強(qiáng)度沒有起到增強(qiáng)作用。由于Al原子能夠橋連z方向的層間硅氧結(jié)構(gòu),在受拉過程中,Si原子的受力隨Al含量增加而顯著增加,說明硅氧鏈對z方向強(qiáng)度有提升作用。同時,如圖7(b),Al原子的受力隨Al含量增加而提高,驗(yàn)證了Al在z方向強(qiáng)度起到的重要提升作用。
2.4" 超高溫下固井水泥Ca/Si/Al配比設(shè)計
基于以上理論與模擬結(jié)果,當(dāng)x1=0.9、x2=0.1~0.2時,C-A-S-H可以滿足力學(xué)性能要求??紤]到實(shí)際上不能保證所有原料完全參與水化并生成圖5(b)所示的理想C-A-S-H凝膠結(jié)構(gòu),因此同時兼顧經(jīng)濟(jì)性和水泥水化程度,設(shè)計超高溫度220~260 ℃下固井水泥的加砂、加鋁配比時,最終考慮兩種試件配比,即x3=0.9∶1∶0.15、0.9∶1∶0.2。依據(jù)原料化學(xué)組分計算x3對應(yīng)的加砂量約為55%BWOC、鋁質(zhì)材料分別為約7%、10% BWOC。運(yùn)用分子動力學(xué)模擬方法計算220~260 ℃下C-A-S-H應(yīng)力應(yīng)變反應(yīng),若仍把常溫下的分子動力學(xué)結(jié)果作為滿足強(qiáng)度要求的標(biāo)準(zhǔn),圖8顯示所選兩種配比均可滿足強(qiáng)度要求。
表2為加砂、鋁質(zhì)材料的固井水泥強(qiáng)度試驗(yàn)結(jié)果,其中A1-1、A1-2等對應(yīng)表1中的試件編號。從表2中可以看出,在220~240 ℃,通過填加鋁質(zhì)材料和增加砂含量,固井水泥強(qiáng)度均超過50 MPa,滿足工程要求;250~260 ℃,同樣配比強(qiáng)度超過42 MPa,基本滿足工程要求。由此可以說明,x1=0.9、x2=0.1~0.2是抗超高溫固井水泥在220~260 ℃內(nèi)可行的Ca/Si/Al配比結(jié)果。因此分子動力學(xué)模擬能夠有效預(yù)測其力學(xué)性能,定量地獲取高溫、超高溫下水泥Ca/Si/Al的優(yōu)化配比,為宏觀制品的研發(fā)設(shè)計提供理論與參考依據(jù)。值得注意的是,實(shí)際試件加鋁加砂后的增強(qiáng)程度小于模擬結(jié)果,這是因?yàn)楦邷叵滤a(chǎn)物復(fù)雜、水化程度難以確定[42],實(shí)際上水泥加鋁加砂后并不能保證全部生成圖5(b)所示的完全理想的C-A-S-H。一方面由于所有原料不一定完全參與水化反應(yīng),已有測試結(jié)果[16,42-44]表明水化程度能達(dá)到約80%;另一方面即使參與水化后也可能產(chǎn)生不同于圖5(b)所示的完全理想的C-A-S-H。這些因素都會導(dǎo)致實(shí)際增強(qiáng)效果小于模擬結(jié)果,若要獲得各溫度下更精確的優(yōu)化配比,需要進(jìn)一步精細(xì)確定超高溫下水泥水化程度和水化產(chǎn)物。
3" 結(jié)" 論
(1)隨溫度升高,C-A-S-H力學(xué)性能下降,但通過降低 x1(例如0.9),150、180℃時強(qiáng)度基本滿足要求,240 ℃時強(qiáng)度衰減不能滿足要求;保持低x1的同時提高x2到0.1~0.2,能保證240 ℃超高溫下時強(qiáng)度滿足要求。
(2)隨著Al的加入Q2~Q4增多、平均鏈長增長。這說明Al原子的加入能夠有效填補(bǔ)硅氧鏈橋位缺陷,促進(jìn)形成聚合度更高的硅氧四面體。Al原子的平均受力隨Al含量增加而提高,驗(yàn)證了Al在z方向增強(qiáng)了橋聯(lián)層間硅氧結(jié)構(gòu),對強(qiáng)度起到了提升作用。
(3)超高溫220~260 ℃時,x3=0.9∶1∶0.15~0.2,對應(yīng)加砂55% BWOC、鋁質(zhì)材料7%~10% BWOC,可使固井水泥強(qiáng)度滿足要求。
參考文獻(xiàn):
[1]" 代奎,孫超,張景富,等.高溫下G級油井水泥強(qiáng)度的衰退及合理硅砂加量[J].大慶石油學(xué)院學(xué)報,2004,5:98-100,110.
DAI Kui, SUN Chao, ZHANG Jingfu, et al. Decline of cement stone strength and the right amount of silica sand added to cement slurry at high temperature[J]. Journal of Daqing Petroleum Institute, 2004(5):98-100,110.
[2]" PANG X, QIN J, SUN L, et al. Long-term strength retrogression of silica-enriched oil well cement: a comprehensive multi-approach analysis[J]. Cement and Concrete Research, 2021,144(11):106424.
[3]" 于永金,薛毓鋮,夏修建,等.一種抗240℃超高溫固井緩凝劑的研發(fā)與評價[J].天然氣工業(yè),2023,43(3):107-112.
YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research amp; development and evaluation of a cementing retarder resistant to 240 ℃ ultrahigh temperature[J]. Natural Gas Industry, 2023,43(3):107-112.
[4]" 王成文,周偉,陳新,等.納米SiO2溶膠對高溫加砂油井水泥石強(qiáng)度作用規(guī)律及機(jī)制[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2021,45(6):79-86.
WANG Chengwen, ZHOU Wei, CHEN Xin, et al. Effect of nano-SiO2 sol on strength of cement with addition of silica sands under high temperature[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021,45(6):79-86.
[5]" 李寧,龐學(xué)玉,艾正青,等.200 ℃加砂硅酸鹽水泥配方優(yōu)化設(shè)計及強(qiáng)度衰退機(jī)理[J].硅酸鹽學(xué)報, 2020,48(11):1824-1833.
LI Ning, PANG Xueyu, AI Zhengqing,et al. Composition optimization and strength decline mechanism of oil well cement slurry at 200 ℃[J]. Journal of the Chinese Ceramic Society, 2020,48(11):1824-1833.
[6]" 周崇峰,費(fèi)中明,李德偉,等.一種新型超高溫固井水泥石抗強(qiáng)度衰退材料[J].鉆井液與完井液,2022,39(1):71-75.
ZHOU Chongfeng, FEI Zhongming, LI Dewei, et al. Research on a new material to prevent the strength decline of set cement under ultra-high temperature[J]. Drilling Fluid amp; Completion Fluid, 2022,39(1):71-75.
[7]" 張五怡,聶松,徐名鳳,等.高貝利特硫鋁酸鹽水泥活化研究進(jìn)展[J].硅酸鹽通報,2022,41(9):2979-2992.
ZHANG Wuyi, NIE Song, XU Mingfeng, et al. Research progress on activation of high Belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022,41(9):2979-2992.
[8]" 王磊,曾義金,張青慶,等.高溫環(huán)境下油井水泥石力學(xué)性能試驗(yàn)[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2018,42(6):88-95.
WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018,42(6):88-95.
[9]" ZHANG Y, WANG C, CHEN Z, et al. Research on the strength retrogression and mechanism of oil well cement at high temperature (240 ℃)[J]. Construction and Building Materials, 2022,363(11):129806.
[10]" 萬向臣,張健,陳小榮.頁巖油地層固井用改性鋁酸鹽水泥的水化行為及性能[J].油田化學(xué),2023,40(4):614-620.
WAN Xiangchen, ZHANG Jian, CHEN Xiaorong. Hydration behavior and properties of modified aluminate cement for well cementing in shale oil formation[J]. Oilfield Chemistry, 2023,40(4):614-620.
[11]" 夏忠鋒,王周福,劉浩,等.鋁酸鈣水泥水化產(chǎn)物轉(zhuǎn)化過程及調(diào)控研究進(jìn)展[J].硅酸鹽學(xué)報,2022(12):3323-3336.
XIA Zhongfeng, WANG Zhoufu, LIU Hao, et al. Research progress on conversion process and regulation of hydrates of calcium aluminate cement[J], Bulletin of the Chinese Ceramic Society, 2022(12):3323-3336.
[12]" 幸雪松,程小偉,李杲,等.等離子體改性氧化鎂晶須增強(qiáng)鋁酸鹽水泥高溫力學(xué)性能[J].鉆井液與完井液,2021,38(3):341-345.
XING Xuesong, CHENG Xiaowei, LI Gao, et al. Enhancing high temperature mechanical performance of aluminate cement with plasma-modified MgO whisker[J]. Drilling Fluid amp; Completion Fluid, 2021,38(3):341-345.
[13]" ZHANG J, YANG J, HOU D, et al. Molecular dynamics study on calcium aluminosilicate hydrate at elevated temperatures: structure, dynamics and mechanical properties[J]. Materials Chemistry and Physics, 2019,233:276-287.
[14]" HOU D, LI D, ZHAO T, et al. Confined water dissociation in disordered silicate nanometer-channels at elevated temperatures: mechanism, dynamics and impact on substrates[J]. Langmuir, 2016,32(17):4153-4168.
[15]" KUNHI-MOHAMED A, MOUTZOURI P, BERRUYER P, et al. The atomic level structure of cementitious calcium aluminate silicate hydrate[J]. Journal of the American Chemical Society, 2020,142:11060-11071.
[16]" LHPITAL E, LOTHENBACH B, KULIK D A, et al. Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate[J]. Cement and Concrete Research, 2016,85:111-121.
[17]" DUQUE-REDONDO E, BONNAUD P A, MANZANO H. A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects[J]. Cement and Concrete Research, 2022,156:106-784.
[18]" PEGADO L, LABBEZ C, CHURAKOV S V. Mechanism of aluminium incorporation into C-S-H from ab initio calculations[J]. Journal of Materials Chemistry A, 2014,2(10):34 -77.
[19]" ABDOLHOSSEINI-QOMI M J, ULM F J, PELLENQ R J M. Evidence on the dual nature of aluminum in the calcium-silicate hydrates based on atomistic simulations[J]. Journal of the American Chemical Society, 2012,95(3):1128-1137.
[20]" ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2006,36:3-17.
[21]" GENG G, MYERS R J, LI J, et al. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate[J]. Scientific reports , 2017,10:1-10.
[22]" ZHANG G, LI Y, YANG J, et al. Insight Into the strengthening mechanism of the Al-induced cross-linked calcium aluminosilicate hydrate gel: a molecular dynamics study[J]. Frontiers in Materials. 2021,7:611568.
[23]" MANZANO H, DOLADO J S, GRIEBEL M, et al. A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels[J]. Physica Status Solidi A-Applications And Materials Science, 2008,205(6):1324-1329.
[24]" PELLENQ R, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of The National Academy of Sciences, 2009,106(38):16102-16107.
[25]" MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11 : normal and anomalous forms[J]. European Journal of Mineralogy, 2001,13(3):65-80.
[26]" HIREL P. Atomsk: a tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015,197:212-219.
[27]" LIU H, BU Y, ZHOU A, et al. Silica sand enhanced cement mortar for cementing steam injection well up to 380 ℃[J]. Construction and Building Materials, 2021,308(15):125142.
[28]" PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016,72:89-103.
[29]" FAUCON P, DELAGRAVE A, PETIT J, et al. Aluminum incorporation in calcium silicate hydrates (C-S-H) depending on their Ca/Si ratio[J]. The Journal of Physical Chemistry B, 1999,103:7796-7802.
[30]" VAN DUIN A C T, STRACHAN A, STEWMAN S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. Journal of Physical Chemistry A, 2003,107(19):3803-3811.
[31]" MANZANO H, PELLENQ R J M, ULM F, et al. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics[J]. Langmuir, 2012,28(9):4187-4197.
[32]" LIU R, LI Y, DU T, et al. Insight into class G wellbore cement hydration and mechanism at 150 ℃ using molecular dynamics[J]. Energies, 2022,15(16):6045.
[33]" PEDONE A, MALAVASI G, CORMACK A N, et al. Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques[J]. Chemistry of Materials, 2007,19(13):3144-3154.
[34]" RICHARDSON I. Model structures for C-(A)-S-H[J]. Acta Crystallographica Section B, 2014,70:903-923.
[35]" CHEN J, THOMAS J, TAYLOR H. Solubility and structure of calcium silicate hydrate[J]. Cement and Concrete Research, 2004,34:1499-1519.
[36]" HOU D, LI Z, ZHAO T. Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C-A-S-H) gel: structure, dynamics and mechanical properties[J]. RSC Advances, 2015,5:448-461.
[37]" YANG J, HOU D, DING Q. Structure, dynamics, and mechanical properties of cross-linked calcium aluminosilicate hydrate: a molecular dynamics study[J]. ACS Sustainable Chemistry amp; Engineering, 2018,6:9403-9417.
[38]" NAZARI A, BAGHERI A, JAY G, et al. Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation[J]. Construction and Building Materials, 2019,196:492-498.
[39]" KHALIQ W, KHAN H A. High temperature material properties of calcium aluminate cement concrete[J]. Construction and Building Materials, 2015,94:475-487.
[40]" POON C, AZHAR S, ANSON M, et al. Performance of metakaolin concrete at elevated temperatures[J]. Cement and Concrete Composites, 2003,25(1):83-89.
[41]" DAI Z, TRAN T, SKIBSTED J. Aluminum incorporation in the C-S-H phase of white portland cement-metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy[J]. Journal of the American Ceramic Society, 2014,97:2662-2671.
[42]" SUN L, PANG X, GHABEZLOO S, et al. Hydration kinetics and strength retrogression mechanism of silica-cement systems in the temperature range of 110-200 ℃[J]. Cement and Concrete Research, 2023,167:107120.
[43]" 魏亞,高翔,梁思明.硬化水泥凈漿基于納米壓痕的相態(tài)識別與水化程度計算[J].復(fù)合材料學(xué)報,2017,34(5):1122-1129.
WEI Ya, GAO Xiang, LIANG Siming. Nanoindentation-based study of the microstructure and degree of hydration in hardened cement paste[J]. Acta materiae composite sinica, 2017,34(5):1122-1129.
[44]" CHU D, KLEIB J, AMAR M, et al. Determination of the degree of hydration of Portland cement using three different approaches: scanning electron microscopy (SEM-BSE) and thermo gravimetric analysis (TGA)[J]. Case Studies in Construction Materials, 2021,15:e00754.
(編輯" 劉為清)