摘 要 為探究光質(zhì)與鉀濃度交互對紫葉生菜生長、品質(zhì)的影響,進(jìn)而篩選紫葉生菜最適光質(zhì)與鉀濃度交互模式。試驗以‘紫羅馬’紫葉生菜為試驗材料,以白色熒光燈(L1)為對照,另設(shè)3種LED光質(zhì)處理;同時基于Hoagland營養(yǎng)液配方,設(shè)置6個鉀濃度處理,共24個處理。光質(zhì)處理30 d后采收并測定紫葉生菜生物量、營養(yǎng)及品質(zhì)相關(guān)指標(biāo)。結(jié)果表明,不同光質(zhì)與鉀濃度交互模式對紫葉生菜生長、營養(yǎng)與品質(zhì)存在一定影響。 (1)生長方面,不同光質(zhì)與60、90、120、150 μg·mL-1鉀濃度交互時,對地上部鮮質(zhì)量(產(chǎn)量)與根系總長提升效果較優(yōu)者均為紅光。不同鉀濃度與紅光、藍(lán)光、紅藍(lán)復(fù)合光交互時,對產(chǎn)量、葉面積、根系總長提升效果較佳者為150 μg·mL-1鉀濃度。而不同光質(zhì)與鉀濃度交互模式下,紅光與150 μg·mL-1鉀濃度交互對產(chǎn)量提升效果最佳,較同鉀濃度的白光處理提高59.52%;藍(lán)光與150 μg·mL-1鉀濃度交互對株高、葉面積及根系生長存在促進(jìn)作用,綜合效益最佳。較同鉀濃度的白光處理,藍(lán)光與150 μg·mL-1鉀濃度交互模式株高、葉面積、地下部鮮質(zhì)量與根體積分別提高27.94%、49.06%、78.74%、169.35%。(2)營養(yǎng)與品質(zhì)方面,不同光質(zhì)與60、90、120 μg·mL-1鉀濃度交互時,提高可溶性蛋白與可溶性糖含量效果較佳者為紅光;與150、180" μg·mL-1鉀濃度交互,各光質(zhì)均可提高維生素C含量并降低硝酸鹽含量。而不同鉀濃度與白光、藍(lán)光、紅藍(lán)復(fù)合光交互時,提高可溶性糖與維生素C含量效果較佳者均為150 μg·mL-1鉀濃度。而不同光質(zhì)與鉀濃度交互模式下,藍(lán)光與150 μg·mL-1鉀濃度交互對品質(zhì)指標(biāo)綜合提升效果最佳。較同鉀濃度的白光處理,藍(lán)光與150 μg·mL-1鉀濃度交互模式的可溶性糖、可溶性蛋白與維生素C含量分別提高158.53%、14.07%、8.05%;而對光合色素與花青素提升效果最佳的分別為紅藍(lán)光與120 μg·mL-1鉀濃度交互、藍(lán)光與180" μg·mL-1鉀濃度交互。綜上所述,不同光質(zhì)與鉀濃度交互模式對紫葉生菜生長與品質(zhì)影響不同,結(jié)合隸屬函數(shù)進(jìn)行綜合指標(biāo)評定,得出藍(lán)光與150 μg·mL-1鉀濃度交互為紫葉生菜最佳管理模式。而為進(jìn)一步提高紫葉生菜產(chǎn)量,可選擇紅光與150 μg·mL-1鉀濃度交互;進(jìn)一步提高花青素含量,可選擇藍(lán)光與180" μg·mL-1鉀濃度交互進(jìn)行生產(chǎn)。
關(guān)鍵詞 鉀濃度;光質(zhì);交互模式;紫葉生菜;生長;品質(zhì)
生菜(Lactuca sativa L.),菊科萵苣屬,為水培主栽蔬菜之一,據(jù)葉綠素和花青素含量高低可分為綠葉和紫葉兩種[1]。目前紫葉生菜以特有形色、營養(yǎng)價值豐富等優(yōu)勢[2-3],使其市場需求量逐步提高。
在無土栽培過程中,光質(zhì)和營養(yǎng)元素是影響植物生長的重要因素。許多研究表明,光質(zhì)與“品質(zhì)元素”鉀均可調(diào)控植株代謝、光合等生理過程,間接影響植株產(chǎn)量和品質(zhì)[4-7]。如光質(zhì)方面,紅光、藍(lán)光、紅藍(lán)光配比可對植物生長或品質(zhì)有一定促進(jìn)作用[8-11]。而鉀應(yīng)用方面,適宜鉀濃度可促進(jìn)植株對礦質(zhì)元素吸收[12],并提高產(chǎn)量與可溶性固形物含量[13]。目前關(guān)于無土栽培探究光質(zhì)[14-16]或營養(yǎng)元素[17-19]對植株的生長影響單因素研究甚多,而關(guān)于光質(zhì)與鉀濃度交互對生菜生長發(fā)育的相關(guān)研究未見報道。因植株生長受多因素綜合影響,為此,本試驗在前人單因素試驗基礎(chǔ)上,以‘紫羅馬’紫葉生菜為試材,將白色熒光燈作為對照(CK),另設(shè)不同LED光源處理,同時各光質(zhì)處理設(shè)置不同鉀濃度梯度。探究光質(zhì)與鉀濃度交互對紫葉生菜產(chǎn)量及品質(zhì)的影響,以期篩選出適用于紫葉生菜的最佳光質(zhì)與營養(yǎng)液鉀濃度管理模式。為紫葉生菜增產(chǎn)提質(zhì),促進(jìn)工廠化紫葉生菜生產(chǎn)提供一些技術(shù)參考。
1 材料與方法
1.1 試驗材料
供試‘紫羅馬’紫葉生菜種子購于河北興農(nóng)富民種子銷售有限公司;LED光源型號UH-BLDT0511RGB-W28,DC 24V,額定功率11 W,R(峰值波長666 nm)、B(峰值波長445 nm),白色熒光燈功率為11 W,均購于惠州可道科技股份有限公司。
Hoagland改良營養(yǎng)液配方組分為:Ca(NO3)·4H2O、NH4H2PO4、MgSO4·7H2O、CaCl2、H3BO3、MnSO4·H2O、ZnSO4·H2O、CuSO4·5H2O、H2MoO4(85%MoO3)、NaFeDTPA(10%Fe),用量依次為4、2、1、0.05、0.025、0.002、 0.002、0.000 5、0.000 5、0.053 mmol·L-1。
1.2 試驗設(shè)計
試驗在福建農(nóng)林大學(xué)人工氣候室和設(shè)施溫室中進(jìn)行。利用自主設(shè)計層架式立體培養(yǎng)架(4 層×3列)進(jìn)行水培,光照培養(yǎng)架為鋼架結(jié)構(gòu),于每層頂部安裝不同光質(zhì)處理光源,光強均設(shè)置為120" μmol·m-2·s-1。在紫葉生菜生長期內(nèi),通過調(diào)整培養(yǎng)架位置,來保證光源與植株的距離保持在30 cm,內(nèi)層鋪設(shè)鍍鋁反光膜,外層采用銀灰色幕布覆蓋遮光,避免外界光源影響。試驗以白色熒光燈(L1)為對照,另設(shè)3個處理,分別為紅光(L2)、藍(lán)光(L3)、紅藍(lán)復(fù)合光(L4)光質(zhì)處理;營養(yǎng)液配方基于Hoagland改良營養(yǎng)液,設(shè)計6個鉀濃度處理為30" μg·mL-1(T1)、60"" μg·mL-1(T2)、90" μg·mL-1(T3)、120"" μg·mL-1(T4)、150" μg·mL-1(T5)、180"" μg·mL-1(T6)。共24個處理,每處理15株,各處理重復(fù)3次(表1)。
紫葉生菜用草炭∶蛭石∶珍珠巖=3∶1∶1的混合基質(zhì)育苗。長至2葉1心時移栽至自制帶有反光面的水培塑料培養(yǎng)槽(6 cm×12 cm),每盒1株,加入Hoagland改良營養(yǎng)液緩苗2 d。分別定植于裝有不同鉀濃度營養(yǎng)液的光質(zhì)培養(yǎng)架的培養(yǎng)槽中??刂乒庹諘r間為14 h·d-1,溫度 20 ℃, 每日采用通氣泵通氣1次,并每周更換1次營養(yǎng)液。
1.3 指標(biāo)測定
光質(zhì)處理后30 d進(jìn)行各指標(biāo)測定。株高、莖粗:采用精度0.1 mm的游標(biāo)卡尺測定;鮮質(zhì)量:分開地上部和地下部后,應(yīng)用精度為0.001 g分析天平測定;葉面積:應(yīng)用葉面積儀測定;根體積與根系總長:應(yīng)用EPSON Expression 110000XL 掃描儀測定;可溶性糖:蒽酮比色法[20];可溶性蛋白:考馬斯亮藍(lán)G-250法[21];維生素C:二甲苯萃取比色法[22];硝酸鹽:水楊酸法[22];葉綠素:混合液提取法[23];總酚、類黃酮、花青素:HCL-甲醇法[24]。
1.4 數(shù)據(jù)處理
采用 Microsoft Excel 2003進(jìn)行數(shù)據(jù)整理及繪制相關(guān)圖表,并用IBM SPSS Stastistic 21 進(jìn)行差異顯著性分析(Plt;0.05)。
設(shè)置地上部鮮質(zhì)量、株高、葉面積、地下部鮮質(zhì)量、根體積、根系總長依次為p1、p2、p3、p4、p5、p6,采用公式P對地上部鮮質(zhì)量前10的處理進(jìn)行生長綜合指標(biāo)評定,設(shè)置可溶性蛋白、可溶性糖、維生素C、硝酸鹽、葉綠素a+b、類胡蘿卜素、花青素依次為q1、q2、q3、q4、q5、q6、q7,采用公式Q對各營養(yǎng)指標(biāo)排序前15次數(shù)大于該類指標(biāo)數(shù)1/2的處理進(jìn)行綜合指標(biāo)評定。
P=[p1×0.3+(p2+p3)×0.2+(p4+ p5+p6)×0.1]/6
Q=[(q1+q2+q3+q4+q5+q6)×0.1+ q7×0.4]/7
2 結(jié)果與分析
2.1 不同光質(zhì)與鉀濃度交互模式對紫葉生菜生長的影響
2.1.1 對紫葉生菜地上部指標(biāo)的影響
由圖1可知,不同光質(zhì)與鉀濃度交互模式對紫葉生菜地上部指標(biāo)的影響。在不同光質(zhì)下,與30" μg·mL-1鉀濃度交互時,提高地上部鮮質(zhì)量(產(chǎn)量)效果較佳者為紅藍(lán)復(fù)合光,提升株高與葉面積效果較佳者均為紅光;與60 μg·mL-1鉀濃度交互時,提高產(chǎn)量、提升葉面積效果較佳者均為紅光;與90 μg·mL-1鉀濃度交互時,提高產(chǎn)量效果較佳者為紅光,提升株高、葉面積效果較佳者分別為白光、藍(lán)光;與120、150 μg·mL-1鉀濃度交互時,提高產(chǎn)量效果較佳者為紅光,提升株高與葉面積效果較佳者均為藍(lán)光;與180 μg·mL-1鉀濃度交互時,提升地上部指標(biāo)效果較佳者均為藍(lán)光。在不同鉀濃度下,與紅光、藍(lán)光交互時,對產(chǎn)量、株高、葉面積提升效果最佳者為150" μg·mL-1。與紅藍(lán)復(fù)合光交互時,對產(chǎn)量、葉面積提升效果最佳者為150 μg·mL-1,對株高提升效果最佳者為120 μg·mL-1。在光質(zhì)與鉀濃度交互下,提高產(chǎn)量的最優(yōu)處理為L2T5,提升株高及葉面積的最優(yōu)處理均為L3T5。L3T5與同鉀濃度的白光處理相比,株高與葉面積分別提高27.94%、49.06%。
2.1.2 對紫葉生菜地下部指標(biāo)的影響 [HT]由圖1可知,不同光質(zhì)與鉀濃度交互模式對紫葉生菜地下部形態(tài)指標(biāo)的影響。在不同光質(zhì)下,與30" μg·mL-1鉀濃度交互時,提高地下部鮮質(zhì)量、提升根體積效果較優(yōu)者均為紅藍(lán)復(fù)合光,提升根系總長效果較優(yōu)者為紅光;與60、90、120" μg·mL-1鉀濃度交互時,提高地下部鮮質(zhì)量、提升根體積與根系總長效果較優(yōu)者均為紅光;與150、180 μg·mL-1鉀濃度交互時,提高地下部鮮質(zhì)量、提升根體積效果較優(yōu)者均為藍(lán)光。L3T5與L3T6與同鉀濃度的白光處理相比,地下部鮮質(zhì)量分別提高78.74%、41.41%,根體積分別提高169.35%、135.29%。在不同鉀濃度下,與白光、紅光交互時,對地下部鮮質(zhì)量、根體積、根系總長提升效果最佳者均為150 μg·mL-1。與紅光交互時,對地下部鮮質(zhì)量、根體積提升效果最佳者為120 μg·mL-1,對根系總長提升效果最佳者為150 μg·mL-1。
在光質(zhì)與鉀濃度交互下,提高紫葉生菜地下部鮮質(zhì)量與根體積的最優(yōu)處理為L2T4,提升根系總長的最優(yōu)處理為L2T5。
2.2 不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片品質(zhì)的影響
2.2.1 對紫葉生菜葉片營養(yǎng)品質(zhì)的影響 [HT]由圖2可知,在不同光質(zhì)下,與30" μg·mL-1鉀濃度交互時,提高可溶性蛋白含量效果較佳者為紅光,提高可溶性糖與維生素C含量效果較佳者均為藍(lán)光;與60、90、120" μg·mL-1鉀濃度交互時,提高可溶性蛋白與可溶性糖含量效果較佳者均為紅光,提高維生素C含量效果較佳者為藍(lán)光;而與150 μg·mL-1鉀濃度交互時,提高可溶性蛋白、可溶性糖含量提高效果較佳者均為藍(lán)光,但提高維生素C含量效果則表現(xiàn)為紅光、藍(lán)光與紅藍(lán)復(fù)合光效果相近;與180 μg·mL-1鉀濃度交互時,提高可溶性蛋白含量效果較優(yōu)者為藍(lán)光,提高可溶性糖與維生素C含量效果較優(yōu)者均為紅光。在不同鉀濃度下,與白光、藍(lán)光及紅藍(lán)復(fù)合光交互時,提高可溶性蛋白含量效果較優(yōu)者為120" μg·mL-1鉀濃度,提高可溶性糖與維生素C含量效果較優(yōu)者均為150" μg·mL-1鉀濃度。
在光質(zhì)與鉀濃度交互下,提高紫葉生菜葉片營養(yǎng)品質(zhì)的最優(yōu)處理為L3T5。L3T5與同鉀濃度的白光處理相比,可溶性糖、可溶性蛋白與維生素C含量分別提高158.53%、14.07%、8.05%。
2.2.2 對紫葉生菜葉片硝酸鹽含量的影響 [HT]由圖2可知不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片硝酸鹽含量的影響。在不同光質(zhì)下,與30、60、90、120 μg·mL-1鉀濃度交互時,降低硝酸鹽含量效果較優(yōu)者為紅藍(lán)復(fù)合光;而與150、180 μg·mL-1鉀濃度交互時,降低硝酸鹽含量效果較優(yōu)者為藍(lán)光。在不同鉀濃度下,與4種光質(zhì)交互時,降低硝酸鹽含量效果較優(yōu)者為180" μg·mL-1鉀濃度。在光質(zhì)與鉀濃度交互下,降低紫葉生菜葉片硝酸鹽含量的最優(yōu)處理為L3T6,其次為L3T5,且二者無顯著性差異,L3T5、L3T6與同鉀濃度的白光處理相比分別降低11.59%、14.15%。
2.3 不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片光合色素的影響
由圖3可知不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片光合色素的影響。在不同光質(zhì)下,與30 μg·mL-1鉀濃度交互時,提高葉綠素a含量與葉綠素總量效果較優(yōu)者均為紅光,提高葉綠素b與類胡蘿卜素含量效果較優(yōu)者均為紅藍(lán)復(fù)合光;與60、90 μg·mL-1鉀濃度交互時,提高葉綠素a含量與葉綠素總量效果較優(yōu)者均為紅光,提高葉綠素b含量效果較佳者為紅藍(lán)復(fù)合光。與120、150 μg·mL-1鉀濃度交互時,提高葉綠素b與類胡蘿卜素含量效果較優(yōu)者均為紅藍(lán)復(fù)合光;與180 μg·mL-1鉀濃度交互時,提高葉綠素a含量與葉綠素總量效果較優(yōu)者均為白光,提高葉綠素b與類胡蘿卜素含量效果較優(yōu)者均為紅藍(lán)復(fù)合光。在不同鉀濃度下,與白光、紅光交互時,提高葉綠素a含量與葉綠素總量效果較優(yōu)者為60 μg·mL-1,提高葉綠素b與類胡蘿卜素含量效果較優(yōu)者為120 μg·mL-1;與藍(lán)光交互時,提高葉綠素a、葉綠素b含量及葉綠素總量效果較優(yōu)者為180 μg·mL-1,與紅藍(lán)復(fù)合光交互時,提高葉綠素a、葉綠素b含量及葉綠素總量效果較優(yōu)者為120 μg·mL-1。在光質(zhì)與鉀濃度交互時,提高紫葉生菜葉綠素a含量的最優(yōu)處理為L2T2,提高葉綠素b、類胡蘿卜素含量與葉綠素總量的最優(yōu)處理均為L4T4。
2.4 不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片總酚、類黃酮、花青素含量的影響
由圖4~6可知不同光質(zhì)與鉀濃度交互模式對紫葉生菜葉片總酚、類黃酮、花青素含量的影響。在不同光質(zhì)下,與30 μg·mL-1鉀濃度交互時,提高總酚、類黃酮、花青素含量效果較優(yōu)者分別為紅藍(lán)復(fù)合光、紅光、藍(lán)光;而與60 μg·mL-1鉀濃度交互時,提高總酚、類黃酮、花青素含量效果較優(yōu)者均為藍(lán)光;與90 μg·mL-1鉀濃度交互時,提高總酚含量效果較優(yōu)者為紅藍(lán)復(fù)合光,提高類黃酮含量效果較優(yōu)者為藍(lán)光;與120、150、180 μg·mL-1鉀濃度交互時,提高花青素含量效果較優(yōu)者為藍(lán)光,L3T4、L3T5、L3T6與同鉀濃度的白光處理相比,花青素含量分別提高29.73%、79.40%、122.32%。在不同鉀濃度下,與紅光、藍(lán)光、紅藍(lán)復(fù)合光交互時,提高總酚與類黃酮含量效果較優(yōu)者均為90 μg·mL-1鉀濃度。而在不同鉀濃度下,與白光、紅光交互時,提高花青素含量效果較優(yōu)者為90 μg·mL-1鉀濃度;與藍(lán)光交互時,提高花青素含量效果較優(yōu)者為180" μg·mL-1鉀濃度;與紅藍(lán)復(fù)合光交互時,提高花青素含量效果較優(yōu)者為120 μg·mL-1鉀濃度。
在光質(zhì)與鉀濃度交互時,提高紫葉生菜總酚、類黃酮與花青素含量的最優(yōu)處理分別為L4T3、L3T3、L3T6。
2.5 綜合評價
計算整理得表2、表3,可知生長、營養(yǎng)與品質(zhì)指標(biāo)綜合評價值均以L3T5最高。
3 討論與結(jié)論
3.1 不同光質(zhì)與鉀濃度交互模式對紫葉生菜生長指標(biāo)的影響
紫葉生菜地上部生長狀況直接影響其產(chǎn)量與感官品質(zhì);地下部生長狀況反映植株養(yǎng)分吸收情況,間接影響地上部形態(tài)建成。本試驗結(jié)果表明,不同光質(zhì)與鉀濃度交互模式對紫葉生菜的生長影響不同。在不同光質(zhì)下,與60、90、120" μg·mL-1交互時,提升紫葉生菜產(chǎn)量、地下部相關(guān)指標(biāo)的較優(yōu)光質(zhì)均為紅光;與120 μg·mL-1、150 μg·mL-1鉀濃度交互時,提高紫葉生菜株高與葉面積的較優(yōu)光質(zhì)均為藍(lán)光。并且較同鉀濃度白光,藍(lán)光可顯著促進(jìn)紫葉生菜生長。該結(jié)果中,藍(lán)光對株高的影響與周華等[25]、劉淑娟等[9]研究結(jié)果一致,對葉面積的影響與陳美香等[26]在金線蓮組培苗研究結(jié)果相同。與占麗英[27]關(guān)于光質(zhì)對紫色小白菜影響的研究結(jié)果相近。在不同鉀濃度下,與紅光、藍(lán)光、紅藍(lán)復(fù)合光交互時,提高紫葉生菜產(chǎn)量的較優(yōu)鉀濃度為150" μg·mL-1。在光質(zhì)與鉀濃度交互下,紅光與150" μg·mL-1鉀濃度交互為提升產(chǎn)量的最優(yōu)模式;藍(lán)光與150 μg·mL-1鉀濃度交互較同鉀濃度白光處理,可顯著提高株高、葉面積、地下部鮮質(zhì)量與根體積等指標(biāo)。結(jié)合生長指標(biāo)綜合評價值,L3T5(即藍(lán)光與150 μg·mL-1鉀濃度交互)對生長促進(jìn)效果最佳。
3.2 不同光質(zhì)與鉀濃度交互模式對紫葉生菜營養(yǎng)與品質(zhì)相關(guān)生理生化指標(biāo)的影響
可溶性蛋白、可溶性糖、維生素C與硝酸鹽是紫葉生菜重要的品質(zhì)、營養(yǎng)指標(biāo);葉綠素、類胡蘿卜素通過影響光合作用,間接地影響生菜生長發(fā)育??偡印㈩慄S酮與花青素是紫葉生菜特有營養(yǎng)物質(zhì)。營養(yǎng)品質(zhì)與硝酸鹽含量方面,在不同光質(zhì)下,與60、90、120 μg·mL-1鉀濃度交互時,提高可溶性蛋白與可溶性糖含量效果較佳者為紅光,提高維生素C 含量效果較佳者為藍(lán)光;與150、 180 μg·mL-1鉀濃度交互時, 藍(lán)光可顯著提高可溶性糖、可溶性蛋白含量,降低硝酸鹽含量。在不同鉀濃度下,與白光、藍(lán)光、紅藍(lán)復(fù)合光交互時,提高可溶性糖與維生素C含量效果較佳者均為150 μg·mL-1鉀濃度;降低硝酸鹽含量效果較佳者為180 μg·mL-1鉀濃度,其次為150 μg·mL-1鉀濃度。表明不同光質(zhì)與150~180 μg·mL-1鉀濃度交互均可提高維生素C含量并降低硝酸鹽含量,這與張棟等[28]、王鳳婷等[29]研究結(jié)果相符。在不同光質(zhì)與鉀濃度交互模式下,藍(lán)光與150 μg·mL-1鉀濃度交互為提高可溶性蛋白與可溶性糖含量的最佳處理,這與湯博藝[30]、郭林鑫等[16]結(jié)果相符。
光合色素與花青素方面,在不同光質(zhì)下,與90、120、150 μg·mL-1鉀濃度交互時,提升花青素含量最佳者均為藍(lán)光,提升葉綠素b含量效果最佳者為紅藍(lán)復(fù)合光。該現(xiàn)象與劉明飛等[31]與黃婷等[32]關(guān)于光質(zhì)對葉綠素含量影響的研究結(jié)果相近。在不同鉀濃度下,在與紅光、紅藍(lán)復(fù)合光交互時,提升葉綠素b類胡蘿卜素、總酚與類黃酮含量效果最優(yōu)者為120 μg·mL-1。而在光質(zhì)與鉀濃度交互時,提高葉綠素b、類胡蘿卜素含量與葉綠素總量效果最優(yōu)的處理均為L4T4。而提高總酚、類黃酮、花青素含量效果最優(yōu)的處理分別為紅藍(lán)復(fù)合光與90 μg·mL-1鉀濃度交互、藍(lán)光與90 μg·mL-1鉀濃度交互、藍(lán)光與180" μg·mL-1鉀濃度交互處理。同時,較同鉀濃度的白光處理,藍(lán)光與150 μg·mL-1鉀濃度交互可促進(jìn)花青素合成。結(jié)合品質(zhì)指標(biāo)綜合評價值,L3T5對綜合提升各品質(zhì)指標(biāo)最為有利,而L3T6對葉綠素與花青素合成有利。
綜上,在特定鉀濃度下,促進(jìn)紫葉生菜生長、提高營養(yǎng)與品質(zhì)的較優(yōu)光質(zhì)為藍(lán)光。在特定光質(zhì)下,促進(jìn)紫葉生菜產(chǎn)量,提高可溶性糖與維生素C的較優(yōu)鉀濃度為150 μg·mL-1。L3T5(即藍(lán)光與150 μg·mL-1鉀濃度交互)可促進(jìn)紫葉生菜生長發(fā)育、光合色素、花青素及其他品質(zhì)指標(biāo)提升,綜合效益最好。而為進(jìn)一步提高紫葉生菜葉片中花青素積累,可選擇L3T6(即藍(lán)光與180" μg·mL-1鉀濃度交互)進(jìn)行生產(chǎn)。筆者認(rèn)為二者均可作為工廠化紫葉生菜生產(chǎn)光與鉀交互最佳管理模式。
參考文獻(xiàn) Reference:
[1] 閆征南,賀冬仙,鈕根花,等.白紅與紅藍(lán)LED光照環(huán)境對兩種生菜生長、品質(zhì)和能量利用效率的影響[J].農(nóng)業(yè)工程技術(shù),2020,40(25):40-46.
YAN ZH N,HE D X,NIU G H,et al.Influence of white,red and blue LED lighting environment on the growth,quality and energy utilization efficiency of the two kinds of lettuce[J].Agricultural Engineering Technology,2020, 40(25):40-46.
[2]張曉梅,王海亭.西寧地區(qū)紫色生菜新品種引種比較試驗[J].北方園藝,2014(2):39-40.
ZHANG X M,WANG H T.Variety comparative test of purple lettuce new variety in Xining region[J].Northern Horticulture,2014(2):39-40.
[3]郝敬虹,趙 猛,劉 慧,等.不同品種紫葉生菜花青素含量及其抗氧化性分析[J].北京農(nóng)學(xué)院學(xué)報,2014,29(2):25-28.
HAO J H,ZHAO M,LIU H,et al.The anthocyanin content and antioxidant analysis of different varieties of purple lettuce[J].Journal of Beijing University of Agriculture,2014,29(2):25-28.
[4]代綠葉,顧益銀,韓瑩琰.LED光環(huán)境調(diào)控對植物影響的研究進(jìn)展[J].分子植物育種,2024,22(22):7535-7547.
DAI L Y,GU Y Y,HAN Y Y.Research Progress on the effects of LED light environmental control on plants[J].Molecular Plant Breeding,2024,22(22):7535-7547.
[5]蔡淑芳,劉 現(xiàn),吳敬才,等.LED光質(zhì)對小白菜生長及品質(zhì)影響的研究進(jìn)展[J].福建農(nóng)業(yè)科技,2019(7):65-69.
CAI SH F,LIU X,WU J C,et al.Research progress on the effect of LED light quality on the growth and quality of Chinese cabbage[J].Fujian Agricultural Science and Technology,2019(7):65-69.
[6]王 鵬,曾 固,熊姜玲,等.植物工廠中光質(zhì)對高品質(zhì)蔬菜生產(chǎn)的影響研究進(jìn)展[J].安徽農(nóng)學(xué)通報,2021,27(23):19-24,30.
WANG P,ZENG G,XIONG J L,et al.Research progress of the influence of light on high quality vegetable production in plant factory[J].Anhui Agricultural Science Bulletin,2021,27(23):19-24,30.
[7]陸志峰,魯劍巍,潘勇輝,等.鉀素調(diào)控植物光合作用的生理機制[J].植物生理學(xué)報,2016,52(12):1773-1784.
LU ZH F,LU J W,PAN Y H,et al.Physiological mechanisms in the potassium regulation of plant photosynthesis[J].Plant Physiology Journal,2016,52(12):1773-1784.
[8]周 華,劉淑娟,王碧琴,等.不同波長LED光源對生菜生長和品質(zhì)的影響[J].江蘇農(nóng)業(yè)學(xué)報,2015,31(2):429-433.
ZHOU H,LIU SH J,WANG B Q,et al.Growth and quality of lettuce exposed to LED lighting with different wavelengths[J].Jiangsu Journal of Agricultural Sciences,2015,31(2):429-433.
[9]劉淑娟,周 華,劉騰云,等.LED光質(zhì)對冰菜生長及營養(yǎng)品質(zhì)的影響[J].北方園藝,2019(2):71-76.
LIU SH J,ZHOU H,LIU T Y,et al.Effect of LED light quality on growth and nutrient quality of ice plant[J].Northern Horticulture,2019(2):71-76.
[10] 邵久之,韓杜斌,陳向榮,等.藍(lán)光對黃瓜苗期形態(tài)和生理特性的影響[J].揚州大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版),2021,42(5):92-96,110.
SHAO J ZH,HAN D B,CHEN X R,et al.Effects of blue light on morphology and physiological characters of cucumber at seedling stage[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2021, 42(5):92-96,110.
[11]陳祥偉,劉世琦,劉 慶,等.不同LED光源對小白菜生長及光合特性的影響[J].北方園藝,2013(22):1-4.
CHEN X W,LIU SH Q,LIU Q,et al.Effects of different light qualities on growth and photosynthetic characteristics of pakchoi[J].Northern Horticulture,2013(22):1-4.
[12]蘇苑君,胡笑濤,王文娥,等.鉀濃度對水培生菜生長及礦質(zhì)元素動態(tài)吸收的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2016,44(8):191-196,204.
SU W J,HU X T,WANG W E,et al.Effect of potassium concentration on growth and dynamic absorption of mineral elements of hydroponic lettuce[J].Journal of Northwest A amp; F University(Natural Science Edition),2016,44(8):191-196,204.
[13]段祥坤,宋 偉,張棟海,等.設(shè)施條件下施鉀對厚皮甜瓜鉀肥吸收、產(chǎn)量及其品質(zhì)的影響[J].北方園藝,2022(13):61-69.
DUAN X K,SONG W,ZHANG D H,et al.Effects of K fertilizer application on potassium absorption,yield and quality of melon under facility conditions[J].Northern Horticulture,2022(13):61-69.
[14]劉玉兵,王軍偉,李 潔,等.LED光質(zhì)對蔬菜生長及品質(zhì)影響研究進(jìn)展[J].湖南農(nóng)業(yè)科學(xué),2020(12):105-108.
LIU Y B,WANG J W,LI J,et al.Research progress on the effect of LED light quality on the growth and quality of vegetables[J].Hunan Agricultural Sciences,2020(12):105-108.
[15]董桑婕,葛詩蓓,李 嵐,等.不同光質(zhì)補光對辣椒幼苗生長、叢枝菌根共生和磷吸收的影響[J].園藝學(xué)報,2022, 49(8):1699-1712.
DONG S J,GE SH B,LI L,et al.Effects of supplemental lighting on growth,root colonization by arbuscular mycorrhizal fungi and phosphorus uptake in pepper seedlings[J].Acta Horticulturae Sinica,2022,49(8):1699-1712.
[16]郭林鑫,劉振威,喬丹丹,等.不同LED光質(zhì)對南瓜幼苗生長及田間性狀的影響[J].中國瓜菜,2022,35(2):55-60.
GUO L X,LIU ZH W,QIAO D D,et al.Effects of different LED lights on growth and field characteristics of the winter squash seedling[J].China Cucurbits and Vegetables,2022,35(2):55-60.
[17]趙 哲,田繼鋒,周利航,等.氮、磷元素對水培小白菜質(zhì)量安全的影響[J].食品安全導(dǎo)刊,2018(33):133.
ZHAO ZH,TIAN J F,ZHOU L H,et al.Effects of nitrogen and phosphorus on the quality and safety of hydroponic cabbage[J].China Food Safety Magazine,2018(33):133.
[18]弓 瑤,王利春,王朝軍,等.不同營養(yǎng)液鉀濃度對水培生菜生長、品質(zhì)和營養(yǎng)液利用效率的影響[J].農(nóng)業(yè)工程,2021,11(7):120-126.
GONG Y,WANG L CH,WANG CH J,et al.Effects of different potassium concentrations in nutrient solution on growth,quality and nutrient solution utilization efficiency of hydroponic lettuce[J].Agricultural Engineering,2021,11(7):120-126.
[19]姜宗慶,蔡志林,謝吉先,等.施鉀量對花椰菜產(chǎn)量和品質(zhì)的調(diào)控效應(yīng)[J].浙江農(nóng)業(yè)學(xué)報.2013(2):325-327.
JIANG Z Q,CAI ZH L,XIE J X,et al.Effects of potassium application amount on yield and quality of cauliflower[J].Acta Agriculturae Zhejiangensis,2013(2):325-327.
[20]王學(xué)奎.植物生理生化實驗原理和技術(shù)[M].北京:高等教育出版社,2006:202.
WANG X G.Principles and Techniques of Plant Physiological and Biochemical Experiments[M].Beijing:Higher Education Press,2006:202.
[21]張治安.植物生理學(xué)實驗技術(shù)[M].長春:吉林大學(xué)出版社,2008:110.
ZHANG ZH A.Plant Physiology Experimental Technology[M].Changchun:Jilin University Press,2008:110.
[22]李合生.植物生理生化實驗原理和技術(shù)[M].北京:高等教育出版社,2000:123,246-248.
LI H SH.Principles and Techniques of Plant Physiological and Biochemical Experiments[M].Beijing:Higher Education Press,2000:123,246-248.
[23]陳建勛,王曉峰.植物生理學(xué)實驗指導(dǎo)[M].廣州:華南理工大學(xué)出版社,2006:84.
CHEN J X,WANG X F.Experimental Guidance for Plant Physiology[M].Guangzhou:South China University of Technology Press,2006:84.
[24]曹建康,姜微波,趙玉梅.果蔬采后生理生化實驗指導(dǎo)[M].北京:中國輕工業(yè)出版社,2007:44.
CAO J K,JIANG W B,ZHAO Y M.Guidance on Physiological and Biochemical Experiments after Harvesting Fruits and Vegetables[M].Beijing:China Light Industry Press,2007:44.
[25]周 華,劉淑娟,劉騰云,等.LED光質(zhì)和光強對藜蒿生長和品質(zhì)的影響[J].湖北農(nóng)業(yè)科學(xué),2017,56(17):3305-3307,3319.
ZHOU H,LIU SH J,LIU T Y,et al.Effects of LED quality and intensity on growth and nutrition quality of artemisia selengensis[J].Hubei Agricultural Sciences,2017, 56(17):3305-3307,3319.
[26]陳美香,武禮賓,曹 立,等.光質(zhì)對金線蓮組培苗生長和主要化學(xué)成分的影響[J].照明工程學(xué)報,2016,27(2):112-117.
CHEN M X,WU L B,CAO L,et al.Effect of light quality on growth and main chemical composition of tissue culture in anoectochilus roxburghii[J].China Illuminating Engineering Journal,2016,27(2):112-117.
[27]占麗英.光質(zhì)對紫色小白菜生長和花青苷合成基因表達(dá)的影響[D].福州:福建農(nóng)林大學(xué),2016.
ZHAN L Y.The effects of light quality on growth and anthocyanin synthesis gene expression of purple cabbage[D].Fuzhou:Fujian Agriculture and Forestry University,2016.
[28]張 棟,胡笑濤,王文娥,等.基于氮磷鉀濃度的水培生菜硝酸鹽含量模型研究[J].北方園藝,2016(6):6-9.
ZHANG D,HU X T,WANG W E,et al.Main quality index model of nitrate content in hydroponic lettuce basing on NPK concentration[J].Northern Horticulture,2016(6):6-9.
[29]王鳳婷,艾希珍,劉金亮,等.鉀對日光溫室黃瓜糖、維生素C、硝酸鹽及其相關(guān)酶活性的影響[J].植物營養(yǎng)與肥料學(xué)報,2005,11(5):682-687.
WANG F T,AI X ZH,LIU J L,et al.Effects of potassium on sugar,vitamin C,nitrate contents and the irrelevant enzymes of cucumber in solar greenhouse[J].Journal of Plant Nutrition and Fertilizers,2005,11(5):682-687.
[30]湯博藝.光質(zhì)對植物生長發(fā)育的影響[J].現(xiàn)代園藝,2021,44(8):10-12.
TANG B Y.Effects of light quality on plant growth and development[J].Contemporary Horticulture,2021, 44(8):10-12.
[31]劉明飛,顧佳羽,廖莎莎,等.不同光質(zhì)對茄子幼苗生理生化指標(biāo)的影響[J].安徽農(nóng)學(xué)通報,2018,24(21):17-20,33.
LIU M F,GU J Y,LIAO SH SH,et al.The influence of different light environment eggplant seedling physiological and biochemical indexes[J].Anhui Agricultural Science Bulletin,2018,24(21):17-20,33.
[32]黃 婷,秦 墾,張 波,等.不同氮、磷、鉀營養(yǎng)水平對盆景枸杞葉綠素含量及根系活力的影響[J].寧夏農(nóng)林科技,2017,58(7):33-34,45.
HUANG T,QIN K,ZHANG B,et al.Effects of nitrogen,phosphorus and potassium nutrition on chlorophyll content and root activity of potted wolfberry[J].Journal of Ningxia Agriculture and Forestry Science and Technology,2017,58(7):33-34,45.
Effects of Different Interaction Modes of Light Quality and Potassium Ion"Concentration on Growth and Quality of Purple Lettuce
LIN Huangfang1,ZHUANG Tuanda1,2,SHEN Baoying1" and" LIN Biying1
(1.College of" Horticulture,F(xiàn)ujian Agriculture and Forestry University,F(xiàn)uzhou 350002,China;"2.Social Affairs Service Center of Luoyang Town,Huian County,Quanzhou" Fujian 362104,China )
Abstract Light quality and potassium ion concentration play an important role in plant growth and development. In order to explore the effect of the interaction between light quality and potassium concentration on the growth and quality of purple lettuce,the optimal interaction mode of light quality and potassium concentration was determined. The experiment used ‘violet romana’" purple leaf lettuce as the test material,white fluorescent lamp(L1) as the control,three LED light quality treatments were set up. Based on the Hoagland nutrient solution formula,six potassium concentration treatments were also set up,with a total of 24 treatments. After light quality treatment,30 days after harvesting,the biomass and nutrition and quality indexes of purple leaf lettuce were determined. The results showed that different modes of interaction between light quality and potassium concentration had a certain effect on the growth,nutrition and quality of purple lettuce.(1) In terms of growth,when different light qualities interacted with 60,90,120,150nbsp; μg·mL-1 potassium concentrations,the ones with better effect on the fresh" mass (yield) of the aboveground and the total length of the root system were all red light. When different potassium concentrations interacted with red,blue and red -blue composite light,a potassium concentration of 150" μg·mL-1" was most effective for increasing yield,leaf area and total root length. In the interaction mode of different light quality and potassium concentration,the interaction between red light and 150 μg·mL-1 potassium concentration had the best effect on yield improvement,which was 59.52% higher than that of white light treatment with the same potassium concentration. The interaction between blue light and 150" μg·mL-1 potassium concentration promoted plant height,leaf area and root growth,and the comprehensive benefits were the best. Compared with the white light treatment with the same potassium concentration,the plant height,leaf area,underground fresh" mass" and root volume of blue light and 150 "μg·mL-1 potassium concentration increased by 27.94%,49.06%,78.74% and 169.35%,respectively.(2) In terms of nutrition and quality,when different light qualities interact with 60,90,120 μg·mL-1 potassium concentration,the better effect of increasing soluble protein and soluble sugar content was red light; interacting with potassium concentrations of 150 and 180 μg·mL-1,each light quality could increase vitamin C content and reduce nitrate content. When different potassium concentrations interacted with white light,blue light,red and blue composite light,the potassium concentration of" 150" μg·mL-1 "was 150" μg·mL-1 was most effective for increasing soluble sugar and vitamin C content. In the interaction mode of different light quality and potassium concentration,the interaction between blue light and 150 μg·mL-1 potassium concentration had the best effect on improving overall quality indexes. Compared with the white light treatment with potassium concentration,the contents of soluble sugar,soluble protein and vitamin C in the interaction mode of blue light and 150 μg·mL-1 potassium concentration increased by 158.53%,14.07% and 8.05%,respectively. The best enhancement effects on photosynthetic pigments and anthocyanins were red and blue light interacting with 120 μg·mL-1 potassium concentration and blue light interacting with 180 μg·mL-1 potassium concentration. In summary,the interaction mode of different light quality and potassium concentration on the growth and quality of purple lettuce is different,and the comprehensive index evaluation combined with the membership function shows that the interaction between blue light and 150 μg·mL-1 potassium concentration is the best management mode of purple lettuce. In order to further increase the yield of purple leaf lettuce,red light can be selected to interact with 150 μg·mL-1 potassium concentration. To further increase anthocyanin content,blue light can be combine with a potassium concentration of 180"" μg·mL-1.
Key words Potassium ion concentration;Light quality;" Interaction modes; Purple leaf lettuce; Growth; Quality
Received" 2023-05-14""" Returned 2023-12-25
Foundation item Support Program" for “Rural Revitalization Service Team”" of Fujian Agriculture and Forestry University (No.11899170126); Science and Technology" Innovation Special Fund of Fujian Agriculture and Forestry University(No.CXZX2020141C).
First author LIN Huangfang,male,master" student. Research area: vegetable cultivation and facility horticulture. E-mail: 2075307155@qq.com
Corresponding"" author LIN Biying,female,professor. Research area: vegetable cultivation and facility horticulture. E-mail: lby3675878@163.com
(責(zé)任編輯:潘學(xué)燕 Responsible editor:PAN Xueyan)
基金項目:福建農(nóng)林大學(xué)“鄉(xiāng)村振興服務(wù)團(tuán)隊”支持計劃項目(11899170126);福建農(nóng)林大學(xué)科技創(chuàng)新專項基金(CXZX2020141C)。
第一作者:林黃昉,男,碩士研究生,從事蔬菜栽培與設(shè)施園藝研究。E-mail:2075307155@qq.com
通信作者:林碧英,女,教授,主要從事蔬菜栽培與設(shè)施園藝研究。E-mail:lby3675878@163.com