摘" " 要:【目的】弄清南疆核桃內(nèi)生真菌多樣性及群落結(jié)構(gòu)特征,同時(shí)篩選出既對(duì)核桃腐爛病具有防治作用,又對(duì)核桃幼苗有促生作用的生防菌。【方法】運(yùn)用多樣性指數(shù)分析核桃內(nèi)生真菌的種群分布特征及其多樣性。采用平板對(duì)峙法篩選對(duì)核桃腐爛病菌具有拮抗作用的菌株,采用室內(nèi)盆栽法研究生防菌株的促生作用,運(yùn)用離體枝條接種法測(cè)定菌株對(duì)核桃腐爛病的防治效果。【結(jié)果】從不同組織共計(jì)分離出129株內(nèi)生真菌,隸屬于3門18屬,其中鐮刀菌屬和鏈格孢菌屬為優(yōu)勢(shì)種群。莖內(nèi)生真菌的香農(nóng)指數(shù)H'、均勻度指數(shù)E、豐富度指數(shù)M均最高,而枝條內(nèi)生真菌各項(xiàng)指數(shù)均最低。莖與根內(nèi)生真菌相似性系數(shù)最高,而莖與枝相似性系數(shù)最低。篩選出3株生防菌SF01、SF05、SF08,分別鑒定為Dactylonectria torresensis、Chaetomium globosum、Penicillium rubens。3個(gè)菌株中SF01對(duì)核桃腐爛病預(yù)防效果最好,而SF08治療效果最好。相比對(duì)照,3個(gè)菌株對(duì)核桃幼苗的根長(zhǎng)、株高、鮮質(zhì)量、干質(zhì)量、莖粗均有顯著促進(jìn)作用(p<0.05)?!窘Y(jié)論】南疆核桃內(nèi)生真菌多樣性豐富,但分布不均衡,其分布特征具有組織特異性。篩選出了3株對(duì)核桃腐爛病具有很好防治效果且對(duì)核桃幼苗生長(zhǎng)具有促進(jìn)作用的生防菌,為核桃腐爛病生物防治以及培育壯苗提供了新的菌株材料。
關(guān)鍵詞:核桃腐爛??;內(nèi)生真菌;多樣性;生防菌
中圖分類號(hào):S664.1;S436.64 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)10-2079-12
Diversity of endophytic fungi and screening of biocontrol strains against canker disease in walnut
Maliyanguli·Tuerdi, SHI Lingxu, KANG Qihang, Yakutikhan·Mirza, YANG Zeyu, YUAN Hao, CHEN Xiaofei*
(College of Agriculture, Tarim University, Alar 843300, Xinjiang, China)
Abstract: 【Objective】 The present experiment was carried out in order to understand the endophytic fungi population diversity and community structure of walnut trees, and investigate the differences in endophytic fungal communities among different tissues (limb-barks, roots and branches) of walnut in southern Xinjiang. At the same time, another objective was also to screen out the biocontrol fungi that can not only prevent and control walnut canker disease, but also promote the growth of walnut seedlings. 【Methods】 The endophytic fungi were isolated from different tissues of walnut by conventional tissue separation method. The endophytic fungi were classified and identified by morphological and molecular biology techniques. The population distribution and diversity of endophytic fungi in walnut were analyzed according to Shannon-Weiner diversity index (H'), Pielou’s evenness index (E), Margalef’s index (M), separation rate, separation frequency and Srenson’s similarity coefficients (Cs). The plate confrontation method was used to screen the antagonistic strains of walnut canker disease, the indoor pot method was used to study the growth promotion of the strains, and the control effect of the biocontrol fungus on walnut canker disease was determined by the inoculation test of isolated branches. 【Results】 A total of 129 endophytic fungi were isolated from 210 tissues of ten 50-year-old walnut trees, of which 58 were isolated from limb-barks, 42 from roots and 29 from branches, with a total isolation rate of 61.40%. The 129 endophytic fungi belonged to three phyla and 18 genera, among which ascomycetes were the largest with 122 strains, accounting for 94.57% of the total number of fungi, five were zygomycetes, accounting for 3.88%, and two were basidiomycetes, accounting for 1.55%. The 18 genera of fungi were Fusarium, Alternaria, Nectria, Chaetomium, Phaeosphaeria, Leptosphaeria, Dactylonectria, Mortierella, Penicillium, Sarocladium, Talaromyces, Corynespora, Aspergillus, Acremonium, Rosellinia, Phoma Dothiorella and Ceratobasidium, among which Fusarium and Alternaria were the dominant populations, with the isolation rates of 18.10% and 12.30%, respectively. The Shannon index (H'), evenness index (E) and richness index (M) of stem endophytic fungi were the highest, which were 2.452, 0.603 and 8.129, respectively, followed by root, each index was 2.067, 0.553 and 5.847, while the Shannon index (H'), evenness index (E) and richness index (M) of root endophytic fungi were the lowest, 1.804, 0.535 and 3.993, respectively. The highest similarity coefficient between limb-bark and root endophytic fungi was 0.84, while the lowest similarity coefficient between limb-bark and branch was 0.66. On the whole, the endophytic fungal groups were different among different tissues. Some fungi, such as Phoma, Rosellinia and Chaetomium, were found only in limb-barks, but not in roots or branches. Three antagonistic strains (SF01, SF05 and SF08) were obtained by screening. Based on morphological characteristics, and molecular and biological identification results, SF01, SF05 and SF08 were identified as Dactylonectria torresensis, Chaetomium globosum and Penicillium rubens, respectively. The inhibitory rates of three antagonistic strains against Cytospora chrysosperma were 71.20%, 73.50% and 68.50%, respectively. Inoculation of isolated branches showed that SF01 had the best preventive effect on walnut canker disease (80.10%), while SF08 had the strongest therapeutic effect on walnut canker disease (83.40%). All three strains had the ability to produce iron carriers, among which SF05 had the strongest ability to produce iron carriers. SF01 and SF05 had the ability to solve phosphorus, SF01 and SF08 had the ability to dissolve phosphorus, and SF08 also had the ability to produce protease. Compared with the control, three antagonistic strains significantly promoted the root length, plant height, fresh weight, dry weight, stem diameter and other agronomic indexes of walnut seedlings (p<0.05). However, there were differences in growth promoting function among the three strains. Therefore, whether the mixed bactericides of the three strains can improve the ability of disease prevention and growth promotion remains to be further studied. 【Conclusion】 Endophytic fungi of walnut in southern Xinjiang were abundant in diversity, but their distribution was uneven, and their distribution characteristics were tissue-specific. In general, the diversity of endophytic fungi in limb-bark was higher than that in roots, and the diversity of endophytic fungi in branches was the lowest. Limb-bark endophytes were most similar to root endophytes because of their spatial location. Because the branches were pruned every year, the number of endophytic fungi species was relatively small, and there was a great difference between limb-bark endophytic fungi and branch endophytic fungi. Ascomycetes had the highest frequency of isolation in different tissues of walnut because of its strong reproductive ability and adaptability. Three biocontrol strains including SF01, SF05 and SF08, which had good control effect on walnut canker disease and promoted the growth of walnut seedlings were screened out. The result showed that the three strains were different and complementary in both disease control and seedling growth promotion, which has laid a good foundation for further research and development of mixed fungi. The studied results have provided a new material and way for the biological control of walnut canker disease and the cultivation of strong seedlings.
Key words: Walnut canker disease; Endophytic fungi; Diversity; Biocontrol fungi
植物內(nèi)生菌(plant endophyte)是在其生活史一定階段或全部階段生活于植物組織、組織間隙和器官內(nèi)部的微生物類群[1]。植物內(nèi)生菌在與宿主植物長(zhǎng)期的協(xié)同進(jìn)化中建立互惠共生關(guān)系,一方面宿主為內(nèi)生菌提供生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì)和能量,另一方面內(nèi)生菌通過(guò)自身的次級(jí)代謝產(chǎn)物或借助于信號(hào)傳導(dǎo)作用影響植物的生長(zhǎng)發(fā)育,促進(jìn)宿主生長(zhǎng)[2]。與此同時(shí),內(nèi)生菌還能通過(guò)調(diào)節(jié)植物的免疫系統(tǒng)或者直接產(chǎn)生活性物質(zhì)抑制病原菌,來(lái)增強(qiáng)植物的抗病性[3-4]。植物內(nèi)生真菌普遍存在于植物組織中,形成了植物體內(nèi)的微生態(tài)體系[5],其種類的多樣性,受植物自身生理生化特性、氣候條件、溫度、濕度等環(huán)境因素的影響[6]。一般情況下,隨著寄主植物年齡的增長(zhǎng),植株內(nèi)生真菌的種類和豐度也隨之增加。因?yàn)殡S著植株年齡增加,真菌反復(fù)侵染植株的機(jī)會(huì)增加。同時(shí),隨著植株年齡的增長(zhǎng),其生理狀況和表皮結(jié)構(gòu)更有利于真菌的侵入[7]。
核桃腐爛病主要是無(wú)性類真菌殼囊孢屬侵染所致[8],對(duì)新疆核桃產(chǎn)業(yè)的健康發(fā)展構(gòu)成了嚴(yán)重威脅。核桃腐爛病又稱為爛皮病、黑水病,主要發(fā)生在新疆核桃產(chǎn)區(qū),山西、山東、安徽等省零星發(fā)生。病害主要危害皮層,一般發(fā)病株率為50%左右,嚴(yán)重時(shí)發(fā)病株率達(dá)100%,導(dǎo)致枯枝甚至整株死亡[9]。針對(duì)核桃腐爛病的防治方法有物理防治、生物防治和化學(xué)防治,其中以化學(xué)防治為主,然而化學(xué)防治存在農(nóng)藥殘留、對(duì)人畜不安全、環(huán)境污染等問(wèn)題[10]。而生物防治具有安全、經(jīng)濟(jì)、高效等優(yōu)勢(shì),能有效避免化學(xué)防治帶來(lái)的系列問(wèn)題。此外,生物防治除了能夠控制病害,往往還能起到促進(jìn)植物生長(zhǎng)的作用,郝芳敏等[11-12]通過(guò)篩選獲得的1株多黏類芽孢桿菌和1株銅綠假單胞菌,不僅能有效抑制甜瓜多種真菌病害的發(fā)生與發(fā)展,還對(duì)甜瓜幼苗的健康生長(zhǎng)起著積極的促進(jìn)作用。因此,為了充分挖掘核桃內(nèi)生真菌資源,為核桃腐爛病的生物防治提供菌株資源,筆者從健康核桃不同組織中分離內(nèi)生真菌,采用形態(tài)特征和分子生物學(xué)手段鑒定其分類地位,統(tǒng)計(jì)分析評(píng)價(jià)其多樣性,篩選出對(duì)核桃腐爛病菌具有抑制效果的拮抗菌株,采用室內(nèi)盆栽試驗(yàn)探究拮抗菌株對(duì)核桃幼苗的促生作用,運(yùn)用離體枝條接種法研究拮抗菌株對(duì)核桃腐爛病的防治效果,以期為新疆核桃產(chǎn)業(yè)的健康發(fā)展作出貢獻(xiàn)。
1 材料和方法
1.1 試驗(yàn)材料
1.1.1 供試材料 供試的核桃組織材料采集于新疆生產(chǎn)建設(shè)兵團(tuán)第一師三團(tuán)(N 40°22'33\",E 80°03'45\"),核桃品種為溫185,采用棋盤式采樣法,選擇10株健康、長(zhǎng)勢(shì)良好的核桃樹(樹齡50年),對(duì)其根、莖、枝(1年生)分別進(jìn)行采樣,每株樹不同組織分別采集5份。采集前用75%乙醇對(duì)刀片、枝剪和采集的部位進(jìn)行消毒。剪取長(zhǎng)度為20 cm的1年生枝條;在30~50 cm土層內(nèi),剪取粗度約1 cm、長(zhǎng)10 cm的根;用刀片刻取莖的樹皮組織50 cm2。樣品裝入自封袋,編號(hào)密封后置于4 ℃下保存。
1.1.2 供試的病原菌 核桃腐爛病菌(Cytospora chrysosperma)保存于南疆農(nóng)業(yè)有害生物綜合治理兵團(tuán)重點(diǎn)實(shí)驗(yàn)室。
1.1.3 培養(yǎng)基 PDA培養(yǎng)基:馬鈴薯200 g,D-葡萄糖20 g,瓊脂粉20 g,蒸餾水1000 mL;PDB培養(yǎng)基:馬鈴薯200 g,D-葡萄糖20 g,蒸餾水1000 mL;孟加拉紅培養(yǎng)基:蛋白胨5 g,D-葡萄糖10 g,無(wú)水磷酸二氫鉀1 g,硫酸鎂0.5 g,瓊脂粉20 g,1/3000孟加拉紅溶液100 mL,蒸餾水1000 mL,氯霉素0.1 g。
1.2 試驗(yàn)方法
1.2.1 核桃內(nèi)生真菌的分離純化 (1)樣品表面消毒和檢測(cè)。將采集的組織塊分別用蒸餾水沖洗干凈后自然晾干,在超凈工作臺(tái)下用滅菌剪刀將根、莖、枝剪成1.5 cm長(zhǎng)的小段,然后放入燒杯中,無(wú)菌水沖洗3次后用75%乙醇浸泡2 min,再用無(wú)菌水沖洗3次,然后用0.6%次氯酸鈉消毒2 min,用無(wú)菌水沖洗3次后再在75%乙醇中浸泡30 s,最后用無(wú)菌水沖洗3次,將最后一次沖洗的無(wú)菌水取100 μL接種至PDA平板,于28 ℃恒溫培養(yǎng)1周。如果PDA平板上面沒(méi)有長(zhǎng)菌,表明表面消毒到位,可以進(jìn)行下一步試驗(yàn)。
(2)內(nèi)生真菌的分離與純化。在超凈工作臺(tái)用滅菌刀片將根、莖、枝樣品組織分解成5 mm×5 mm的組織塊各70塊,分別接種到PDA和孟加拉紅培養(yǎng)基中,每個(gè)培養(yǎng)皿接種5~8塊,28 ℃恒溫培養(yǎng)1~2周,待切口處長(zhǎng)出菌絲后,菌絲轉(zhuǎn)接至新的PDA平板上進(jìn)行純化,菌株純化后在4 ℃下斜面保存。
1.2.2 核桃內(nèi)生真菌的鑒定 (1)內(nèi)生真菌的形態(tài)學(xué)鑒定。為了從宏觀上分析內(nèi)生真菌特征,將內(nèi)生真菌接種于PDA平板上,28 ℃恒溫培養(yǎng)7 d,觀察記錄菌落形態(tài)、顏色、基底等生長(zhǎng)特性。為了從微觀上弄清內(nèi)生真菌特征,采用插片培養(yǎng)法觀察真菌的菌絲及孢子的形態(tài)特征,將無(wú)菌蓋玻片45°斜插于平板菌落周邊,于28 ℃的培養(yǎng)箱中黑暗培養(yǎng)7 d,然后取出蓋玻片鏡檢。根據(jù)觀察結(jié)果,參照《真菌鑒定手冊(cè)》[13]的方法進(jìn)行初步鑒定。
(2)內(nèi)生真菌的分子鑒定。將菌株接種至PDA平板上,28 ℃恒溫培養(yǎng),待菌株直徑長(zhǎng)至平板的2/3,輕輕刮取約0.1 g新鮮菌絲,利用真菌基因組DNA快速抽提試劑盒提取DNA。以真菌通用引物ITS1和ITS4擴(kuò)增ITS基因序列。反應(yīng)體系為25 μL:PCRmix 12.5 μL,上下引物各1 μL,模板DNA 2 μL,ddH2O補(bǔ)足8.5 μL。PCR擴(kuò)增條件:94 ℃預(yù)變性5 min,94 ℃變性35 s,48 ℃退火40 s,72 ℃延伸1 min,共35個(gè)循環(huán),最后72 ℃終延伸10 min。PCR擴(kuò)增產(chǎn)物經(jīng)1.2%瓊脂糖凝膠電泳檢測(cè),電泳條帶達(dá)到預(yù)期要求的,送交上海生工生物技術(shù)有限公司進(jìn)行測(cè)序。將測(cè)序獲得的ITS序列進(jìn)行DNA序列比對(duì)后,根據(jù)同源性相似度的差異,采用MEGA5.1軟件構(gòu)建系統(tǒng)發(fā)育樹。
1.2.3 內(nèi)生真菌的多樣性分析 參照易航等[14]的方法,計(jì)算內(nèi)生真菌的分離率IR、分離頻率IF、香農(nóng)指數(shù)H'、均勻度指數(shù)E、辛普森指數(shù)D、豐富度指數(shù)M和相似性系數(shù)Cs?;诤颂覂?nèi)生真菌的種類組成,分析不同部位的內(nèi)生真菌,評(píng)價(jià)核桃內(nèi)生真菌的多樣性、分布均勻程度、豐富度,以及不同部位間的相似水平。
(1)內(nèi)生真菌的分離率(isolation rates,IR)是指從培養(yǎng)組織塊中分離得到的總菌株數(shù)與全部培養(yǎng)的組織塊數(shù)的比值,即分離率(IR)/%=樣本組織塊中得到的菌株數(shù)/全部供試樣本組織塊數(shù)×100。
(2)分離頻率(relative frequency,IF)是為獲得某一類內(nèi)生真菌的菌株數(shù)量在植物樣品中分離菌株總數(shù)中所占的百分比,反映不同種類的內(nèi)生真菌在總菌群中所占據(jù)的優(yōu)勢(shì)程度。
分離頻率(IF)/%=某一類菌株的菌株數(shù)量/總菌株數(shù)×100。
(3)內(nèi)生真菌群落種類多樣性采用香農(nóng)指數(shù)(Shannon- Weiner diversity index,H')公式計(jì)算,即:H'=-[ikPi×lnPi]。其中k指某種植物或組織中內(nèi)生真菌種類的總數(shù),Pi為某種屬內(nèi)生真菌的菌株數(shù)量占分離到的所有總菌株數(shù)量的百分?jǐn)?shù)。
(4)內(nèi)生真菌豐富度,采用豐富度指數(shù)(Margalef’s index,M)公式計(jì)算,即:M=(S-1)/log2N。其中S為物種數(shù),N為菌株總數(shù)。
(5)內(nèi)生真菌在群落中分布的均勻程度采用均勻度指數(shù)(Pielou’s evenness index,E)公式計(jì)算,即:E=H'/1nS。其中H'是多樣性指數(shù),S為物種數(shù)。
(6)內(nèi)生真菌群落間的相似程度采用相似性指數(shù)(Srenson's similarity coefficients,Cs)公式計(jì)算,即:Cs=2j/(a+b)。其中j是兩種組織中具有的相同內(nèi)生真菌種類數(shù),a是一種組織中內(nèi)生真菌的種類數(shù),b是另一組織中內(nèi)生真菌的種類數(shù)。
1.2.4 生防菌的篩選 在PDA平板(直徑為9 cm)中央接種直徑0.5 cm的病原菌菌餅,在距離菌餅2.5 cm處的4個(gè)角點(diǎn)處接種一個(gè)測(cè)試真菌的菌餅,以在培養(yǎng)基中央單純接種病原菌為對(duì)照,均設(shè)置3個(gè)重復(fù),28 ℃ 12 h光照/12 h黑暗交替培養(yǎng)并觀察抑菌情況。菌落抑制率/%=(對(duì)照病原菌直徑-處理病原菌直徑)/(對(duì)照病原菌落直徑-菌餅直徑)×100。
1.2.5 生防菌發(fā)酵液對(duì)核桃離體枝條腐爛病的防治效果 發(fā)酵液的制備:將活化的生防菌菌株接種于250 mL PDA液體培養(yǎng)基上,在28 ℃下200 r·min-1振蕩培養(yǎng)7 d,然后用滅菌的紗布過(guò)濾,4 ℃下8000 r·min-1離心10 min得到上清液,即為發(fā)酵液。
枝條的處理:將粗細(xì)均勻的1年生枝條剪成長(zhǎng)度約20 cm的枝段,在超凈工作臺(tái)用0.6%次氯酸鈉消毒3 min,用無(wú)菌水清洗3~4次直至無(wú)次氯酸鈉氣味后晾干,用水浴鍋融化的石蠟封住枝條兩端保濕晾干備用。
預(yù)防試驗(yàn):將處理好的枝條用孔徑為5 mm的滅菌打孔器打一個(gè)接種點(diǎn),然后涂布生防菌發(fā)酵液于打孔處,晾干以后再涂布3次,用滅菌打孔器打取直徑5 mm的核桃腐爛病菌菌餅,接種于枝條打孔處,以未涂布發(fā)酵液的枝條作為空白對(duì)照,病原菌接種15 d后測(cè)量核桃枝條病斑直徑,并計(jì)算防治效果。每種生防菌處理5根枝條,試驗(yàn)設(shè)置3次重復(fù)。
治療試驗(yàn):將處理好的枝條用孔徑為5 mm的打孔器打一個(gè)接種點(diǎn),用滅菌打孔器取直徑5 mm的核桃腐爛病菌進(jìn)行接種處理,3 d后取掉菌餅,然后用生防菌發(fā)酵液涂布打孔部位,晾干以后繼續(xù)涂布3次,以未涂布發(fā)酵液的枝條為空白對(duì)照,15 d后測(cè)量核桃枝條病斑直徑,計(jì)算發(fā)酵液對(duì)核桃腐爛病的防治效果。每種生防菌處理5根枝條,試驗(yàn)3次重復(fù)。防治效果/%=(空白對(duì)照平均病斑直徑-處理平均病斑直徑)/空白對(duì)照平均病斑直徑×100。
1.2.6 生防菌發(fā)酵液對(duì)核桃幼苗的促生作用 選取種仁飽滿,無(wú)病蟲,單果質(zhì)量大于15 g的干果作為試驗(yàn)材料。將核桃種子浸泡10 d(每天換1次水)后用清水洗凈,在自然條件下晾干后播種。將土壤高壓滅菌,放入直徑15 cm的花盆中,土層厚度12 cm,每盆放入2粒核桃種子。在25 ℃下,光暗交替培養(yǎng),等核桃苗出齊后,對(duì)核桃幼苗進(jìn)行生防菌發(fā)酵液灌根處理。每次每盆澆灌10 mL,每隔7 d澆灌1次,一共澆灌6次,以澆灌10 mL蒸餾水為對(duì)照,每種生防菌處理10株幼苗,試驗(yàn)設(shè)置3次重復(fù)。60 d后對(duì)幼苗的生長(zhǎng)情況進(jìn)行觀測(cè),測(cè)定核桃幼苗的株高、根長(zhǎng)、莖粗、葉片數(shù)并稱量植株鮮質(zhì)量。然后在60 ℃下持續(xù)烘干96 h,測(cè)量干質(zhì)量,并對(duì)測(cè)得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。
1.2.7 生防菌的促生能力 參照邴輝[15]的方法:將生防真菌用滅菌的5 mm打孔器打菌餅接種到脫脂奶粉、無(wú)機(jī)磷、有機(jī)磷、鐵載體培養(yǎng)基上,每個(gè)菌株設(shè)置3個(gè)重復(fù),28 ℃培養(yǎng)7 d,出現(xiàn)透明圈表示菌株具有產(chǎn)蛋白酶、溶解磷和產(chǎn)鐵載體能力,通過(guò)計(jì)算透明圈直徑(D)與菌直徑(d)的比值(D/d)來(lái)判斷其活性的強(qiáng)弱。
1.3 數(shù)據(jù)分析
采用Microsoft Excel記錄和整理數(shù)據(jù),并使用SPSS 26.0進(jìn)行方差分析和差異顯著性分析,使用MEGA5.1軟件構(gòu)建系統(tǒng)進(jìn)化樹。
2 結(jié)果與分析
2.1 內(nèi)生真菌的分離結(jié)果
從210塊組織內(nèi)共分離到內(nèi)生真菌129株,內(nèi)生真菌的分離率為61.4%,其中莖部分離出58株,IR=27.6%,IF=44.9%;根部分離出42株,IR=20%,IF=32.5;枝部分離出29株,IR=13.8%,IF=22.4%。不同組織部位的內(nèi)生真菌的分離率和分離頻率從高到低依次為莖>根>枝(表1)。129株真菌隸屬于3門18屬。其中子囊菌門122株,占比達(dá)94.57%,接合菌門5株,占3.88%,擔(dān)子菌門2株,僅占1.55%。129株內(nèi)生真菌分別屬于鐮刀菌屬(Fusarium)、鏈格孢屬(Alternaria)、曲霉屬(Aspergillus)、球毛殼菌屬(Chaetomium)、青霉菌屬(Penicillium)、莖點(diǎn)霉菌屬(Phoma)、座堅(jiān)殼菌屬(Rosellinia)、帚枝霉菌屬(Sarocladium)、小球腔菌屬(Leptosphaeria)、Dactylonectria、踝節(jié)菌屬(Talaromyces)、暗球腔菌屬(Phaeosphaeria)、棒孢菌屬(Corynespora)、小穴殼菌屬(Dothiorella)、角擔(dān)菌屬(Ceratobasidium)、枝頂孢菌屬(Acremonium)、叢赤殼菌屬(Nectria)、被孢菌屬(Mortierella)等18個(gè)屬。其中鐮刀菌屬和鏈格孢屬為優(yōu)勢(shì)菌屬,分離率分別為18.1%、12.3%;其次為叢赤殼菌屬,占分離菌數(shù)的4.76%;小穴殼菌屬分離率最低,僅為0.48%。
2.2 核桃內(nèi)生真菌的多樣性分析
采用香農(nóng)指數(shù)H'、辛普森指數(shù)D、豐富度指數(shù)M、均勻度指數(shù)E等指標(biāo),分析內(nèi)生真菌多樣性,結(jié)果如表2所示,不同部位所分離的內(nèi)生真菌多樣性指數(shù)不同,香農(nóng)指數(shù)從高到低的順序?yàn)榍o(2.452)>根(2.067)>枝(1.804);豐富度指數(shù)為莖(8.129)>根(5.847)>枝(3.993);均勻度指數(shù)為莖(0.603)>根(0.553)>枝(0.535)。因此,從香農(nóng)指數(shù)、豐富度指數(shù)和均勻度指數(shù)來(lái)看,核桃莖部?jī)?nèi)生真菌的多樣性高于根部和枝部。
2.3 核桃內(nèi)生真菌的相似性分析
通過(guò)計(jì)算相似性系數(shù)(表3)可知,根部與莖部?jī)?nèi)生真菌類群最為相似,相似性Cs莖-根=0.84;莖部與枝部之間內(nèi)生真菌差異比較大,相似性系數(shù)Cs莖-枝=0.66;而根與枝內(nèi)生真菌相似性Cs根-枝=0.81。從整體來(lái)看各組織部位之間內(nèi)生真菌類群差異較大。
2.4 生防菌的篩選
從129株內(nèi)生真菌中經(jīng)過(guò)篩選獲得3株對(duì)核桃腐爛病菌具有較好拮抗效果的內(nèi)生真菌,分別命名為SF01、SF05、SF08(圖1)。從抑菌圖來(lái)看,SF01和SF05分泌的抑菌物質(zhì)能夠快速通過(guò)PDA培養(yǎng)基進(jìn)行擴(kuò)散,使得培養(yǎng)基整體上可抑制病原菌菌絲的生長(zhǎng);而SF08分泌的抑菌物質(zhì)僅分布在菌株周圍,不能在培養(yǎng)基中快速擴(kuò)散,因此僅在菌株周圍形成。經(jīng)過(guò)測(cè)定,3株內(nèi)生真菌的抑菌率分別為71.2%、73.5%、68.5%,抑菌效果相對(duì)較好,因此,選擇菌株SF01、SF05、SF08作為目標(biāo)生防菌進(jìn)行后續(xù)試驗(yàn)。
2.5 生防菌株的鑒定
2.5.1 形態(tài)學(xué)鑒定 SF01在PDA培養(yǎng)基上生長(zhǎng)速度較慢,為0.56 cm·d-1,菌落中央為白色菌絲,隨后菌落邊緣出現(xiàn)咖啡色至深褐色,菌絲絨毛狀,培養(yǎng)基顏色逐漸變褐色,未形成孢子。SF05在PDA培養(yǎng)基上生長(zhǎng)速度相對(duì)較快,為1.14 cm·d-1,菌落灰褐色,菌絲密實(shí)、絨氈狀,未見孢子產(chǎn)生。SF08在PDA培養(yǎng)基上生長(zhǎng)速度較慢,為0.47 cm·d-1,菌落棉絮狀,中央略隆起,正面呈白色,背面呈橙褐色,未見孢子產(chǎn)生(圖2)。
2.5.2 分子生物學(xué)鑒定 SF01菌株rDNA-ITS基因經(jīng)測(cè)序后,得到的序列長(zhǎng)度為554 bp,提交GenBank獲得登錄號(hào)為PP301358;SF05菌株rDNA-ITS序列長(zhǎng)度為540 bp,提交GenBank獲得登錄號(hào)為PP301359;SF08菌株rDNA-ITS序列長(zhǎng)度為552 bp,登錄號(hào)為PP301360。利用MEGA5.1軟件使用Neighbor-Joining法構(gòu)建基于ITS基因序列的系統(tǒng)發(fā)育樹。結(jié)果表明,SF01菌株與Dactylonectria torresensis位于同一分支(圖3),親緣關(guān)系最近;SF05菌株與Chaetomium globosum 位于同一分支(圖4);SF08菌株與Penicillium rubens位于同一分支(圖5)。因此,結(jié)合形態(tài)學(xué)特征將SF01菌株鑒定為D. torresensis,將SF05菌株鑒定為球毛殼菌C. globosum,將SF08菌株鑒定為產(chǎn)紅青霉P. rubens。
2.6 生防菌對(duì)核桃腐爛病的防治效果
2.6.1 生防菌對(duì)核桃腐爛病的預(yù)防效果 生防菌對(duì)核桃腐爛病的預(yù)防效果見圖6,可以看出,經(jīng)生防菌發(fā)酵液處理過(guò)的核桃離體枝條,能夠明顯降低核桃腐爛病病斑直徑。由表5數(shù)據(jù)可以看出,3株生防菌對(duì)核桃腐爛病菌的預(yù)防效果在77.06%~80.10%之間,其中D. torresensis發(fā)酵液對(duì)核桃腐爛病的離體預(yù)防效果最好,防效達(dá)到80.10%。
2.6.2 生防菌對(duì)核桃腐爛病的治療效果 由圖7可以看出,接種病原菌的核桃離體枝條經(jīng)生防菌發(fā)酵液處理后,能夠明顯降低病斑直徑。由表6可知,3株生防菌對(duì)核桃腐爛病的治療效果在77.30%~83.40%之間,其中P. rubens發(fā)酵液對(duì)核桃腐爛病的治療效果最好,防效達(dá)到83.4%。
2.7 生防菌發(fā)酵液對(duì)核桃幼苗的促生作用
從圖8可以看出,3株生防菌對(duì)核桃幼苗均有較好的促生效果。由表7數(shù)據(jù)可知,相比對(duì)照而言,3株生防菌對(duì)核桃幼苗的根長(zhǎng)、株高、鮮質(zhì)量、干質(zhì)量、莖粗和葉片數(shù)等農(nóng)藝指標(biāo)有顯著促進(jìn)作用(p<0.05)。
2.8 生防菌的促生能力
研究表明,SF01具有溶磷、解磷和產(chǎn)鐵載體能力;SF05具有解磷和產(chǎn)鐵載體能力;SF08具有產(chǎn)蛋白酶、溶磷和產(chǎn)鐵載體能力(表8)。
3 討 論
本研究結(jié)果表明,不同組織部位內(nèi)生真菌種群組成表現(xiàn)出差異性,莖內(nèi)生真菌多樣性指數(shù)、豐富度指數(shù)、均勻度指數(shù)高于根和枝條,說(shuō)明內(nèi)生真菌對(duì)寄主植物具有一定組織偏好性,這也印證了Hoffman等[16]的研究結(jié)論,即植物內(nèi)生真菌多樣性受到寄主植物自身不同組織生理生化特性差異的影響。從相似性比較來(lái)看,莖與根相似度最高,推測(cè)是莖與根在空間距離上相隔較近,更有利于內(nèi)生真菌的相互交流與轉(zhuǎn)移。而莖與枝相似度最低,推測(cè)與新疆果園的栽培管理方式相關(guān),為提高果園產(chǎn)出效率,每年對(duì)核桃園枝條進(jìn)行修剪翻新,以塑造良好樹形從而培養(yǎng)更多結(jié)果枝組,最終導(dǎo)致枝條內(nèi)生真菌種類相對(duì)較少,多樣性也相對(duì)較低。本研究結(jié)果表明,鐮刀菌屬和鏈格孢菌屬仍然是核桃內(nèi)生真菌的優(yōu)勢(shì)菌群,這與一些學(xué)者的研究結(jié)論一致[17-18],并且這兩類真菌能夠增強(qiáng)寄主植物對(duì)不良環(huán)境的抵抗力[19]。同時(shí)也說(shuō)明這兩類真菌相較其他屬真菌具有更強(qiáng)的生存能力,更容易在寄主中生長(zhǎng)。但鐮刀菌和鏈格孢菌是常見的植物病原菌,在與寄主共生過(guò)程中,特別是在寄主衰弱時(shí)是否會(huì)轉(zhuǎn)化為致病菌還有待進(jìn)一步研究。
開發(fā)生防菌資源是進(jìn)行植物病害生物防治的基礎(chǔ)[20]。新疆是中國(guó)最大的鹽堿地區(qū),土地鹽堿化已成為新疆農(nóng)業(yè)可持續(xù)發(fā)展的重要障礙[21]。減少農(nóng)藥化肥的投入量,采用高效環(huán)保的生物菌劑是保障新疆農(nóng)業(yè)健康發(fā)展的重要措施之一。筆者從核桃不同組織分離獲得3株不僅對(duì)核桃腐爛病具有很好防效,而且對(duì)核桃幼苗具有很好促生作用的內(nèi)生真菌,經(jīng)鑒定分別為D. torresensis、C. globosum、P. rubens,3株真菌對(duì)核桃腐爛病離體枝條防效均超過(guò)77%。研究發(fā)現(xiàn)經(jīng)過(guò)3株真菌發(fā)酵液處理的核桃幼苗,相比對(duì)照在根長(zhǎng)、株高,鮮質(zhì)量、干質(zhì)量、莖粗直徑等農(nóng)藝指標(biāo)上均有顯著促進(jìn)作用(p<0.05)。促生研究表明,D. torresensis具有解磷、溶磷、產(chǎn)鐵載體能力,但無(wú)產(chǎn)蛋白酶能力;C. globosum具有解磷、產(chǎn)鐵載體能力,但無(wú)溶磷和無(wú)產(chǎn)蛋白酶能力;P. rubens具有溶磷、產(chǎn)蛋白酶和產(chǎn)鐵載體能力,但無(wú)解磷能力。3株真菌在促生功能上表現(xiàn)出了互補(bǔ)性,但真菌之間混合后能否增強(qiáng)對(duì)核桃腐爛病的防治效果,能否增強(qiáng)對(duì)核桃幼苗的促生作用以及菌株的應(yīng)用方式還有待進(jìn)一步研究。
已有研究表明,大多數(shù)土壤中的有效磷含量較低,95%以上為難溶形態(tài)[22],可用的磷酸鹽陰離子要么被黏土表面吸附[23],要么與陽(yáng)離子形成不溶性絡(luò)合物[24]。同樣,土壤中大多數(shù)鐵溶解度極低,以氧化態(tài)或氫氧化態(tài)形式存在,不能被植物利用[25]。蛋白酶是能夠水解蛋白質(zhì)中肽鍵結(jié)構(gòu)并產(chǎn)生氨基酸或多肽的一類酶的總稱,能夠分解有機(jī)質(zhì)和礦物質(zhì),促進(jìn)土壤形成與發(fā)育,對(duì)調(diào)節(jié)植物生長(zhǎng)發(fā)揮著重要作用,是土壤肥力指標(biāo)體系中生物學(xué)指標(biāo)之一。新疆鹽堿化土壤面積大,土壤肥力相對(duì)貧瘠,因此,發(fā)掘具有解磷溶磷、產(chǎn)鐵載體和蛋白酶特性的微生物資源并進(jìn)行開發(fā)利用,對(duì)提高土壤營(yíng)養(yǎng)元素利用率,降低化肥的投入量,從而推動(dòng)農(nóng)業(yè)綠色發(fā)展具有重要意義。
4 結(jié) 論
筆者從10株50年生核桃不同組織部位中共分離到129株內(nèi)生真菌,經(jīng)過(guò)鑒定屬于3門18屬,其中優(yōu)勢(shì)菌屬為鐮刀菌屬和鏈格孢菌屬。對(duì)不同組織部位的內(nèi)生真菌進(jìn)行多樣性分析的結(jié)果表明,莖內(nèi)生真菌的多樣性指數(shù)H'、豐富度指數(shù)M和均勻度指數(shù)E最高,而枝內(nèi)生真菌多樣性指數(shù)、豐富度指數(shù)和均勻度指數(shù)相比最低。不同組織內(nèi)生真菌存在差異性的同時(shí),也表現(xiàn)出一定程度的相似性,其中莖與根的內(nèi)生真菌相似性最高,其次為根和枝,而枝條中內(nèi)生真菌的多樣性指數(shù)和豐富度指數(shù)均低于莖,且二者的相似度最低。從129株內(nèi)生真菌中篩選出了3株對(duì)核桃腐爛病具有較好防效且對(duì)核桃幼苗具有顯著促生作用的生防真菌。促生特性研究表明,3株真菌均有產(chǎn)鐵載體的能力,同時(shí)在解磷、溶磷及產(chǎn)蛋白酶能力方面,菌株間又存在差異。
參考文獻(xiàn) References:
[1] 張曉婧,劉潤(rùn)進(jìn). 廣義與狹義植物內(nèi)生生物的定義及其研究進(jìn)展[J]. 微生物學(xué)通報(bào),2014,41(3):560-571.
ZHANG Xiaojing,LIU Runjin. Broad and narrow definition of endophytes and related advances in the study[J]. Microbiology China,2014,41(3):560-571.
[2] LYONS P C,EVANS J J,BACON C W. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue[J]. Plant Physiology,1990,92(3):726-732.
[3] SANTOYO G,MORENO-HAGELSIEB G,DEL CARMEN OROZCO-MOSQUEDA M,GLICK B R. Plant growth-promoting bacterial endophytes[J]. Microbiological Research,2016,183:92-99.
[4] HAIDAR R,F(xiàn)ERMAUD M,CALVO-GARRIDO C,ROUDET J,DESCHAMPS A. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria[J]. Phytopathologia Mediterranea,2016,55(3):301-322.
[5] 吳婷,王夢(mèng)迪,黃情兒,朱波,秦路平. 延胡索不同組織器官中內(nèi)生真菌菌群結(jié)構(gòu)與多樣性分析[J]. 中草藥,2023,54(16):5372-5378.
WU Ting,WANG Mengdi,HUANG Qinger,ZHU Bo,QIN Luping. Fungal community and diversity of endophytic fungi in different tissues of Corydalis yanhusuo[J]. Chinese Traditional and Herbal Drugs,2023,54(16):5372-5378.
[6] 唐青,周思旋,雷幫星,文庭池,錢一鑫,康冀川. 貴州西南部艾納香內(nèi)生真菌多樣性研究[J]. 菌物學(xué)報(bào),2017,36(11):1498-1503.
TANG Qing,ZHOU Sixuan,LEI Bangxing,WEN Tingchi,QIAN Yixin,KANG Jichuan. Diversity of endophytic fungi from Blumea balsamifera in southwest Guizhou[J]. Mycosystema,2017,36(11):1498-1503.
[7] 郭良棟. 內(nèi)生真菌研究進(jìn)展[J]. 菌物系統(tǒng),2001,20(1):148-152.
GUO Liangdong. Advances of researches on endophytic fungi[J]. Mycosystema,2001,20(1):148-152.
[8] 徐莎莎. 新疆核桃腐爛病的發(fā)生規(guī)律、病原結(jié)構(gòu)組成及遺傳多樣性研究[D]. 阿拉爾:塔里木大學(xué),2022.
XU Shasha. The occurrence,pathogenic structural composition and genetic diversity of walnut canker disease in Xinjiang[D]. Alar:Tarim University,2022.
[9] 孔婷婷,岳朝陽(yáng),劉愛(ài)華,張靜文,克熱曼,努爾古麗,阿衣夏木. 核桃腐爛病的發(fā)生和綜合防控研究進(jìn)展[J]. 防護(hù)林科技,2016(10):65-66.
KONG Tingting,YUE Chaoyang,LIU Aihua,ZHANG Jingwen,Kereman,Nuerguli,Ayixiamu. Research progress on occurrence and comprehensive control of walnut rot disease[J]. Protection Forest Science and Technology,2016(10):65-66.
[10] 王瀚,卓平清,王讓軍,王明霞. 核桃腐爛病研究進(jìn)展[J]. 東北農(nóng)業(yè)科學(xué),2019,44(3):23-27.
WANG Han,ZHUO Pingqing,WANG Rangjun,WANG Mingxia. Progress of researches on the canker disease of walnut[J]. Journal of Northeast Agricultural Sciences,2019,44(3):23-27.
[11] 郝芳敏,臧全宇,馬二磊,丁偉紅,王毓洪,黃蕓萍. 甜瓜多種真菌病害拮抗細(xì)菌NBmelon-1的鑒定及其促生和生防效果[J]. 中國(guó)瓜菜,2021,34(7):14-19.
HAO Fangmin,ZANG Quanyu,MA Erlei,DING Weihong,WANG Yuhong,HUANG Yunping. Identification,biocontrol and growth promoting effects of antagonistic bacteria NBmelon-1 of various fungal diseases in melon[J]. China Cucurbits and Vegetables,2021,34(7):14-19.
[12] 郝芳敏,董文杰,臧全宇,馬二磊,丁偉紅,王毓洪. 一株甜瓜枯萎病拮抗菌的篩選、鑒定及生防效果[J]. 中國(guó)瓜菜,2023,36(12):26-32.
HAO Fangmin,DONG Wenjie,ZANG Quanyu,MA Erlei,DING Weihong,WANG Yuhong. Screening,identification and biocontrol effect of antagonistic bacteria against melon Fusarium wilt[J]. China Cucurbits and Vegetables,2023,36(12):26-32.
[13] 魏景超. 真菌鑒定手冊(cè)[M]. 上海:上??茖W(xué)技術(shù)出版社,1979.
WEI Jingchao. Molecular identification of Fungi[M]. Shanghai:Shanghai Science Technology Press,1979.
[14] 易航,何靜,楊希,榮姝恬,王麗. 小黃花茶內(nèi)生真菌的多樣性分析及抑菌活性初篩[J]. 廣西植物,2024,44(2):382-395.
YI Hang,HE Jing,YANG Xi,RONG Shutian,WANG Li. Diversity analysis of endophytic fungi and preliminary screening of antibacterial activity in Camellia luteoflora[J]. Guihaia,2024,44(2):382-395.
[15] 邴輝. 生姜根際促生菌的促生效應(yīng)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
BING Hui. Promoting effect of ginger from rhizosphere probioties[D]. Tai’an:Shandong Agricultural University,2020.
[16] HOFFMAN M T,ARNOLD A E. Geographic locality and host identity shape fungal endophyte communities in Cupressaceous trees[J]. Mycological Research,2008,112(3):331-344.
[17] 毛光瑞,翟梅枝,史冠昭,阿依佳瑪麗·依瑪爾,劉澤星. 陜西不同生境核桃內(nèi)生真菌多樣性[J]. 微生物學(xué)通報(bào),2016,43(6):1262-1273.
MAO Guangrui,ZHAI Meizhi,SHI Guanzhao,Yimaer·Ayijiamali,LIU Zexing. Diversity of fungat endophytes from Juglans regia under different habitats in Shaanxi[J]. Microbiology China,2016,43(6):1262-1273.
[18] 白周艷,王曉煒,馬榮,田呈明. 新疆杏樹(Armeniaca Mill.)內(nèi)生真菌多樣性分析[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,34(4):321-327.
BAI Zhouyan,WANG Xiaowei,MA Rong,TIAN Chengming. Analysis on diversity of endophytic fungi from apricot (Armeniaca mill.) in Xinjiang[J]. Journal of Xinjiang Agricultural University,2011,34(4):321-327.
[19] HELLWIG V,GROTHE T,MAYER-BARTSCHMID A,ENDERMANN R,GESCHKE F U,HENKEL T,STADLER M. Altersetin,a new antibiotic from cultures of endophytic Alternaria spp. taxonomy,fermentation,isolation,structure elucidation and biological activities[J]. Journal of Antibiotics,2002,55(10):881-892.
[20] 符曉,丁俊園,焦嘉卉,鐘思雨,孫孟嬌,付家佳,唐光輝,李培琴. 陜西地區(qū)花椒主要病害的生防菌篩選與鑒定[J]. 干旱地區(qū)農(nóng)業(yè)研究,2024,42(2):222-230.
FU Xiao,DING Junyuan,JIAO Jiahui,ZHONG Siyu,SUN Mengjiao,F(xiàn)U Jiajia,TANG Guanghui,LI Peiqin. Screening and identification of biocontrol strains for major diseases of Zanthoxylum bungeanum in Shaanxi Province[J]. Agricultural Research in the Arid Areas,2024,42(2):222-230.
[21] 王斌,馬興旺,單娜娜,楊濤,劉驊,牛新湘. 新疆鹽堿地土壤改良劑的選擇與應(yīng)用[J]. 干旱區(qū)資源與環(huán)境,2014,28(7):111-115.
WANG Bin,MA Xingwang,SHAN Nana,YANG Tao,LIU Hua,NIU Xinxiang. The selection and application of saline alkali soil amendment in Xinjiang[J]. Journal of Arid Land Resources and Environment,2014,28(7):111-115.
[22] 孟祥坤,于新,朱超,胡兆平,范玲超. 解磷微生物研究與應(yīng)用進(jìn)展[J]. 華北農(nóng)學(xué)報(bào),2018,33(增刊1):208-214.
MENG Xiangkun,YU Xin,ZHU Chao,HU Zhaoping,F(xiàn)AN Lingchao. Research and application advances in phosphate-solubilizing-microorganisms[J]. Acta Agriculturae Boreali-Sinica,2018,33(Suppl. 1):208-214.
[23] HALAJNIA A,HAGHNIA G H,F(xiàn)OTOVAT A,KHORASANI R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure[J]. Geoderma,2009,150(1/2):209-213.
[24] YADAV H,F(xiàn)ATIMA R,SHARMA A,MATHUR S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost[J]. Applied Soil Ecology,2017,113:80-85.
[25] 鄧凌韋,張麗艷,馬軍韜,王永力,李琬,王利軍,鄭德剛. 機(jī)理Ⅰ植物根系鐵吸收及缺鐵感應(yīng)信號(hào)研究進(jìn)展[J]. 黑龍江農(nóng)業(yè)科學(xué),2015(9):140-146.
DENG Lingwei,ZHANG Liyan,MA Juntao,WANG Yongli,LI Wan,WANG Lijun,ZHENG Degang. Research progress on the iron uptake of strategy Ⅰ plant and iron sensors to iron deficiency[J]. Heilongjiang Agricultural Sciences,2015(9):140-146.