摘要:以黃河流域下游禹城農田生態(tài)系統(tǒng)為研究對象,采用中國通量觀測研究網絡(ChinaFLUX)禹城站通量塔觀測的碳水通量和水文氣象數(shù)據(jù),基于特征重要性方法確定影響農田生態(tài)系統(tǒng)CO2交換量的主控環(huán)境因子?;谒协h(huán)境因子和主控環(huán)境因子分別構建碳通量預測的機器學習模型,采用均方誤差(MSE)、平均絕對誤差(MAE)和決定系數(shù)(R2)評估測試集的模型預測性能。結果表明,影響禹城農田生態(tài)系統(tǒng)碳通量的主控環(huán)境因子為凈輻射、土壤溫度、飽和水汽壓虧缺、土壤含水量。與單一模型相比,集成模型具有更好的預測性能。單一模型中,MLPRegressor模型預測性能較好,R2為0.830,MSE為3.113,MAE為1.283。集成模型中,XGBRegressor模型預測性能較好,R2為0.845,MSE為2.838,MAE為1.149。采用主控環(huán)境因子與采用全部環(huán)境因子構建的機器學習模型具有相似預測性能。
關鍵詞:農田生態(tài)系統(tǒng); 碳通量預測; 水文氣象因子; 機器學習模型
中圖分類號:X171.1;S127;S181" " " " "文獻標識碼:A
文章編號:0439-8114(2024)08-0267-14
DOI:10.14088/j.cnki.issn0439-8114.2024.08.045 開放科學(資源服務)標識碼(OSID):
Carbon flux prediction in farmland ecosystem based on hydrometeorological factors
WU Cheng-qiu1, CAO Zhao-dan2,3, ZHAO Xiao-er4, WU Hong-yu1, DENG Ke1
(1.Xuzhou Hydrology and Water Resources Survey Bureau of Jiangsu Province, Xuzhou" 221000, Jiangsu,China;2. Department of Geography, Qufu Normal University, Rizhao" 276800,Shandong,China;3.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou" 310058, China;4.School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao" 266033,Shandong, China)
Abstract: Using the carbon and water fluxes and hydrometeorological data observed by the flux tower of Yucheng Station of China Flux Observation Network (ChinaFLUX) in the lower reaches of the Yellow River Basin, the main controlling environmental factors affecting the CO2 exchange capacity of the farmland ecosystem were determined based on the feature importance method. A machine learning model for carbon flux prediction was constructed based on all environmental factors and master environmental factors, and the mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used to evaluate the model prediction performance of the test set. The results showed that, the main environmental driving factors affecting carbon flux in Yucheng agro-ecosystems were net radiation, soil temperature, vapor pressure deficit and soil water content. Compared with single models, the ensemble models had better learning and prediction performances in the testing set. Among the single models, MLPRegressor model could better predict NEE with R2 of 0.830, MSE of 3.113 and MAE of 1.283. Among the ensemble models, XGBRegressor model had better prediction performance with R2 of 0.845, MSE of 2.838 and MAE of 1.149. The machine learning models using the main four environmental driving factors had the same prediction performances as the models using all environmental factors.
Key words: farmland ecosystem; carbon flux prediction; hydrometeorological factors; machine learning models
氣候變化顯著影響陸地生態(tài)系統(tǒng)服務,包括滿足人類需要的供給服務、調節(jié)服務、文化服務及支持服務[1-3]。農田生態(tài)系統(tǒng)覆蓋了地球近40%的陸地表面,具有重要的生態(tài)系統(tǒng)服務功能,為人類提供食物、飼料、生物能源,但也可能導致野生動物棲息地喪失、土壤養(yǎng)分流失、溫室氣體排放等危害[4]。農田生態(tài)系統(tǒng)碳收支是陸地碳循環(huán)的重要組成部分[5],農田生態(tài)系統(tǒng)碳通量預測有助于評估農田生態(tài)系統(tǒng)碳匯減排能力、應對氣候變化挑戰(zhàn)[6]。
通量塔渦度相關方法可以直接測定陸地生態(tài)系統(tǒng)與大氣間的碳水通量,可以為陸地生態(tài)系統(tǒng)碳水循環(huán)過程及其應對全球氣候變化研究提供重要數(shù)據(jù)支撐,已被廣泛應用于農田生態(tài)系統(tǒng)碳通量研究[7-9]。中國通量觀測研究網絡(ChinaFLUX)的通量觀測數(shù)據(jù)已被用于研究中國不同生態(tài)區(qū)碳通量時空分布格局,得出影響中國碳通量時空格局的主要環(huán)境驅動因子為降水模式、氣溫和土壤溫度[10]。因此,基于通量塔通量觀測可以評估環(huán)境因子對生態(tài)系統(tǒng)固碳增匯能力的影響[11]。但是,全球范圍內通量塔站點較少、通量觀測物理過程復雜、成本昂貴,且僅為點尺度通量觀測,難以揭示區(qū)域甚至全球尺度通量時空分布格局。
陸地生態(tài)系統(tǒng)碳通量受環(huán)境因子影響顯著。陸地碳吸收依賴碳通量對土壤水分的非線性響應,全球土壤水分變化每年產生20億~30億t的碳通量[12]。溫度和水的可用性顯著影響陸地生態(tài)系統(tǒng)碳吸收,生態(tài)系統(tǒng)總初級生產力和生態(tài)系統(tǒng)呼吸的空間尺度年際變化主要由水的可用性驅動,而凈生態(tài)系統(tǒng)二氧化碳交換量的時間尺度變化主要由溫度驅動[13]。因此,量化陸地生態(tài)系統(tǒng)水文氣象環(huán)境因子與碳通量之間非線性關系,可以將點尺度通量觀測升尺度至區(qū)域尺度[14-16]甚至全球尺度[17],有助于揭示區(qū)域甚至全球尺度碳通量的時空分布格局[17]。
水文氣象環(huán)境因子是非線性、非平穩(wěn)、具有長期依賴性及強烈空間異質性的復雜時間序列,物理模型模擬可以闡述復雜生態(tài)水文物理過程,但是存在耗時長、率定參數(shù)多等缺點,而數(shù)據(jù)驅動模型不需要定義明確物理關系,忽略了內在物理機制,通過數(shù)據(jù)學習以發(fā)現(xiàn)未預見的機制、規(guī)律及模式,為解決復雜地球系統(tǒng)科學問題提供了新路徑[18],已被廣泛應用于陸地生態(tài)系統(tǒng)碳循環(huán)、水循環(huán)及能量循環(huán)的相關研究,如地下水水位預測[19-24]、土壤含水量預測[25,26]、蒸散發(fā)預測[27]、陸地水儲量預測[28]、降水-徑流預測[29-31]、干旱預測[32]、洪水預報[33,34]、河流水位及水溫預測[35]、湖泊水位[36-38]、湖泊面積[39]及湖泊水溫預測[40]、作物產量預測[41-44]及降水量預測[45]等。因此,數(shù)據(jù)驅動模型可被用于陸地生態(tài)系統(tǒng)碳水通量預測及其升尺度處理。Dou等[16]構建廣義回歸神經網絡、數(shù)據(jù)成組處理法、極限學習機、自適應神經模糊系統(tǒng)、人工神經網絡和支持向量機等機器學習模型,基于水文氣象環(huán)境因子預測森林生態(tài)系統(tǒng)碳水通量(生態(tài)系統(tǒng)總初級生產力、生態(tài)系統(tǒng)凈二氧化碳交換量、生態(tài)系統(tǒng)呼吸和蒸散發(fā))。Zhang等[14]采用Landsat 30 m分辨率地表反射率和土地利用空間遙感數(shù)據(jù)及氣溫和地下水埋深數(shù)據(jù),構建了機器學習集成模型,對通量塔觀測的碳通量進行升尺度處理,模擬和繪制了濕地生態(tài)系統(tǒng)區(qū)域尺度碳通量的時空分布。然而,鮮見將數(shù)據(jù)驅動模型應用于黃河流域典型引黃灌區(qū)農田生態(tài)系統(tǒng)碳通量的研究。
黃河流域典型引黃灌區(qū)農田生態(tài)系統(tǒng)碳通量研究面臨以下關鍵挑戰(zhàn):碳通量與環(huán)境因子的復雜非線性關系難以用物理模型量化,不易確定碳通量主控環(huán)境因子并對碳通量進行準確預測,需要為點尺度通量觀測升尺度至區(qū)域尺度尋找可借鑒路徑。針對上述科學問題,本研究以黃河流域下游引黃灌區(qū)禹城農田生態(tài)系統(tǒng)為對象,以ChinaFLUX禹城溫帶農田通量觀測研究站通量塔觀測的通量及關鍵水文氣象環(huán)境因子數(shù)據(jù)為基礎,構建碳通量預測的機器學習模型,并評估預測性能,以期為探索引黃灌區(qū)農田生態(tài)系統(tǒng)碳循環(huán)規(guī)律,提高應對氣候變化挑戰(zhàn)的韌性提供科學依據(jù)。
1 數(shù)據(jù)與方法
1.1 數(shù)據(jù)
ChinaFLUX禹城溫帶農田通量觀測研究站(116°34′12.72″E,36°49′44.4″N)位于暖溫帶半濕潤季風氣候區(qū),農田作物種植模式為冬小麥-夏玉米輪作,年平均降水量584.5 mm[46],農業(yè)生產依賴黃河引水灌溉。
采用國家生態(tài)科學數(shù)據(jù)中心公開的禹城溫帶農田通量觀測研究站2003年1月1日至2010年12月31日基于渦度相關法觀測的日尺度碳水通量及關鍵水文氣象數(shù)據(jù)[47],并采用中國生態(tài)系統(tǒng)研究網絡(CERN)長期監(jiān)測的土壤含水量數(shù)據(jù)[48]。
碳水通量指標包括生態(tài)系統(tǒng)凈二氧化碳交換量(Net ecosystem CO2 exchange,NEE)、生態(tài)系統(tǒng)呼吸(Ecosystem respiration,RE)及生態(tài)系統(tǒng)總初級生產力(Gross primary productivity,GPP)。NEE=RE-GPP,表示生態(tài)系統(tǒng)與大氣間的凈CO2交換量,當NEE為正值時,表明CO2從陸地生態(tài)系統(tǒng)排放到大氣中,陸地生態(tài)系統(tǒng)為碳源,NEE為凈碳排放量;當NEE為負值時,表明陸地生態(tài)系統(tǒng)從大氣中固定CO2,陸地生態(tài)系統(tǒng)為碳匯,NEE為凈固碳量。NEE可用于量化生態(tài)系統(tǒng)碳收支過程,評估生態(tài)系統(tǒng)調節(jié)氣候的生態(tài)系統(tǒng)服務功能[13,49]。
進一步確定飽和水汽壓虧缺(Vapor pressure deficit,VPD)、實際蒸散發(fā)(Actual evapotranspiration,ETa)及生態(tài)系統(tǒng)水分利用效率(Water use efficiency,WUE)。VPD等于飽和水汽壓與實際水汽壓的差值。飽和水汽壓(VP)為溫度的非線性函數(shù)[50],公式如下。
[VPT=0.610 8×exp17.27TT+237.3]" " " "(1)
式中,T為空氣溫度(℃);VP(T)表示溫度為T時的飽和水汽壓(kPa)。
蒸散發(fā)與碳-水-能量循環(huán)密切相關[51]。根據(jù)潛熱通量計算ETa,公式如下。
[ETa=LEλ] " " " (2)
式中,LE為通量塔觀測的潛熱通量(W/m2);λ為LE與ETa的比例因子,λ=2.45 MJ/kg。
生態(tài)系統(tǒng)水分利用效率(WUE)可用于研究陸地生態(tài)系統(tǒng)碳水循環(huán)對水文氣候環(huán)境因子的響應[3,6,52-54],定義為單位用水所同化的碳量[52],等于GPP(固碳量)與ETa(用水量)的比值[55,56]。
[WUE=GPPETa] " " (3)
本研究將環(huán)境因子劃分為3類,即水可用性因子(Water availability factors)、氣象因子(Meteorological factors)和能量因子(Energy factors),如表1所示。碳水通量指標見表2。
1.2 方法
基于Scikit-learn庫中機器學習模型模擬禹城農田生態(tài)系統(tǒng)NEE與環(huán)境因子之間非線性關系,確定NEE主控環(huán)境因子,構建NEE預測模型并評估其預測性能。采用8種單一學習模型及8種集成學習模型(表3),模型結構見文獻[57]。本研究采用均方誤差(MSE)、平均絕對誤差(MAE)和決定系數(shù)(R2)評估模型在測試集上的預測性能。
排列重要性(Permutation importance)是通過將某個環(huán)境因子隨機打亂得到新的測試集,采用已經訓練的機器學習模型在新測試集上預測碳通量并評估模型性能指標,計算打亂前后模型性能指標的衰減量,該衰減量表征碳通量對該環(huán)境因子的依賴程度,作為該環(huán)境因子的排列重要性。對所有環(huán)境因子逐個計算,確定碳通量主控環(huán)境因子。
2 結果與分析
2.1 碳水通量與環(huán)境因子相關性分析
NEE、RE、GPP、ETa等碳水通量時間序列如圖1所示。①農田生態(tài)系統(tǒng)碳水通量均呈顯著季節(jié)性波動特征,受環(huán)境因子季節(jié)性變化的影響。②碳水通量除了受環(huán)境因子調控外,也與作物種植模式及作物生長階段顯著相關[7],禹城農田生態(tài)系統(tǒng)作物種植模式為冬小麥-夏玉米輪作,導致禹城農田生態(tài)系統(tǒng)碳水通量呈兩季波峰的M形季節(jié)變化。③隨著小麥和玉米生長階段由拔節(jié)期至成熟期,NEE由正值轉變?yōu)樨撝担砻鬓r田生態(tài)系統(tǒng)由凈碳排放(碳源)轉變?yōu)閮籼脊潭ǎㄌ紖R),在作物成熟期總初級生產力和凈固碳量均達到極值,而在作物收獲后農田生態(tài)系統(tǒng)NEE由負值(碳匯)再次轉變?yōu)檎担ㄌ荚矗?/p>
水文氣象環(huán)境因子與碳水通量之間的顯著性檢驗及皮爾遜相關性分析結果如圖2所示。①能量環(huán)境因子(太陽輻射、凈輻射和光合有效輻射)與GPP顯著相關,其中,凈輻射與GPP呈極顯著強正相關(Plt;0.01,相關系數(shù)為0.72),土壤溫度、太陽輻射、光合有效輻射等能量因子與GPP呈極顯著中等程度正相關(Plt;0.01,相關系數(shù)為0.46~0.60)。土壤含水量表征植被根系可用水資源量及農業(yè)干旱程度,與GPP呈極顯著中等程度正相關(Plt;0.01,相關系數(shù)為0.50~0.52)。②禹城農田生態(tài)系統(tǒng)為引黃灌區(qū),灌溉農業(yè)水可用性受引黃水資源量、灌溉制度等人類活動的強烈影響,不依賴降水,因此,總初級生產力GPP與降水量無顯著相關性(Pgt;0.05),其余碳水通量與降水量均呈極顯著弱相關(Plt;0.01,相關系數(shù)均在0.2以下)。③生態(tài)系統(tǒng)水分利用效率WUE與空氣溫度、土壤溫度、土壤含水量及水汽壓等呈極顯著中等程度正相關(Plt;0.01,相關系數(shù)為0.42~0.54)。蒸散發(fā)ETa與能量環(huán)境因子(太陽輻射、凈輻射和光合有效輻射)呈極顯著強正相關(Plt;0.01,相關系數(shù)為0.77~0.83)。④能量環(huán)境因子(太陽輻射、凈輻射和光合有效輻射)與NEE呈極顯著中等程度負相關(Plt;0.01,相關系數(shù)為-0.47~-0.52),而其余環(huán)境因子均與NEE呈顯著弱相關或極弱相關(Plt;0.05,相關系數(shù)均小于0.4),表明通過顯著性檢驗與相關性分析難以確定環(huán)境因子與NEE的復雜關系,本研究進一步采用機器學習中的排列重要性方法確定碳通量主控環(huán)境因子,并構建碳通量預測模型。
2.2 碳通量主控環(huán)境因子確定
采用RandomForestRegressor、GradientBoostingRegressor、HistGradientBoostingRegressor以及XGBRegressor 4種機器學習模型的排列重要性方法確定影響碳通量的環(huán)境因子特征重要性,進而確定碳通量主控環(huán)境因子,結果如圖3所示。①凈輻射直接影響植被光合作用固碳量,是禹城農田生態(tài)系統(tǒng)碳通量最顯著(Plt;0.05)的環(huán)境因子。②受冬小麥和夏玉米生根深度影響,100 cm處土壤溫度和40 cm處土壤溫度顯著影響(Plt;0.05)冬小麥和夏玉米的根系溫度,影響根系呼吸以及養(yǎng)分和水分吸收,影響作物生長及農田生態(tài)系統(tǒng)凈固碳量。③與濕地或森林等自然生態(tài)系統(tǒng)不同,農田生態(tài)系統(tǒng)碳通量與環(huán)境因子之間的關系受農田管理措施(如放牧、灌溉)[58]、土地利用及種植模式變化等人類活動的強烈影響[59]。禹城農田生態(tài)系統(tǒng)種植模式為冬小麥-夏玉米輪作,農業(yè)用水依賴黃河引水灌溉[60],降水對NEE影響較弱。土壤含水量表征根區(qū)水脅迫及農業(yè)干旱程度,是碳通量重要環(huán)境因子。④飽和水汽壓虧缺表征大氣水分狀況及植被承受氣象干旱脅迫的程度。氣候變化普遍導致VPD增加,促進植被蒸騰和土壤蒸發(fā)、促進根系吸水,但VPD增加也表征植被承受的干旱脅迫程度增加,植被為應對干旱脅迫而關閉氣孔以減少水分損失,進而降低植被光合作用并限制植被生長[61],降低生態(tài)系統(tǒng)凈固碳量。因此,VPD影響生態(tài)系統(tǒng)固碳能力以及水分利用效率,是禹城農田生態(tài)系統(tǒng)碳通量主控環(huán)境因子。
采用RandomForestRegressor模型的排列重要性方法確定碳通量主控環(huán)境因子的季節(jié)性差異,結果如圖4所示。4個季節(jié)內影響碳通量的主控環(huán)境因子如下:①春季為凈輻射;②夏季為100 cm處土壤溫度;③秋季為凈輻射;④冬季為10 cm處土壤含水量。
綜上分析,影響禹城農田生態(tài)系統(tǒng)凈二氧化碳交換量的主控環(huán)境因子為凈輻射、土壤溫度、飽和水汽壓虧缺及土壤含水量。
2.3 基于機器學習模型的碳通量預測
2.3.1 基于全部環(huán)境因子碳通量預測 將數(shù)據(jù)劃分為訓練集和測試集(比例為7∶3),以全部環(huán)境因子和時間作為模型輸入變量,以生態(tài)系統(tǒng)凈二氧化碳交換量作為模型輸出變量,在訓練集上采用Pipeline方法構建多變量輸入-單變量輸出的碳通量機器學習預測模型(8個單一模型和8個集成模型)。
機器學習模型在測試集上碳通量日尺度預測值與觀測值比較結果(圖5)表明,在測試集上NEE預測值與觀測值的擬合線在1∶1線附近,單一模型R2為0.679~0.833;集成學習模型R2為0.806~0.857,因此,單一模型和集成模型根據(jù)測試集環(huán)境因子可以有效地預測逐日碳通量。
將NEE日尺度預測值和觀測值在月尺度上進行平均,得到NEE預測值與觀測值的逐月及季節(jié)性變化趨勢,結果(圖6)表明,在測試集上,經過訓練的機器學習模型可以根據(jù)環(huán)境因子準確預測NEE的逐月及季節(jié)性波動。
采用MSE、MAE及R2量化評估機器學習模型在測試集上的預測性能,結果如圖7所示。①相比單一模型,集成模型的R2均在0.8以上,具有更好的學習及預測性能。②在單一模型中,MLPRegressor模型在測試集上具有最好的預測性能,R2為0.830,MSE為3.113,MAE為1.283。③在集成模型中,XGBRegressor模型在測試集上具有最好的預測性能,R2為0.845,MSE為2.838,MAE為1.149。農田生態(tài)系統(tǒng)碳通量機器學習預測模型的決定系數(shù)大于0.7可認為是可接受水平[62],因此,本研究中禹城農田生態(tài)系統(tǒng)碳通量預測機器學習模型具有較好的預測性能。
禹城農田生態(tài)系統(tǒng)碳通量預測的機器學習模型可以準確模擬禹城農田生態(tài)系統(tǒng)碳通量與環(huán)境因子之間的非線性關系,能夠在日尺度及月尺度上準確預測農田生態(tài)系統(tǒng)逐日碳通量及其季節(jié)性波動,可以用于估算農田生態(tài)系統(tǒng)碳收支及修正基于生態(tài)水文物理過程碳通量預測的不確定性[63]。
2.3.2 基于主控環(huán)境因子碳通量的預測 以主控環(huán)境因子(凈輻射、土壤溫度、飽和水汽壓虧缺、土壤含水量)作為MLPRegressor模型及XGBRegressor模型輸入變量,構建NEE預測模型,結果如圖8所示。①基于主控環(huán)境因子構建的MLPRegressor及XGBRegressor模型,NEE日尺度預測值與觀測值擬合線在1∶1線附近(圖8c),可以準確預測NEE的逐月及季節(jié)性波動(圖8a、圖8b)。②MLPRegressor模型在測試集的預測性能指標:R2為0.836,MSE為3.29,MAE為1.30(圖8d);XGBRegressor模型在測試集的預測性能指標:R2為0.840,MSE為3.18,MAE為1.22(圖8d),表明采用主控環(huán)境因子構建的機器學習碳通量預測模型與采用全部環(huán)境因子構建的機器學習模型具有相似預測性能。因此,基于主控環(huán)境因子構建碳通量預測的機器學習模型,可以在不影響模型預測性能的條件下大幅簡化對環(huán)境因子觀測數(shù)據(jù)的需求。
土壤有機碳顯著影響農田生態(tài)系統(tǒng)碳收支,但渦度相關法測定的農田生態(tài)系統(tǒng)碳通量難以區(qū)分土壤碳收支(土壤有機碳)以及作物碳收支(作物收獲和秸稈的固碳量)[64],因此,應加強農田生態(tài)系統(tǒng)土壤有機碳監(jiān)測,準確估算農田生態(tài)系統(tǒng)碳收支。此外,將深度學習模型(如卷積神經網絡模型、循環(huán)神經網絡模型、長短時記憶LSTM模型、門控循環(huán)單元GRU模型、Encoder-Decoder模型、Transformer模型等)應用于禹城農田生態(tài)系統(tǒng)碳通量預測,以提高模型預測性能,將農田水文物理機理過程融合至數(shù)據(jù)驅動模型,以提高數(shù)據(jù)驅動模型對農田水文物理過程及機理的可解釋性,是其面臨的關鍵挑戰(zhàn),值得進一步研究。
3 小結與展望
以禹城農田生態(tài)系統(tǒng)為研究對象,構建碳通量預測的機器學習模型并評估其預測性能,本研究主要結論如下。①禹城農田生態(tài)系統(tǒng)碳通量主控環(huán)境因子為凈輻射、土壤溫度、飽和水汽壓虧缺及土壤含水量。②機器學習模型可以準確預測農田生態(tài)系統(tǒng)碳通量逐日、逐月及季節(jié)性變化,集成模型比單一模型具有更好的預測性能。單一模型中,MLPRegressor模型預測性能較好,R2為0.830,MSE為3.113,MAE為1.283。集成模型中,XGBRegressor模型預測性能較好,R2為0.845,MSE為2.838,MAE為1.149。③采用主控環(huán)境因子與采用全部環(huán)境因子構建的機器學習模型具有相似預測性能,基于主控環(huán)境因子預測碳通量,可以在不影響預測性能的條件下大幅降低對環(huán)境因子數(shù)據(jù)的需求。
提出以下研究展望:①基于數(shù)據(jù)驅動方法的碳通量預測模型,可以揭示物理模型難以模擬的碳通量與環(huán)境因子復雜非線性關系,可以評估環(huán)境因子變化(如氣候變化導致降水及氣溫變化)對農田生態(tài)系統(tǒng)碳通量的影響。將數(shù)據(jù)驅動碳通量預測模型與環(huán)境因子區(qū)域遙感觀測相結合,可以將點尺度通量觀測升尺度至區(qū)域甚至全球尺度,有助于揭示大尺度的碳通量時空分布格局以及碳循環(huán)規(guī)律。②農田生態(tài)系統(tǒng)碳通量不僅與自然水熱氣候環(huán)境因子有關,還與人類活動(如節(jié)水灌溉、減少引黃水資源量等農田水管理政策,土地休耕及種植模式改變等土地利用變化)密切相關,未來研究應將人類活動政策干預納入到農田生態(tài)系統(tǒng)碳通量預測模型,評估人類活動對農田生態(tài)系統(tǒng)固碳減排能力的影響,通過調整人為政策干預增加農田生態(tài)系統(tǒng)固碳減排能力,提高農田生態(tài)系統(tǒng)應對氣候變化的適應能力、并減緩氣候變化影響,在水-糧食-氣候紐帶系統(tǒng)框架內協(xié)同和權衡黃河流域農田生態(tài)系統(tǒng)碳收支、糧食安全及水資源短缺等系統(tǒng)科學問題,有助于實現(xiàn)黃河流域生態(tài)保護和高質量發(fā)展以及2030年碳達峰、2060年碳中和的國家戰(zhàn)略目標。
參考文獻:
[1] DOMINATI E,PATTERSON M,MACKAY A. A framework for classifying and quantifying the natural capital and ecosystem services of soils[J].Ecological economics,2010,69(9):1858-1868.
[2] BARTKOWSKI B,BARTKE S,HELMING K,et al. Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy[J].PeerJ,2020,8:e8749.
[3] PONCE-CAMPOS G E,MORAN M S,HUETE A,et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J].Nature,2013,494:349-352.
[4] POWER A G. Ecosystem services and agriculture: Tradeoffs and synergies [J].Philosophical transactions of the royal society of London. Series B, Biological sciences,2010,365:2959-2971.
[5] 趙 輝,朱盛強,劉 貞,等.基于渦度相關技術的農田生態(tài)系統(tǒng)碳收支評估[J].環(huán)境科學學報,2021,41(11):4731-4739.
[6] LIU W B,SUN F B,SUN S B,et al. Multi-scale assessment of eco-hydrological resilience to drought in China over the last three decades[J].Science of the total environment,2019,672:201-211.
[7] 田容才,文雙雅,陽會兵.基于渦度相關法的農田生態(tài)系統(tǒng)碳通量研究進展[J].激光生物學報, 2019,28(5):415-420.
[8] 薛紅喜,李 峰,李 琪,等.基于渦度相關法的中國農田生態(tài)系統(tǒng)碳通量研究進展[J].南京信息工程大學學報(自然科學版),2012,4(3):226-232.
[9] 郭舒艷,任小麗,蓋艾鴻,等.基于FLUXNET的CLM模型生態(tài)系統(tǒng)呼吸模擬驗證[J].應用與環(huán)境生物學報,2019,25(4):862-876.
[10] HAN L,WANG Q F,CHEN Z,et al. Spatial patterns and climate controls of seasonal variations in carbon fluxes in China’s terrestrial ecosystems[J].Global and planetary change, 2020,189:103175.
[11] RATCLIFFE J L,CAMPBELL D I,SCHIPPER L A,et al. Recovery of the CO2 sink in a remnant peatland following water table lowering[J].Science of the total environment, 2020,718:134613.
[12] GREEN J K,SENEVIRATNE S I,BERG A M,et al. Large influence of soil moisture on long-term terrestrial carbon uptake[J].Nature,2019,565:476-479.
[13] JUNG M,REICHSTEIN M,SCHWALM C R,et al. Compensatory water effects link yearly global land CO2 sink changes to temperature[J].Nature,2017,541:516-520.
[14] ZHANG C,BRODYLO D,SIRIANNI M J,et al. Mapping CO2 fluxes of cypress swamp and marshes in the greater everglades using eddy covariance measurements and Landsat data[J]. Remote sensing of environment,2021,262:112523.
[15] CAI J,XU K,ZHU Y,et al. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest [J].Applied energy,2020,262:114566.
[16] DOU X,YANG Y. Modeling and predicting carbon and water fluxes using data-driven techniques in a forest ecosystem[J].Forests,2017,8:1-20.
[17] JUNG M,REICHSTEIN M,MARGOLIS H A,et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[J].Journal of geophysical research: Biogeosciences,2011,116:1-16.
[18] REICHSTEIN M,CAMPS-VALLS G,STEVENS B,et al. Deep learning and process understanding for data-driven earth system science[J].Nature,2019,566:195-204.
[19] DEY S,DEY A K,MALL R K. Modeling long-term groundwater levels by exploring deep bidirectional long short-term memory using hydro-climatic data[J].Water resources management,2021,35:3395-410.
[20] AO C,ZENG W,WU L,et al. Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China[J].Agricultural water management, 2021,255:107032.
[21] ZHANG J,ZHU Y,ZHANG X,et al. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas [J].Journal of hydrology, 2018,561:918-29.
[22] WU C,ZHANG X,WANG W,et al. Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model[J].Science of the total environment,2021,783:146948.
[23] WUNSCH A,LIESCH T,BRODA S. Groundwater level forecasting with artificial neural networks: A comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX) [J]. Hydrology and earth system sciences,2021,25:1671-1687.
[24] MA Y,MONTZKA C,BAYAT B,et al. Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe[J].Hydrology and earth system sciences,2020,25:3555-3575.
[25] MASRUR A A A,DEO R C,RAJ N,et al. Deep learning forecasts of soil moisture: Convolutional neural network and gated recurrent unit models coupled with satellite-derived modis, observations and synoptic-scale climate index data[J].Remote sensing,2021,13:1-30.
[26] YAMAC S S, ?EKER C, NEGIS H. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area[J].Agricultural water management,2020,234:106121.
[27] ROY D K. Long short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zone[J].Environmental processes,2021,8:911-941.
[28] IRRGANG C,SAYNISCH-WAGNER J,DILL R,et al. Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements[J]. Geophysical research letters,2020,47:e2020GL089258.
[29] YIN H,ZHANG X,WANG F,et al. Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model[J].Journal of hydrology,2021,598:126378.
[30] XINAG Z,YAN J,DEMIR I. A rainfall-runoff model with LSTM-based sequence-to-sequence learning[J].Water resources research,2020,56:e2019WR025326.
[31] WANG X,WANG Y,YUAN P,et al. An adaptive daily runoff forecast model using VMD-LSTM-PSO hybrid approach[J].Hydrological sciences journal,2021,66:1488-502.
[32] DIKSHIT A,PRADHAN B,ALAMRI A M. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model[J].Science of the total environment,2021,755:142638.
[33] KAO I F,ZHOU Y,CHANG L C,et al. Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting[J].Journal of hydrology, 2020,583:124631.
[34] CHAKRABORTTY R,PAL S C,JANIZADEH S,et al. Impact of climate change on future flood susceptibility: An evaluation based on deep learning algorithms and GCM[J].Water resources management,2021,35:4251-4274.
[35] PIOTROWSKI A P,NAPIORKOWSKI J J,PIOTROWSKA A E. Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling [J].Earth-science reviews,2020,201:103076.
[36] WEN J,HAN P F,ZHOU Z,et al. Lake level dynamics exploration using deep learning, artificial neural network, and multiple linear regression techniques[J].Environmental earth sciences,2019,78:1-12.
[37] HRNJICA B,BONACCI O. Lake level prediction using feed forward and recurrent neural networks[J].Water resources management,2019,33:2471-2484.
[38] ZHU S,HRNJICA B,PTAK M,et al. Forecasting of water level in multiple temperate lakes using machine learning models[J].Journal of hydrology,2020,585:124819.
[39] CHEN J Q,LV J M,LI N,et al. External groundwater alleviates the degradation of closed lakes in semi-arid regions of China[J].Remote sensing,2020,12(1):45.
[40] WILLARD J D,READ J S,APPLING A P,et al. Predicting water temperature dynamics of unmonitored lakes with meta-transfer learning[J].Water resources research,2021,57:e2021WR029579.
[41] JIANG H,HU H,ZHONG R,et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level[J].Global change biology,2020,26:1754-1766.
[42] JINAG H,HU H,LI B,et al. Understanding the non-stationary relationships between corn yields and meteorology via a spatiotemporally varying coefficient model[J].Agricultural and forest meteorology,2021,301-302.
[43] XU J,YANG J,XIONG X,et al. Towards interpreting multi-temporal deep learning models in crop mapping[J].Remote sensing of environment,2021,264:112599.
[44] ALIBABAEI K,GASPAR P D,LIMA T M. Crop yield estimation using deep learning based on climate big data and irrigation scheduling[J].Energies,2021,14:1-21.
[45] LI Y,XU B,WANG D,et al. Deterministic and probabilistic evaluation of raw and post-processing monthly precipitation forecasts: A case study of China[J].Journal of hydroinformatics,2021,23:914-934.
[46] 王海新,董翔雁.近50年禹城市降水特征分析[J].現(xiàn)代農業(yè)科技,2015(12):235-236.
[47] ChinaFLUX. 2003-2010年禹城站通量數(shù)據(jù)[DB/OL].國家生態(tài)科學數(shù)據(jù)中心,2021. https://doi.org/10.12199/nesdc.ecodb.chinaflux2003-2010.2021.yca.006.
[48] 唐新齋,袁國富,朱治林,等.2005~2014年CERN野外臺站氣象觀測場土壤含水量數(shù)據(jù)集[DB/OL].中國科學數(shù)據(jù),2017,2:35-44. https://doi.org/10.11922/csdata.170.2016.0101.
[49] ZHOU Y,LI X,GAO Y,et al. Carbon fluxes response of an artificial sand-binding vegetation system to rainfall variation during the growing season in the Tengger Desert[J].Journal of environmental management,2020,266:110556.
[50] ALLEN R G,PEREIRA L S,RAES D,et al. Crop evapotranspiration: Guidelines for computing crop water requirements[A].FAO Irrigation and drainage paper 56[M].Rome, Italy.1998.
[51] LI S,WANG G,SUN S,et al. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980—2010[J].Journal of hydrology,2021,595:126037.
[52] TANG X,LI H,DESAI A R,et al. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?[J]. Scientific reports,2014,4:1-11.
[53] CHAPIN F S,CARPENTER S R,KOFINAS G P,et al. Ecosystem stewardship: Sustainability strategies for a rapidly changing planet[J].Trends in ecology amp; evolution,2010,25:241-249.
[54] ITO A,INATOMI M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles[J].Journal of hydroinformatics,2012,13:681-694.
[55] ZHANG X,SUSAN M M,ZHAO X,et al. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century[J].Remote sensing of environment,2014,150:188-197.
[56] SONG Q H,F(xiàn)EI X H,ZHANG Y P,et al. Water use efficiency in a primary subtropical evergreen forest in Southwest China[J].Scientific reports,2017,7:3-12.
[57] Scikit-learn Documentation[EB/OL]. https://scikit-learn.org/stable/index.html 2022.
[58] CLEVERLY J,VOTE C,ISAAC P,et al. Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand[J].Agricultural and forest meteorology,2020,287:107934.
[59] YAN H,F(xiàn)U Y,XIAO X,et al. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data[J]. Agriculture, ecosystems amp; environment,2009,129:391-400.
[60] 歐陽竹,喬云峰,占車生,等.地下水-農田生態(tài)系統(tǒng)關鍵過程綜合試驗模擬裝置(禹城地下水農田模擬裝置)[J].中國科學院院刊,2021,36(7):852-860.
[61] YUAN W,ZHENG Y,PIAO S,et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science advances,2019,5:eaax1396.
[62] HAMRANI A,AKBARZADEH A,MADRAMOOTOO C A. Machine learning for predicting greenhouse gas emissions from agricultural soils[J].Science of the total environment,2020,741:140338.
[63] TRAMONTANA G,JUNG M,SCHWALM C R,et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms[J].Biogeosciences, 2016,13:4291-4313.
[64] 樸世龍,何 悅,王旭輝,等.中國陸地生態(tài)系統(tǒng)碳匯估算:方法、進展、展望[J].中國科學:地球科學,2022,52(6):1010-1020.
基金項目:國家自然科學基金資助項目(42002259)
作者簡介:吳成秋(1989-),男,江蘇邳州人,工程師,碩士,主要從事水文與水資源監(jiān)測研究,(電話)15190740737(電子信箱)wchq715@126.com;通信作者,曹召丹(1989-),男,山東巨野人,講師,博士,主要從事農業(yè)水資源管理研究,(電話)15852173394(電子信箱)czdcumt07@163.com。