鈣磷基生物陶瓷材料在生物醫(yī)學(xué)領(lǐng)域,特別是骨修復(fù)和替代方面,展現(xiàn)出廣闊的應(yīng)用前景.傳統(tǒng)的實(shí)驗(yàn)方法受制于漫長(zhǎng)的時(shí)間、高昂的成本以及極端的條件而引入的計(jì)算模擬技術(shù),在理解和優(yōu)化材料的性能方面發(fā)揮了至關(guān)重要的作用.結(jié)合國(guó)內(nèi)外研究和本小組近年的相關(guān)工作,總結(jié)鈣磷基生物陶瓷材料的計(jì)算模擬進(jìn)展和面臨的諸多挑戰(zhàn),展望該領(lǐng)域的未來(lái)發(fā)展,強(qiáng)調(diào)通過(guò)結(jié)合先進(jìn)的計(jì)算方法與實(shí)驗(yàn)驗(yàn)證,有望進(jìn)一步推動(dòng)鈣磷基生物陶瓷材料在生物醫(yī)學(xué)中的應(yīng)用和發(fā)展.
生物陶瓷材料; 計(jì)算模擬; 骨組織工程; 羥基磷灰石
O641A0166-1002.003
由于人口老齡化、慢性疾病和創(chuàng)傷治療需求的增加,以及手術(shù)數(shù)量的上升、醫(yī)療技術(shù)的進(jìn)步和醫(yī)療器械需求的增長(zhǎng)等多重因素的影響,生物材料的市場(chǎng)需求正在迅速擴(kuò)大[1-3].鈣磷基生物陶瓷材料是生物醫(yī)用陶瓷材料中的一類重要材料,因其與人體骨組織的成分相似,具有良好的生物相容性和生物活性,廣泛應(yīng)用于骨修復(fù)和替代等骨組織工程領(lǐng)域[4-7].主要的鈣磷基生物陶瓷材料包括羥基磷灰石(Ca10(PO4)6(OH)2,簡(jiǎn)寫為HAP)、磷酸三鈣(Ca3(PO4)2,簡(jiǎn)寫為TCP)、無(wú)定型磷酸鈣(ACP)以及雙相磷酸鈣(BCP)等.大量研究表明,通過(guò)優(yōu)化其組成和結(jié)構(gòu),能夠使性能得以提升,更好地滿足各種臨床需求[8-9].圖1總結(jié)了影響骨再生的磷酸鈣基生物材料的因素,包括化學(xué)性質(zhì)、加工技術(shù)和結(jié)構(gòu)特征.這些操作包括調(diào)整材料的鈣磷比例、引入其他生物活性元素、控制材料的晶體結(jié)構(gòu)和孔隙度等方法[10-13].此外,通過(guò)與其他生物材料復(fù)合,也能更進(jìn)一步提升其在復(fù)雜骨修復(fù)和再生中的應(yīng)用效果[14-15].這些創(chuàng)新和改進(jìn)使得鈣磷基生物陶瓷材料在臨床應(yīng)用中表現(xiàn)出更加優(yōu)異的性能,并不斷推動(dòng)骨科和牙科醫(yī)學(xué)的進(jìn)步.
然而,基于“試錯(cuò)法”的傳統(tǒng)實(shí)驗(yàn)方法往往受到成本高昂、時(shí)間耗費(fèi)長(zhǎng)和極端試驗(yàn)條件等因素的限制[16].近年來(lái),材料基因組計(jì)劃的提出,強(qiáng)調(diào)了計(jì)算在新材料研究和開(kāi)發(fā)中的貢獻(xiàn)[17-18].科學(xué)計(jì)算在新材料的發(fā)現(xiàn)和開(kāi)發(fā)方面取得了巨大的成功,材料計(jì)算已經(jīng)成為材料科學(xué)與技術(shù)的一個(gè)重要分支,直接或間接地參與了一些新材料的開(kāi)發(fā),如拓?fù)浣^緣體、鋰離子電池材料和低維納米材料等[16,19],計(jì)算模擬幾乎服務(wù)于材料開(kāi)發(fā)鏈的所有階段.考慮到材料的多尺度本征特性,需要在材料計(jì)算領(lǐng)域引入多尺度計(jì)算技術(shù).多尺度計(jì)算模擬有助于研究人員明智地計(jì)劃和執(zhí)行必要的實(shí)驗(yàn),從而節(jié)省時(shí)間和資源.同時(shí),材料的納米尺度特性影響其宏觀性能[20-21].在這種情況下,計(jì)算模擬方法的出現(xiàn)為材料的研究提供了一種全新的途徑,有助于建立結(jié)構(gòu)或組成與材料內(nèi)在性能之間的關(guān)系.基于第一性原理計(jì)算的密度泛函理論已被證明可以揭示與電子結(jié)構(gòu)相關(guān)的生物醫(yī)學(xué)特性,分子動(dòng)力學(xué)全原子模擬方法可用于研究生物材料和生物大分子的相互作用機(jī)制[22].因此,通過(guò)計(jì)算機(jī)模擬的方式,可以對(duì)鈣磷基生物陶瓷材料的結(jié)構(gòu)、性能和相互作用等進(jìn)行深入理解,為其設(shè)計(jì)、優(yōu)化和應(yīng)用提供重要的參考和指導(dǎo).
本綜述探討了鈣磷基生物陶瓷材料理論模擬的最新研究進(jìn)展和面臨的挑戰(zhàn).首先,介紹了常見(jiàn)的鈣磷基生物陶瓷材料,如羥基磷灰石、磷酸三鈣和雙相磷酸鈣陶瓷材料.接著,詳細(xì)介紹了常用的理論模擬方法,包括密度泛函理論和分子動(dòng)力學(xué)模擬,以及它們?cè)阝}磷基生物陶瓷材料中的應(yīng)用,涵蓋了力學(xué)性能、生物相容性評(píng)估以及與機(jī)器學(xué)習(xí)結(jié)合等方面的研究進(jìn)展.隨后,總結(jié)了當(dāng)前的研究成果和突破,并探討了未來(lái)可能面臨的挑戰(zhàn)和發(fā)展方向.希望本綜述能為鈣磷基生物陶瓷材料的設(shè)計(jì)和開(kāi)發(fā)提供有價(jià)值的參考和啟示,促進(jìn)該領(lǐng)域的進(jìn)步和發(fā)展.
1 鈣磷基生物陶瓷材料介紹
在生物體內(nèi),骨骼和牙齒中的無(wú)機(jī)礦物質(zhì)是鈣磷質(zhì)量分?jǐn)?shù)比小于1.67的碳酸化羥基磷灰石[23-24].鈣磷基生物陶瓷材料由于其結(jié)構(gòu)和化學(xué)組成與人體骨骼和牙齒相似,成為整形外科和牙科手術(shù)中理想的骨替代物.此外,這些材料具有高孔隙率,能夠提高自身的降解速率,增大與體液的接觸表面積,從而促進(jìn)細(xì)胞黏附和血管生成[25].同時(shí),材料的溶解會(huì)釋放鈣離子和磷酸根離子,導(dǎo)致離子濃度局部升高,從而影響成骨細(xì)胞的分化和骨誘導(dǎo)過(guò)程[8].表1列出了生物醫(yī)學(xué)領(lǐng)域常見(jiàn)的磷酸鈣基陶瓷材料的標(biāo)準(zhǔn)縮寫及其活度積等.
羥基磷灰石(hydroxyapatite,HAP)是一種重要的生物活性陶瓷材料,同時(shí)也是骨骼和牙齒中主要的無(wú)機(jī)成分.HAP陶瓷材料具有無(wú)毒性,并且在植入體內(nèi)后可以誘導(dǎo)骨組織再生.因此,在骨組織工程中被廣泛用作骨填料和骨補(bǔ)充劑的組成部分[26].HAP在常溫下以單斜晶相(P21/c)存在,晶胞參數(shù)a=b=0.942 nm,c=0.689 nm[27].HAP晶胞中的Ca2+有Ca(I)、Ca(II)2種位點(diǎn),其中Ca(I)位點(diǎn)由4個(gè)Ca2+所占據(jù),Ca(II)位點(diǎn)由6個(gè)Ca2+占據(jù).2種不同位置的鈣位點(diǎn)可以被大多數(shù)重金屬離子所替代,例如Zn2+、Cd2+、Cu2+等.同時(shí),HAP中的陰離子也可以被其他陰離子取代,如PO3-4被CO2-3或HCO-3等陰離子所取代,OH-也能夠被F-或Cl-所取代.HAP發(fā)生離子取代后,其性能會(huì)根據(jù)具體取代的離子種類發(fā)生顯著變化.這些變化可以用于定制HAP的特性,以滿足特定的臨床需求[26].在臨床應(yīng)用中,HAP一方面常被用作骨水泥或填充劑的主要成分[28],另一方面也可以以生物陶瓷和支架的形式直接用作植入物,進(jìn)行骨誘導(dǎo)作用[29].此外,為了滿足植入物的長(zhǎng)期機(jī)械穩(wěn)定性要求,通常通過(guò)等離子噴涂、電化學(xué)沉積等方法,在金屬材料表面覆蓋HAP涂層,以增強(qiáng)惰性金屬材料與周圍組織的結(jié)合度[30].
磷酸三鈣(tricalcium phosphate,TCP)是一種生物可吸收陶瓷材料,鈣磷質(zhì)量分?jǐn)?shù)比為1.5,溶解度大于HAP[31].TCP主要包括3種晶型:α相、α′相和β相.在低于1 125 ℃時(shí)主要以β-TCP形式存在,并隨著溫度升高,β-TCP會(huì)依次變成α-TCP和α′-TCP相[32].β-TCP晶體屬于三方晶系,空間群為R3c.由于磷酸三鈣具有較高的降解性能,所以具有更快的離子釋放速度,使得局部溶液環(huán)境離子濃度更快升高;但也因此,其在體液中的穩(wěn)定性較差,難以與新骨的生長(zhǎng)速率相匹配,并且難以達(dá)到植入材料應(yīng)有的機(jī)械強(qiáng)度[5-9].通常β-TCP以雙相復(fù)合材料的形式應(yīng)用于臨床研究,以期通過(guò)組合不同材料的特性來(lái)優(yōu)化其生物性能和降解速率,進(jìn)而能夠更好地支持新骨組織的生長(zhǎng)和骨替代過(guò)程.
雙相磷酸鈣(biphasic calcium phosphate,BCP)由2種獨(dú)立磷酸鈣相組成的復(fù)合生物陶瓷材料,最常見(jiàn)的BCP主要由不同比例的HAP和β-TCP組成[10,33-35].結(jié)合HAP的高生物穩(wěn)定性和β-TCP的可降解性,兼具兩者的優(yōu)點(diǎn),通過(guò)調(diào)節(jié)HAP和β-TCP的比例,BCP的降解速率和生物活性可以得到優(yōu)化,從而更好地匹配新骨的生長(zhǎng)速度,促進(jìn)骨組織的再生和修復(fù)[35-36].因此,BCP被認(rèn)為是骨替代物的金標(biāo)準(zhǔn)[10,34].BCP支架被證明具有高度的生物相容性,可以支持成骨細(xì)胞的附著、增殖和分化.同時(shí),BCP可以應(yīng)用于較大的骨缺損,在一些承重區(qū)域,作為定制件可在很長(zhǎng)一段時(shí)間內(nèi)保持其形狀,例如用于牙種植體放置的竇底抬高和填充牙根管等[34].BCP除了可以通過(guò)混合HAP和TCP來(lái)生產(chǎn),也可以通過(guò)化學(xué)方法在高溫下燒結(jié)CDHAs來(lái)得到2種不同相的混合物[37-38].雖然實(shí)驗(yàn)上對(duì)BCP的研究很多,但BCP的組成比例與細(xì)胞行為之間的關(guān)系是復(fù)雜的,對(duì)于臨床應(yīng)用BCP中HAP/β-TCP兩相的理想比例還沒(méi)有普遍的共識(shí),需要進(jìn)一步制定標(biāo)準(zhǔn)化的材料制備、表征和生物行為分析方案[10].
2 鈣磷基生物陶瓷材料計(jì)算模擬的研究進(jìn)展
鈣磷基生物陶瓷材料在臨床應(yīng)用中需要具備一系列關(guān)鍵性能,以確保其有效性和安全性.首先,材料必須具有良好的生物相容性,以避免引起免疫排斥反應(yīng)[8].這就需要對(duì)磷酸鈣基陶瓷材料和生物小分子、蛋白等結(jié)合進(jìn)行研究.其次,材料應(yīng)具有足夠的機(jī)械強(qiáng)度,以提供必要的支撐和穩(wěn)定性,特別是在承受壓力和負(fù)荷的骨修復(fù)部位[39].另外,高孔隙率和適宜的孔徑結(jié)構(gòu)也是關(guān)鍵特征,有助于血管生成和細(xì)胞內(nèi)生,促進(jìn)新骨組織的生長(zhǎng)和整合[40-42].
雖然在實(shí)驗(yàn)上對(duì)磷酸鈣基生物陶瓷材料的生物相容性、力學(xué)性能、成骨性能等進(jìn)行了大量研究,但實(shí)驗(yàn)受限于高昂的成本、長(zhǎng)時(shí)間周期以及苛刻的條件,并且難以解析材料在原子和分子水平上的行為和機(jī)制.計(jì)算模擬可以彌補(bǔ)這些不足,通過(guò)高精度的計(jì)算和模擬技術(shù),如密度泛函理論(DFT)[43]、分子動(dòng)力學(xué)(MD)[44]和機(jī)器學(xué)習(xí)(ML)[45]等,研究者能夠深入了解材料的成核、生長(zhǎng)、降解等微觀過(guò)程.這些模擬不僅能提供對(duì)實(shí)驗(yàn)數(shù)據(jù)的支持和驗(yàn)證,還可以預(yù)測(cè)和優(yōu)化材料性能,指導(dǎo)實(shí)驗(yàn)設(shè)計(jì),縮短研發(fā)周期,提高效率[16,46].因此,計(jì)算模擬在推動(dòng)磷酸鈣基生物陶瓷材料的發(fā)展中發(fā)揮著不可或缺的作用.目前,大部分的計(jì)算研究尺度集中在全原子內(nèi).本節(jié)概述了使用DFT、MD和ML等計(jì)算模擬方法在磷酸鈣基陶瓷材料研究中的進(jìn)展.
2.1 密度泛函理論(density functional theory,DFT) 第一性原理計(jì)算是一種基于基本物理定律、不依賴經(jīng)驗(yàn)參數(shù)的方法,通過(guò)物理理論和數(shù)學(xué)模型來(lái)預(yù)測(cè)和理解材料的性質(zhì)和行為.它能夠計(jì)算電子結(jié)構(gòu)、能量狀態(tài)、材料穩(wěn)定性、化學(xué)反應(yīng)路徑和力學(xué)性能等,為材料設(shè)計(jì)、性能優(yōu)化和新材料發(fā)現(xiàn)提供重要的理論支撐和精確的數(shù)據(jù)參考[47].目前,DFT是第一性原理計(jì)算方法中最主要的工具.DFT通過(guò)Kohn-Sham方程[48],將第一性原理計(jì)算問(wèn)題轉(zhuǎn)化為對(duì)系統(tǒng)中電子相互作用的交換關(guān)聯(lián)項(xiàng)的精確描述和求解.為了適應(yīng)不同的研究需求,科學(xué)家們已經(jīng)開(kāi)發(fā)了200多種精度不同的泛函.
DFT計(jì)算研究對(duì)鈣磷基陶瓷材料主要涉及:電子結(jié)構(gòu)與態(tài)密度分析、離子取代和摻雜效應(yīng)、表界面能量計(jì)算[49]、缺陷分析、力學(xué)性能和熱力學(xué)性質(zhì)計(jì)算等方面.其中,由于離子在晶格結(jié)構(gòu)中的摻雜取代對(duì)其性能影響很大,在過(guò)去的幾年里,許多磷酸鈣基陶瓷材料晶格離子摻雜的研究,特別是對(duì)HAP的離子摻雜,都是研究的熱點(diǎn)[50-56].針對(duì)Ca2+位點(diǎn)的摻雜取代,主要是Sr2+,Mg2+和Zn2+等二價(jià)金屬陽(yáng)離子.Liu等[50]采用第一性原理的方法,研究討論了鍶摻雜HAP的性質(zhì),發(fā)現(xiàn)鍶離子的加入能夠降低HAP的剛度,增加材料的延展性.Bystrov等[51]證明了隨著取代次數(shù)的增加,HAP的晶胞參數(shù)和體積逐漸減小,力學(xué)性能也與Mg2+插入的位置有關(guān).同時(shí),他們還發(fā)現(xiàn)間隙能級(jí)的位置對(duì)Mg摻雜非常敏感,這表現(xiàn)出了選擇性控制材料光學(xué)性質(zhì)的可能性,這在Klinkla等[53]的研究中也有報(bào)道,即HAP摻雜離子為改善其光催化性能提供了一條潛在的途徑.除了Ca2+位點(diǎn)的摻雜、取代,PO3-4和OH-也能被F-,CO2-3,SiO4-4等取代[54-56].Astala等[54]研究發(fā)現(xiàn),最穩(wěn)定的取代方式是一個(gè)碳酸根進(jìn)行磷酸根取代的同時(shí)引入一個(gè)鈣離子空穴和一個(gè)氫原子,氫原子可以和鄰近的磷酸根成鍵.Makshakova等[55]在DFT水平上的計(jì)算結(jié)果表明,CO2-3和Mg2+共摻雜HAP比單獨(dú)摻雜碳酸鹽或鎂離子更有能量增益效果.
2.2 分子動(dòng)力學(xué)模擬(molecular dynamics,MD) 分子動(dòng)力學(xué)模擬是一種通過(guò)計(jì)算原子和分子的運(yùn)動(dòng)來(lái)研究物質(zhì)行為的方法.基于經(jīng)典力學(xué)原理,MD模擬通過(guò)求解牛頓運(yùn)動(dòng)方程來(lái)追蹤每個(gè)粒子的運(yùn)動(dòng)軌跡,從而揭示系統(tǒng)在特定條件下的動(dòng)態(tài)演化過(guò)程[44].該方法能夠模擬和預(yù)測(cè)物質(zhì)在不同溫度、壓力和時(shí)間尺度下的結(jié)構(gòu)和動(dòng)力學(xué)性質(zhì).MD模擬提供了連接材料微觀結(jié)構(gòu)和宏觀性能的橋梁,由于其對(duì)微觀結(jié)構(gòu)和原子尺度過(guò)程的成功描述,廣泛應(yīng)用在材料科學(xué)、生物物理、化學(xué)等領(lǐng)域[57].
勢(shì)函數(shù)的選擇是MD模擬的關(guān)鍵因素之一,它直接決定了仿真結(jié)果的合理性和可靠性.因此,選擇合適的力場(chǎng)和模擬參數(shù)對(duì)于獲得可靠的結(jié)果至關(guān)重要.目前,適用于磷酸鈣基陶瓷材料的力場(chǎng)主要有Buckingham力場(chǎng)[58]、BMH力場(chǎng)[59]和IFF力場(chǎng)[60-61].其中,HAP體相的性質(zhì)適合用BMH力場(chǎng)描述,而界面性質(zhì)更適合采用IFF力場(chǎng)描述[60-61].由IFF力場(chǎng)計(jì)算的HAP的晶格常數(shù)、結(jié)構(gòu)和力學(xué)性能數(shù)據(jù)和變化趨勢(shì)與實(shí)驗(yàn)測(cè)量相符;同時(shí),HAP晶面與水界面的性質(zhì)也與實(shí)驗(yàn)觀察一致[60-61].目前,文獻(xiàn)[62-63]報(bào)道已表明,采用IFF力場(chǎng)對(duì)β-TCP和BCP的物理化學(xué)性質(zhì)、力學(xué)性能等計(jì)算也能很好地貼近宏觀實(shí)驗(yàn).此外,IFF力場(chǎng)具有很好的兼容性,可以與其他如CHARMM、AMBER、GROMACS、PCFF、CFF、CVFF、DREIDING和OPLS-AA等力場(chǎng)結(jié)合使用,因此適用于多種磷灰石材料的界面研究[60-61].
近年來(lái),MD模擬在揭示磷酸鈣基陶瓷材料的物理化學(xué)性質(zhì)、成核行為、界面行為和與蛋白質(zhì)、氨基酸相互作用機(jī)制等方面發(fā)揮了重要作用.Wu等[64]和Xie等[65]通過(guò)模擬退火方法研究了HAP塊體的表面結(jié)構(gòu),利用結(jié)構(gòu)分析方法比較了退火結(jié)構(gòu)與晶體結(jié)構(gòu)的差異.Hu等[62]通過(guò)MD模擬發(fā)現(xiàn)β-TCP的非晶態(tài)表面結(jié)構(gòu)具有明顯的納米溝槽,這可能有利于生物分子的吸附和生物活性的增強(qiáng).文獻(xiàn)[63,66]通過(guò)voronoi tessellation(VT)方法結(jié)合模擬退火MD,建立了更貼近實(shí)際BCP結(jié)構(gòu)的(含孔)納米BCP模型,并對(duì)其物理化學(xué)性質(zhì)、力學(xué)性能、晶界性質(zhì)進(jìn)行了詳細(xì)研究,進(jìn)一步展示了BCP在納米尺度下的結(jié)構(gòu)和性能.除了在模型構(gòu)建方面的研究之外,磷酸鈣基陶瓷材料表面相互作用的研究也取得了許多進(jìn)展.Sahai課題組[67-72]針對(duì)HAP-水表面進(jìn)行了大量研究,詳細(xì)討論了水在HAP表面以及介孔模型中的傳輸方式.Xu課題組[73-74]對(duì)HAP和β-TCP與BMP蛋白家族的相互作用進(jìn)行了詳細(xì)研究,為磷酸鈣基陶瓷材料的骨誘導(dǎo)性提供了原子和分子水平的信息,圖2為該小組提出的BMP-7吸附在β-TCP表面促進(jìn)成骨分化的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程示意圖.同時(shí),該小組[75-80]也進(jìn)行了HAP的成核與礦化過(guò)程研究,為生物材料的開(kāi)發(fā)提供了新的思路和方法,有利于加速生物材料的開(kāi)發(fā)和優(yōu)化.
2.3 機(jī)器學(xué)習(xí)(machine learning,ML) 機(jī)器學(xué)習(xí)是一種利用數(shù)據(jù)和算法從大型數(shù)據(jù)集中學(xué)習(xí)數(shù)據(jù)中的隱藏模式和關(guān)系,旨在構(gòu)造模型來(lái)將一些輸入變量(描述符)與系統(tǒng)的輸出(目標(biāo)性質(zhì))相關(guān)聯(lián)的人工智能方法[45].ML在材料科學(xué)中日益受到重視,因其可以處理大規(guī)模數(shù)據(jù),發(fā)現(xiàn)傳統(tǒng)方法難以察覺(jué)的潛在規(guī)律,從而加速材料設(shè)計(jì)和優(yōu)化過(guò)程.目前ML已成功應(yīng)用于藥物分子[81]、高分子[82]和能源相關(guān)材料[83]等領(lǐng)域.在鈣磷基陶瓷材料領(lǐng)域,通過(guò)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行機(jī)器學(xué)習(xí)分析預(yù)測(cè)材料性能的研究已有報(bào)道.Horikawa等[84]利用ML成功地構(gòu)建了從材料的制造條件預(yù)測(cè)材料的性能和從材料的性能和體內(nèi)實(shí)驗(yàn)條件預(yù)測(cè)骨形成速率的模型,提出了實(shí)現(xiàn)骨形成率目標(biāo)值的候選材料制造條件,并成功用ML預(yù)測(cè)得出了和動(dòng)物實(shí)驗(yàn)一致的結(jié)果.Yu等[85]進(jìn)行了取代羥基磷灰石的力學(xué)合成和結(jié)構(gòu)特征建模,該模型能夠根據(jù)材料的化學(xué)成分準(zhǔn)確地預(yù)測(cè)材料的結(jié)構(gòu)特征,從而節(jié)省大量的時(shí)間和成本.
在磷酸鈣基陶瓷材料的研究中,將機(jī)器學(xué)習(xí)方法與DFT、MD計(jì)算等技術(shù)結(jié)合,展示了材料設(shè)計(jì)的顯著優(yōu)勢(shì)[16,86].Wang等[87]將第一性原理和機(jī)器學(xué)習(xí)算法相結(jié)合,研究了摻雜Zn2+的HAP機(jī)制,提供了一種有效的方法來(lái)定位HAP摻雜體系中可能的優(yōu)化結(jié)構(gòu).Hartnett等[88]將ML和DFT方法相結(jié)合,并利用實(shí)驗(yàn)數(shù)據(jù),以預(yù)測(cè)熱力學(xué)穩(wěn)定的含碘磷灰石結(jié)構(gòu).Wang等[89]采用ML輔助MD來(lái)分析具有缺陷的HAP在燒結(jié)過(guò)程中的結(jié)構(gòu)變化,并采用第一性原理反應(yīng)機(jī)制計(jì)算,探討了甲烷在HAP不同燒結(jié)表面上的催化機(jī)制,其結(jié)果挑戰(zhàn)了活性位點(diǎn)僅局限于HAP表面的流行觀點(diǎn),有利于設(shè)計(jì)和合成性能更高、效率更高的新型電催化劑.
隨著計(jì)算方法的發(fā)展,機(jī)器學(xué)習(xí)勢(shì)能(machine learning potentials,MLPs)逐漸成為材料科學(xué)研究中的一個(gè)重要工具[90].傳統(tǒng)的勢(shì)能模型,如經(jīng)典力場(chǎng)和密度泛函理論(DFT),在描述材料的微觀行為和預(yù)測(cè)材料性能方面取得了顯著成功.然而,這些方法通常需要大量的計(jì)算資源,并且在處理復(fù)雜的化學(xué)環(huán)境時(shí),可能存在精度和適用范圍的限制.機(jī)器學(xué)習(xí)勢(shì)能通過(guò)利用大規(guī)模數(shù)據(jù)訓(xùn)練模型,可以在保證較高精度的同時(shí),大幅提升計(jì)算效率,克服傳統(tǒng)方法的一些局限性.Wang等[91]利用主動(dòng)學(xué)習(xí)算法開(kāi)發(fā)了HAP的機(jī)器學(xué)習(xí)原子勢(shì),該算法在描述HAP的OH-時(shí)達(dá)到了密度泛函理論級(jí)的精度,其工作流如圖3所示.
3 總結(jié)與展望
鈣磷基陶瓷材料的計(jì)算研究近年來(lái)取得了顯著進(jìn)展,主要得益于第一性原理、分子動(dòng)力學(xué)和機(jī)器學(xué)習(xí)等方法的應(yīng)用.DFT計(jì)算在揭示材料的電子結(jié)構(gòu)和摻雜效應(yīng)方面發(fā)揮了關(guān)鍵作用,為理解材料的基礎(chǔ)性質(zhì)提供了理論支持.MD模擬則在研究材料的動(dòng)力學(xué)行為、界面相互作用及力學(xué)性能方面表現(xiàn)出色,通過(guò)原子級(jí)別的模擬揭示了材料的微觀機(jī)制.機(jī)器學(xué)習(xí)方法的引入,為處理大規(guī)模數(shù)據(jù)、預(yù)測(cè)材料性能和加速材料設(shè)計(jì)帶來(lái)了新的契機(jī).但仍需注意的是,生物陶瓷材料的主要應(yīng)用場(chǎng)景為人體,故不能忽略其宏觀尺度的結(jié)構(gòu)力學(xué)性質(zhì)與生理學(xué)性質(zhì)(如生物相容性和組織誘導(dǎo)性)之間的關(guān)聯(lián).在我們看來(lái),針對(duì)生物陶瓷材料的計(jì)算模擬還有如下一些挑戰(zhàn)值得關(guān)注.
1) 新的計(jì)算模型.必須明確的是,當(dāng)生物陶瓷材料植入人體后,與植入環(huán)境的相互作用表面并非簡(jiǎn)單的單一晶面,可能是多晶面的組合體系,甚至是納米多晶粒子.同時(shí),考慮到組成成分的變化,相應(yīng)的計(jì)算模型也應(yīng)該隨之改變,例如雙相磷酸鈣陶瓷或陰陽(yáng)離子摻雜的磷酸鈣體系等.此外,實(shí)驗(yàn)表明含孔結(jié)構(gòu)的生物陶瓷材料具有更好的生物活性,故考慮孔結(jié)構(gòu)特征的計(jì)算模型也是未來(lái)研究的方向.但這些模型的引入將需要更大的計(jì)算算力的支撐以及更加準(zhǔn)確的力場(chǎng)參數(shù).
2) 多尺度模擬磷酸鈣晶體的生長(zhǎng)過(guò)程.骨修復(fù)或生長(zhǎng)的微觀過(guò)程可視為磷酸鈣晶體的生長(zhǎng)過(guò)程,其本質(zhì)為溶液相中鈣離子和磷酸根離子在材料表面的聚集生長(zhǎng),對(duì)該過(guò)程的完整解析有助于新型生物陶瓷材料的設(shè)計(jì).該過(guò)程涉及從電子、原子到介觀尺度等多個(gè)尺度,如何在考慮復(fù)雜服役環(huán)境的同時(shí)兼顧計(jì)算精度和計(jì)算效率的條件下,實(shí)現(xiàn)從微觀到宏觀性能的全面理解,是極具挑戰(zhàn)性的研究方向.
3) 機(jī)器學(xué)習(xí)算法的應(yīng)用.機(jī)器學(xué)習(xí)方法在材料預(yù)測(cè)和設(shè)計(jì)中展示了巨大潛力,未來(lái)可以將機(jī)器學(xué)習(xí)模型應(yīng)用于鈣磷基生物陶瓷材料生物的相容性等生理學(xué)相關(guān)性質(zhì)的預(yù)測(cè),尤其是無(wú)法用第一性原理或分子動(dòng)力學(xué)模擬計(jì)算直接獲得的性質(zhì).同時(shí),尋求實(shí)驗(yàn)驗(yàn)證以確保機(jī)器學(xué)習(xí)算法的可靠性和可行性.另外,有效地將計(jì)算模擬與實(shí)驗(yàn)研究相結(jié)合,形成一個(gè)相互驗(yàn)證、相互促進(jìn)的閉環(huán),是未來(lái)研究的重要方向.
展望未來(lái),通過(guò)進(jìn)一步優(yōu)化計(jì)算方法、提升計(jì)算效率和精度,并結(jié)合實(shí)驗(yàn)驗(yàn)證,有望在鈣磷基陶瓷材料的研究中取得突破性的進(jìn)展,為骨組織工程等實(shí)際醫(yī)療需求,提供更加有效和可靠的新型材料.
參考文獻(xiàn)
[1] HOLZAPFEL B M, REICHERT J C, SCHANTZ J-T, et al. How smart do biomaterials need to be? a translational science and clinical point of view[J]. Adv Drug Deliv Rev,2013,65(4):581-603.
[2] YADAV S, GANGWAR S. An overview on recent progresses and future perspective of biomaterials[J]. IOP Conference Series: Materials Science and Engineering,2018,404:012013.
[3] AL GEORGEANU V, GINGU O, ANTONIAC I V, et al. Current options and future perspectives on bone graft and biomaterials substitutes for bone repair, from clinical needs to advanced biomaterials research[J]. Appl Sci,2023,13(14):8471.
[4] TANG Z R, LI X F, TAN Y F, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics[J]. Regenerative Biomaterials,2018,5(1):43-59.
[5] ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials,2017,10(4):334.
[6] DOROZHKIN S V. Calcium orthophosphate bioceramics[J]. Ceramics International,2015,41(10):13913-13966.
[7] BLACK C R, GORIAINOV V, GIBBS D, et al. Bone tissue engineering[J]. Curr Mol Biol Rep,2015,1(3):132-140.
[8] SAMAVEDI S, WHITTINGTON A R, GOLDSTEIN A S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior[J]. Acta Biomaterialia,2013,9:8037-8045.
[9] DOROZHKIN S V. Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications[J]. Coatings,2022,12(10):1380.
[10] EBRAHIMI M, BOTELHO M G, DOROZHKIN S V. Biphasic calcium phosphates bioceramics (HA/TCP): concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research[J]. Mater Sci Eng C,2017,71:1293-1312.
[11] HOU X D, ZHANG L, ZHOU Z F, et al. Calcium phosphate-based biomaterials for bone repair[J]. J Funct Biomater,2022,13(4):187.
[12] 吳家剛. 鈮酸鉀鈉基無(wú)鉛壓電陶瓷的發(fā)展與展望[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,42(2):143-153.
[13] 何茗,張婷. TiO2B2O3對(duì)鈦酸鋰鋅微波陶瓷的摻雜改性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,44(1):99-102.
[14] KOSTAG M, EL SEOUD O A. Sustainable biomaterials based on cellulose, chitin and chitosan composites-a review[J]. Carbohydr Poly Tech,2021,2:100079.
[15] SHEKHAWAT D, SINGH A, BANERJEE M K, et al. Bioceramic composites for orthopaedic applications: a comprehensive review of mechanical, biological, and microstructural properties[J]. Ceram Int,2021,47(3):3013-3030.
[16] XU D, ZHANG Q, HUO X, et al. Advances in data-assisted high-throughput computations for material design[J]. MGE Advances,2023,1(1): e11.
[17] GREEN M L, CHOI C L, HATTRICK-SIMPERS J R, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies[J]. Appl Phys Rev,2017,4:011105.
[18] DE PABLO J J, JONES B, KOVACS C L, et al. The Materials Genome Initiative, the interplay of experiment, theory and computation[J]. Curr Opin Solid St M,2014,18(2):99-117.
[19] PENG Y H, HE C C, ZHAO Y J, et al. High-throughput computational materials screening of transition metal peroxides[J]. Phys Chem Chem Phys,2024,26(3):2093-2100.
[20] LAO J J, NAGHDI TAM M, PINISETTY D, et al. Molecular dynamics simulation of FCC metallic nanowires: a review[J]. JOM,2012,65(2):175-184.
[21] KEDHARNATH A, KAPOOR R, SARKAR A. Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: a review[J]. Comput Struct,2021,254:106614.
[22] DAI X Y, CHEN Y. Computational biomaterials: computational simulations for biomedicine[J]. Adv Mater,2023,35(7):e2204798.
[23] CHAI Y C, CARLIER A, BOLANDER J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies[J]. Acta Biomaterialia,2012,8(11):3876-3887.
[24] VON EUW S, WANG Y, LAURENT G, et al. Bone mineral: new insights into its chemical composition[J]. Sci Rep,2019,9(1):8456.
[25] ANSARI M. Bone tissue regeneration: biology, strategies and interface studies[J]. Prog Biomater,2019,8:223-237.
[26] KAREEM R O, BULUT N, KAYGILI O. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, medical applications, and fabrication methods[J]. J Chem Rev,2024,6(1):1-26.
[27] DOROZHKIN S V, EPPLE M. Biological and medical significance of calcium phosphates[J]. Angew Chem Int Ed,2002,41(17):3130-3146.
[28] OTSUKA M, MATSUDA Y, SUWA Y, et al. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement[J]. J Biomed Mater Res,1995,29(1):25-32.
[29] HABIBOVIC P, YUAN H P, VAN DER VALK C M, et al. 3D microenvironment as essential element for osteoinduction by biomaterials[J]. Biomaterials,2005,26(17):3565-3575.
[30] KOKUBO T, KIM H M, KAWASHITA M, et al. Bioactive metals: preparation and properties[J]. J Mater Sci-Mater M,2004,15(2):99-107.
[31] YUAN H P, DE BRUIJN J D, LI Y B, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP[J]. J Mater Sci-Mater M,2001,12(1):7-13.
[32] YIN X L, STOTT M J, RUBIO A. α-and β-tricalcium phosphate: a density functional study[J]. Phys Rev B,2003,68(20):205205.
[33] RAMAY H R R, ZHANG M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering[J]. Biomaterials,2004,25(21):5171-5180.
[34] DOROZHKIN S V. Biphasic, triphasic and multiphasic calcium orthophosphates[J]. Acta Biomater,2012,8(3):963-977.
[35] BOULER J M, PILET P, GAUTHIER O, et al. Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response[J]. Acta Biomater,2017,53:1-12.
[36] BARADARARAN S, HAMDI M, METSELAAR I H. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods[J]. Adv Appl Ceram,2013,111(7):367-373.
[37] LEGEROS R Z, LIN S, ROHANIZADEH R, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications[J]. J Mater Sci-Mater M,2003,14(3):201-209.
[38] LIN S J, LEGEROS R Z, ROHANIZADEH R, et al. Biphasic calcium phosphate (BCP) bioceramics: preparation and properties[J]. Key Eng Mater,2003,240/241/242:473-476.
[39] O'BRIEN F J. Biomaterials amp; scaffolds for tissue engineering[J]. Mater Today,2011,14:88-95.
[40] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials,2005,26(27):5474-5491.
[41] EBRAHIMI M. Porosity parameters in biomaterial science: definition, impact, and challenges in tissue engineering[J]. Front Mater Sci,2021,15(3):352-373.
[42] MAKSOUD F J, VELZQUEZ DE LA PAZ M F, HANN A J, et al. Porous biomaterials for tissue engineering: a review[J]. J Mater Chem B,2022,10(40):8111-8165.
[43] SHOLL D S, STECKEL J A. Density functional theory: a practical introduction[M]. Hoboken: John Wiley amp; Sons,2011.
[44] KUMAR H, MAITI P K. Introduction to molecular dynamics simulation[M]//Computational Statistical Physics. Cambridge: Cambridge University Press,2019:161-197.
[45] MAHESH B. Machine learning algorithms: a review[J]. Int J Sci Res,2020,9(1):381-386.
[46] DEMIR H, DAGLAR H, GULBALKAN H C, et al. Recent advances in computational modeling of MOFs: from molecular simulations to machine learning[J]. Coordin Chem Rev,2023,484:215112.
[47] FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids[J]. Rev Mod Phys,2014,86(1):253-305.
[48] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev,1965,140(4A): A1133-A1138.
[49] CHIATTI F, DELLE PIANE M, UGLIENGO P, et al. Water at hydroxyapatite surfaces: the effect of coverage and surface termination as investigated by all-electron B3LYP-D* simulations[J]. Theor Chem Acc,2016,135(3):54.
[50] LIU Q Y, XUE Z Y, XU D G. Molecular dynamics characterization of Sr-doped biomimetic hydroxyapatite nanoparticles[J]. J Phys Chem C,2020,124(36):19704-19715.
[51] BYSTROV V S, PARAMONOVA E V, AVAKYAN L A, et al. Effect of magnesium substitution on structural features and properties of hydroxyapatite[J]. Materials (Basel),2023,16(17):5945.
[52] THIYAGARAJAN P, SHANMUGHARAJ A M, ALAGESAN T, et al. DFT theoretical and experimental studies unraveling the structural and electronic properties of niobium doped calcium apatite ceramics[J]. Mater Today Commun,2023,35:105873.
[53] KLINKLA R, KAEWMARAYA T, BOOTCHANON A, et al. Effects of Sr and Mg doping on elastic, mechanical, and optical properties of hydroxyapatite: a first-principles study[J]. Results Phys,2024,57:107352.
[54] ASTALA R, STOTT M J. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite[J]. Chem Mater,2005,17(16):4125-4133.
[55] MAKSHAKOVA O N, GAFUROV M R, GOLDBERG M A. The mutual incorporation of Mg2+and CO2-3 into hydroxyapatite: a DFT study[J]. Materials (Basel),2022,15(24):9046.
[56] MENNDEZ-PROUPIN E, CERVANTES-RODRGUEZ S, OSORIO-PULGAR R, et al. Computer simulation of elastic constants of hydroxyapatite and fluorapatite[J]. J Mech Behav Biomed Mater,2011,4(7):1011-1020.
[57] HOSPITAL A, GOI J R, OROZCO M, et al. Molecular dynamics simulations: advances and applications[J]. Adv Appl Bioinform Chem,2015,8:37-47.
[58] DE LEEUW N H. A computer modelling study of the uptake and segregation of fluoride ions at the hydrated hydroxyapatite (0001) surface: introducing a Ca10(PO4)6(OH)2 potential model[J]. Phys Chem Chem Phys,2004,6(8):1860-1866.
[59] HAUPTMANN S, DUFNER H, BRICKMANN J, et al. Potential energy function for apatites[J]. Phys Chem Chem Phys,2003,5(3):635-639.
[60] HEINZ H, LIN T J, MISHRA R K, et al. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field[J]. Langmuir,2013,29(6):1754-1765.
[61] LIN T J, HEINZ H. Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces[J]. J Phys Chem C,2016,120(9):4975-4992.
[62] HU C F, XUE Z Y, WANG X, et al. Molecular dynamics exploration of the amorphous surface structures and properties of the biomimetic β-tricalcium phosphate[J]. Appl Surf Sci,2019,484:72-82.
[63] ZHANG Q, XUE Z Y, WANG X, et al. Molecular dynamics dimulation of biomimetic biphasic calcium phosphate nanoparticles[J]. J Phys Chem B,2022,126(46):9726-9736.
[64] WU H, XU D G, YANG M L, et al. Surface structure of hydroxyapatite from simulated annealing molecular dynamics simulations[J]. Langmuir,2016,32:4643-4652.
[65] XIE Q, XUE Z Y, GU H J, et al. Molecular dynamics exploration of ordered-to-disordered surface structures of biomimetic hydroxyapatite nanoparticles[J]. J Phys Chem C,2018,122(12):6691-6703.
[66] ZHANG Q, WANG X, YANG M L, et al. Effects of void defects on the mechanical properties of biphasic calcium phosphate nanoparticles: a molecular dynamics investigation[J]. J Mech Behav Biomed Mater,2024,151:106385.
[67] ZHAO W L, XU Z J, YANG Y, et al. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study[J]. Langmuir,2014,30(44):13283-13292.
[68] PHAM T T, LEMAIRE T, CAPIEZ-LERNOUT E, et al. Properties of water confined in hydroxyapatite nanopores as derived from molecular dynamics simulations[J]. Theor Chem Acc,2015,134(5):59.
[69] DI TOMMASO D, PRAKASH M, LEMAIRE T, et al. Molecular dynamics simulations of hydroxyapatite nanopores in contact with electrolyte solutions: the effect of nanoconfinement and solvated ions on the surface reactivity and the structural, dynamical, and vibrational properties of water[J]. Crystals,2017,7(2):57.
[70] PRAKASH M, LEMAIRE T, CARUEL M, et al. Anisotropic diffusion of water molecules in hydroxyapatite nanopores[J]. Phys Chem Miner,2017,44(7):509-519.
[71] PRAKASH M, LEMAIRE T, DI TOMMASO D, et al. Transport properties of water molecules confined between hydroxyapaptite surfaces: a molecular dynamics simulation approach[J]. Appl Surf Sci,2017,418:296-301.
[72] HONRIO T, LEMAIRE T, TOMMASO D D, et al. Anomalous water and ion dynamics in hydroxyapatite mesopores[J]. Comp Mater Sci,2019,156:26-34.
[73] GU H J, XUE Z Y, WANG M H, et al. Effect of hydroxyapatite surface on BMP-2 biological properties by docking and molecular simulation approaches[J]. J Phys Chem B,2019,123(15):3372-3382.
[74] ZHAO X Y, XUE Z Y, WANG K F, et al. Molecular docking and molecular dynamics simulation studies on the adsorption/desorption behavior of bone morphogenetic protein-7 on the beta-tricalcium phosphate surface[J]. Phys Chem Chem Phys,2020,22(29):16747-16759.
[75] XUE Z, YANG M, XU D. Nucleation of biomimetic hydroxyapatite nanoparticles on the surface of type I collagen: molecular dynamics investigations[J]. J Phys Chem C,2019,123(4):2533-2543.
[76] TAN X H, XUE Z Y, ZHU H, et al. How charged amino acids regulate nucleation of biomimetic hydroxyapatite nanoparticles on the surface of collagen mimetic peptides: molecular dynamics and free energy investigations[J]. Cryst Growth Des,2020,20(7):4561-4572.
[77] WANG W T , XUE Z Y, WANG R H, et al. Molecular dynamics exploration of the growth mechanism of hydroxyapatite nanoparticles regulated by glutamic acid[J]. J Phys Chem B,2021,125(19):5078-5088.
[78] XUE Z Y, WANG X, XU D G. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization[J]. Phys Chem Chem Phys,2022,24(31):18931-18942.
[79] XUE Z Y, WANG X, XU D G. Molecular dynamic simulation of prenucleation of apatite at a type I collagen template: ion association and mineralization control[J]. Phys Chem Chem Phys,2022,24(18):11370-11381.
[80] QIN D X, XUE Z Y, DU M, et al. Molecular dynamics exploration of ion association mechanism of apatite controlled by a nanogrooved hydroxyapatite surface[J]. Appl Surf Sci,2023,617:156580.
[81] STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell,2020,181(2):475-483.
[82] CHEN G, SHEN Z Q, IYER A, et al. Machine-learning-assisted De Novo design of organic molecules and polymers: opportunities and challenges[J]. Polymers (Basel),2020,12(1):163.
[83] YAO Z P, LUM Y, JOHNSTON A, et al. Machine learning for a sustainable energy future[J]. Nat Rev Mater,2023,8(3):202-215.
[84] HORIKAWA S, SUZUKI K, MOTOJIMA K, et al. Material design of porous hydroxyapatite ceramics via inverse analysis of an estimation model for bone-forming ability based on machine learning and experimental validation of biological hard tissue responses[J]. Materials (Basel),2024,17(3):571.
[85] YU J W, WANG Y, DAI Z Q, et al. Structural features modeling of substituted hydroxyapatite nanopowders as bone fillers via machine learning[J]. Ceram Int,2021,47(7):9034-9047.
[86] GREENER J G, KANDATHIL S M, MOFFAT L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol,2022,23(1):40-55.
[87] WANG J, WANG R H, YANG M L, et al. Understanding zinc-doped hydroxyapatite structures using first-principles calculations and convolutional neural network algorithm[J]. J Mater Chem B,2022,10(8):1281-1290.
[88] HARTNETT T Q, AYYASAMY M V, BALACHANDRAN P V. Prediction of new iodine-containing apatites using machine learning and density functional theory[J]. MRS Commun,2019,9(3):882-890.
[89] WANG J, YAN X R, WANG X, et al. Selective activation of methane on hydroxyapatite surfaces: insights from machine learning and density functional theory[J]. Nano Energy,2024,127:109762.
[90] BEHLER J. Perspective: machine learning potentials for atomistic simulations[J]. J Chem Phys,2016,145(17):170901.
[91] WANG J, WANG X, ZHU H, et al. Investigating the hydroxyl reorientation in hydroxyapatite using machine learning potentials[J]. J Phys Chem C,2023,127(23):11369-11377.
The Progress and Challenges in Computational Simulation of Calciumphosphorus-based Bioceramics
ZHANG Qiao, XU Dingguo
(College of Chemistry, Sichuan University, Chengdu 610064, Sichuan)
Calciumphosphorus-based (CaP) bioceramic materials demonstrate significant potential in the biomedical field, particularly for bone repair and replacement. Traditional experimental methods are often constrained by long durations, high costs, and stringent conditions. The introduction of computational simulation technology plays a crucial role in understanding and optimizing the performance of CaP bioceramic materials. The progress in the computational simulation of CaP bioceramic materials is reviewed in this paper, drawing on both domestic and international research as well as recent work from our group. The numerous challenges currently faced in this area are highlighted. Finally, the future development of this field is anticipated, and the importance of advanced computational methods combined with experimental verification is emphasized. This is expected to further promote the application and development of CaP bioceramic materials in biomedicine.
bioceramic materials; computational simulation; bone tissue engineering; hydroxyapatite
(編輯 鄭月蓉)