【摘要】主動脈夾層(AD)以胸背部劇烈疼痛為主要臨床表現(xiàn),是一種病情危急、發(fā)展迅速、病死率極高的心血管疾病,嚴重影響患者的生命安全。目前對于AD的發(fā)病機制研究主要集中在炎癥反應(yīng)、氧化應(yīng)激、遺傳因素等。近年來,研究發(fā)現(xiàn)血管平滑肌細胞(VSMC)死亡與AD的發(fā)生密切相關(guān)。因此,現(xiàn)以VSMC程序性死亡為出發(fā)點,歸納目前已知的VSMC程序性死亡類型、誘導(dǎo)因素及其在AD中的作用與發(fā)生機制,旨在探討未來通過抑制VSMC程序性死亡防治AD的潛在價值。
【關(guān)鍵詞】主動脈夾層;血管平滑肌細胞;細胞程序性死亡
【DOI】10.16806/j.cnki.issn.1004-3934.2024.08.000
Progress and Perspectives of Programmed Vascular Smooth Muscle Cell Death"in Aortic Coarctation
HUANG Yanxin,YAO Yuan,WU Xingliang,LIU Liyuan,YI Xin
(Department of Cardiovascular Medicine,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
【Abstract】Aortic dissection (AD),with severe pain in the chest and back as its main clinical manifestation,is a cardiovascular disease with critical condition,rapid development and high mortality rate,which seriously affects the life safety of patients. Currently,research on the pathogenesis of AD focuses on inflammatory"response,oxidative stress,genetic factors,and so on. In recent years,it has been found that smooth muscle cell death is closely related to the occurrence of AD. Therefore,this paper will take smooth muscle cell programmed death as the starting point,summarize the currently known types of smooth muscle cell programmed death,inducing factors,and their roles and mechanisms of occurrence in aortic coarctation,with the aim of exploring the potential value of preventing and treating aortic coarctation by inhibiting smooth muscle cell programmed death in the future. 【Keywords】Aortic dissection;Vascular smooth muscle cell;Programmed cell death
主動脈夾層(aortic dissection,AD)的發(fā)病人數(shù)為5/100萬人年~30/100萬人年,男性更常見,大多數(shù)AD發(fā)生在50~70歲。無并發(fā)癥的急性B型AD患者的30 d死亡率為10%,當(dāng)急性B型AD患者出現(xiàn)并發(fā)癥(如灌注不良或破裂)時,死亡率在第2天增加到20%,到第30天增加到25%[1],因此早期發(fā)現(xiàn)并診斷AD、探索AD的機制并促進其向臨床轉(zhuǎn)化是十分迫切的。AD是在各種因素引起含有彈力纖維的主動脈中層破壞或壞死的基礎(chǔ)上,受血管壁橫向切應(yīng)力作用影響,主動脈內(nèi)膜撕裂,血流逆行或順行沖擊導(dǎo)致壁間血腫蔓延,形成動脈壁間假腔,并通過一個或數(shù)個破口與主動脈真腔相通,形成“夾層”[2]。血管平滑肌細胞(vascular smooth muscle cell,VSMC)是主動脈中膜的關(guān)鍵細胞,其參與動脈重塑的過程;而動脈重塑是動脈粥樣硬化、動脈瘤及AD等心血管疾病的常見病理基礎(chǔ)[3]。既往研究表明,VSMC的細胞程序性死亡如自噬、凋亡、鐵死亡、細胞焦亡等,在動脈粥樣硬化和動脈瘤等多種疾病中發(fā)揮重要作用,譬如促進VSMC自噬能顯著抑制泡沫細胞的形成從而延緩動脈粥樣硬化斑塊的形成[2];鐵抑素-1能通過抑制VSMC鐵死亡改善動脈粥樣硬化[4];口服亞精胺補充劑能通過上調(diào)自噬相關(guān)蛋白來維持VSMC及主動脈的結(jié)構(gòu)完整性,從而抑制實驗性腹主動脈瘤的發(fā)展[5]。因此,深入研究VSMC細胞程序性死亡的調(diào)控機制,對于闡明AD的發(fā)病機制及防治AD具有重要的理論價值和臨床意義?,F(xiàn)根據(jù)VSMC細胞程序性死亡的不同類型分別闡述其在AD及AD相關(guān)危險因素中的作用,并探討其潛在的臨床轉(zhuǎn)化思路和策略。
1 "VSMC程序性死亡的機制及其臨床轉(zhuǎn)化的潛在性
細胞程序性死亡被認為是多數(shù)細胞病理生理過程中的關(guān)鍵影響因素,它可通過調(diào)節(jié)細胞的存活或死亡來維持自身穩(wěn)態(tài)。常見的細胞程序性死亡包括自噬、凋亡、鐵死亡、細胞焦亡等[6]?,F(xiàn)對不同的細胞程序性死亡方式進行分別闡述并探討其潛在的臨床轉(zhuǎn)化途徑和方法。
1.1 "VSMC自噬的機制及其臨床轉(zhuǎn)化的潛在性
自噬在正常生命進程和病理生理過程中扮演平衡營養(yǎng)、維持細胞內(nèi)穩(wěn)態(tài)的重要角色。目前研究發(fā)現(xiàn)參與自噬調(diào)控的主要包括哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)途徑、AMP活化的蛋白質(zhì)激酶(AMP-activated protein kinase,AMPK)途徑、c-Jun氨基端激酶1(c-Jun N-terminal kinase 1,Jnk1)途徑和p53途徑等,這些途徑也與自噬對VSMC的調(diào)控密切相關(guān)[7]。對VSMC來說,自噬主要參與其細胞增殖、表型轉(zhuǎn)化的過程[8]。適度自噬有助于維持VSMC表型和收縮功能,過度自噬在影響細胞存活的同時,還能促進VSMC由收縮表型向合成表型的轉(zhuǎn)化,進而降低VSMC的收縮功能[9-10]。
研究[2]顯示,自噬還在調(diào)節(jié)VSMC死亡和炎癥反應(yīng)中起關(guān)鍵作用,對主動脈壁穩(wěn)態(tài)和修復(fù)具有重要調(diào)控作用。如AMPKα激活可改善血管緊張素Ⅱ誘導(dǎo)的VSMC表型轉(zhuǎn)化,減少AD形成,且可減輕血管緊張素Ⅱ誘導(dǎo)的巨噬細胞炎癥激活[11],其中巨噬細胞細胞因子信號抑制蛋白3維持VSMC的適當(dāng)炎癥反應(yīng)和分化,從而促進纖維化愈合以防止組織破壞和AD的發(fā)展[12],這表明自噬在調(diào)節(jié)VSMC死亡和炎癥中發(fā)揮關(guān)鍵作用[2]。另有研究[13]發(fā)現(xiàn),乙醛脫氫酶2(acetaldehyde dehydrogenase 2,ALDH2)的缺乏會抑制人VSMC表型轉(zhuǎn)化且抑制miR-31-5p的表達,這反過來會抑制肌球蛋白,然后促進促收縮基因的表達。因此,促收縮基因的表達可阻止VSMC表型轉(zhuǎn)化并延緩急性主動脈夾層(acute aortic dissection,AAD)的發(fā)展[13]。ALDH2多態(tài)性也與AAD的發(fā)病率存在相關(guān)性[14]。因此,靶向ALDH2和miR-31-5p對防止血AAD的發(fā)生具有一定的臨床潛力。
此外,研究發(fā)現(xiàn)甲基化與細胞自噬密切相關(guān),在大鼠和人的VSMC中,甲基轉(zhuǎn)移酶抑制劑針對常染色質(zhì)組蛋白賴氨酸甲基轉(zhuǎn)移酶2的短發(fā)夾RNA(short hairpin RNA against euchromatic histone lysine methyltransferase 2,"shEHMT2)等通過調(diào)節(jié)螯合體1"(sequestosome 1,SQSTM1)或BECN1基因促進自噬死亡,這提示常染色質(zhì)組蛋白賴氨酸甲基轉(zhuǎn)移酶2(euchromatic histone lysine methyltransferase 2,EHMT2)有望成為自噬藥物開發(fā)的新靶點。Zeste同源物增強子2(enhancer of Zeste homolog 2,EZH2)是一種甲基轉(zhuǎn)移酶,它通過調(diào)節(jié)自噬相關(guān)基因5(autophagy related gene,ATG)5和ATG7表達以及MEK1/2-ERK1/2信號傳導(dǎo)來調(diào)控VSMC的自噬性死亡,延緩AD的發(fā)生發(fā)展??梢?,EZH2的激活對AD具有治療或預(yù)防的潛力。另外,JIB-04作為組蛋白去甲基化酶廣譜抑制劑,通過下調(diào)突觸融合蛋白17(syntaxin 17,STX17)和RAB7基因表達來抑制自噬體和溶酶體的融合來干擾自噬,從而抑制人類主動脈VSMC的增殖和遷移來延緩AD的進展[10]。以組蛋白甲基化修飾為核心,調(diào)控甲基化水平有望為AD的臨床干預(yù)及藥物研發(fā)提供新方向[15]。
1.2 "VSMC凋亡的機制及其臨床轉(zhuǎn)化的潛在性
細胞凋亡是一種重要的細胞程序性死亡方式,它是通過基因水平上的精細調(diào)節(jié),導(dǎo)致受損細胞被有序有效地去除[16]。細胞凋亡存在兩種經(jīng)典途徑:外源性和內(nèi)源性途徑。內(nèi)源性凋亡途徑,主要通過線粒體通透性轉(zhuǎn)換孔開啟,導(dǎo)致促凋亡蛋白釋放到細胞質(zhì),激活細胞凋亡。細胞凋亡由缺乏細胞外促生存信號引起,促使促凋亡分子活化,核心為胱天蛋白酶(caspase)-9與凋亡蛋白酶激活因子1結(jié)合,通過CARD域互作形成復(fù)合物,活化caspase-3,最終觸發(fā)細胞凋亡[17]。外源性途徑是指受體介導(dǎo)的細胞凋亡,其中死亡受體通過其跨膜區(qū)域錨定在細胞膜上,其激活取決于兩個主要配體:腫瘤壞死因子(tumor necrosis factor,TNF)和Fas分子,通過Fas相關(guān)死亡結(jié)構(gòu)域蛋白(Fas-associated protein with death domain,F(xiàn)ADD)招募caspase-8形成死亡誘導(dǎo)信號復(fù)合體 ,觸發(fā)細胞死亡[18]。
一系列針對AAD患者組織的研究表明,主動脈疾病中VSMC缺失與內(nèi)在細胞凋亡途徑的激活存在密切聯(lián)系,例如:促凋亡介質(zhì)B細胞淋巴瘤-2相關(guān)X蛋白(Bcl-2 associated X protein,Bax)的蛋白水平在AAD患者的VSMC中上調(diào),而抗凋亡成員B細胞淋巴瘤2(B-cell lymphoma 2,Bcl-2)降低,這表明Bcl-2家族的促凋亡和抗凋亡分子在VSMC死亡和AAD中的表達失衡。Andrographolide,一種新型核因子κB(nuclear factor κB,NF-κB)抑制劑,可通過SHP-1-PP2A-p38MAPK通路來促進p53磷酸化,然后增加促凋亡蛋白Bax的表達,從而導(dǎo)致VSMC凋亡。因此,p53有望通過調(diào)控VSMC凋亡來治療AAD[19]。靶向細胞凋亡治療AAD受到越來越多的關(guān)注與研究,包括泛caspase抑制劑Q-VD-OPh和caspase-8抑制劑Z-IETD-FMK等凋亡抑制劑,已被證明在腹主動脈瘤小鼠模型中通過預(yù)防內(nèi)側(cè)變性、減小動脈瘤的體積來發(fā)揮作用[20]。由此可推測,使用類似的細胞凋亡抑制劑,減緩或抑制主動脈壁中的細胞凋亡水平,可能通過維持動脈壁的穩(wěn)定性和彈性,從而進一步減少AD形成的風(fēng)險或減緩其進展;因此,這類凋亡抑制劑在AD的治療中也具有一定的開發(fā)前景。此外,長鏈非編碼RNA(long non-coding RNA,lncRNA),例如lncRNA"MEG3通過作用于細胞凋亡相關(guān)的死亡受體和抑制絨毛外滋養(yǎng)層介導(dǎo)的VSMC凋亡來負調(diào)控動脈重塑[21],因此調(diào)控這些lncRNA也可能成為AD的治療靶點。此外,MKC3946是一種小分子肌醇需求酶1核糖核酸內(nèi)切酶結(jié)構(gòu)域抑制劑,可通過阻斷X盒結(jié)合蛋白1剪接形式(X-box binding protein 1 spliced,XBP1s)在體外和體內(nèi)的信使RNA剪接來抑制XBP1s的表達,從而改善內(nèi)質(zhì)網(wǎng)應(yīng)激并抑制活性氧(reactive oxygen species,ROS)的產(chǎn)生,進而減少VSMC的凋亡,延緩AD的形成和進展。因此靶向XBP1s可能為預(yù)防AD及相關(guān)疾病提供一種新的策略[22]。
1.3 "VSMC鐵死亡的機制及其臨床轉(zhuǎn)化的潛在性
鐵死亡是一種鐵依賴性的并以鐵過載和脂質(zhì)過氧化物蓄積為特征的新型細胞程序性死亡方式。鐵死亡有多種關(guān)鍵調(diào)節(jié)因子,包括最近發(fā)現(xiàn)的AMPK、鐵死亡抑制蛋白1(ferroptosis suppressor protein 1,F(xiàn)SP1)和鼠雙微體基因2,以及早期發(fā)現(xiàn)的谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)、胱氨酸/谷氨酸反向轉(zhuǎn)運系統(tǒng)Xc﹣(cystine/glutamate antiporter system Xc﹣,System Xc﹣)和長鏈酰基輔酶A合成酶4,其中System Xc﹣包含2個亞基溶質(zhì)載體家族3成員2(solute carrier family 3 member 2,SLC3A2)和溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11)[23]。既往有研究[24]指出,AD患者的主動脈壁組織中存在過度氧化應(yīng)激。為了驗證以脂質(zhì)過氧化物堆積為特征的鐵死亡是否參與VSMC的死亡,有研究發(fā)現(xiàn)細胞鐵死亡與AD中膜VSMC的丟失密切相關(guān)。RNA甲基轉(zhuǎn)移酶甲基轉(zhuǎn)移酶樣3(Methyltransferase-Like 3,METTL3)可負向調(diào)控鐵死亡關(guān)鍵分子SLC7A11及FSP1,這提示METTL3很可能通過抑制SLC7A11及FSP1的表達促進VSMC鐵死亡。進一步通過CCK-8、LDH等研究[25]發(fā)現(xiàn),METTL3過表達可促進鐵死亡誘導(dǎo)劑imidazole ketone erastin (IKE)及胱氨酸缺乏誘導(dǎo)的VSMC鐵死亡,且敲低METTL3可抑制VSMC鐵死亡。陳越等[26]發(fā)現(xiàn)組蛋白甲基轉(zhuǎn)移酶抑制劑BRD4770可通過維持System Xc-"-GPX4、鐵死亡抑制蛋白1-輔酶Q10和鳥苷三磷酸環(huán)化水解酶1-四氫生物蝶呤氧化還原系統(tǒng)的穩(wěn)定,抑制主動脈VSMC的鐵死亡。上述研究均表明,鐵死亡也是VSMC的重要死亡方式,在AD的發(fā)生發(fā)展中發(fā)揮重要作用。
在AD患者的主動脈中,鐵死亡關(guān)鍵調(diào)節(jié)因子SLC7A11和FSP1的表達下調(diào),這表明鐵死亡可能是誘發(fā)AD的重要因素[27]。METTL3-SLC7A11/FSP1信號通路可調(diào)控人類主動脈VSMC鐵死亡并影響AD的發(fā)生,且鐵死亡抑制劑Liproxstatin-1能明顯延緩小鼠AD的發(fā)生,因此,靶向鐵死亡有望成為延緩或治療AD的新策略[25]。越來越多的研究報道炎癥相關(guān)信號通路的激活與鐵死亡密切相關(guān)。在VSMC鐵死亡的過程中,NF-κB信號通路被激活,促炎因子包括TNF、C-X-C 基序趨化因子配體(C-X-C motif chemokine ligand,CXCL)1、CXCL8和集落刺激因子2的釋放增加,而Trolox等抗氧化劑對鐵死亡的抑制降低了促炎因子TNF-α、白細胞介素(interleukin,IL)-1β和IL-6的釋放[26]。因此,關(guān)注炎癥尤其是經(jīng)典的多功能信號通路,對于研究鐵死亡相關(guān)疾病非常重要,對預(yù)防和治療AD也具有重要意義。此外,前文中BRD4770和METTL3通過調(diào)控VSMC鐵死亡影響AD的發(fā)生,表明表觀遺傳調(diào)控可能也在AD中發(fā)揮重要作用。但表觀遺傳標記的鐵死亡調(diào)控可能影響包括正常細胞在內(nèi)的非靶細胞。因此,研究細胞特異性的鐵死亡有助于識別藥物的副作用,以減少對非靶細胞的不良影響[28]。
1.4 "VSMC細胞焦亡的機制及其臨床轉(zhuǎn)化的潛在性
細胞焦亡是依賴caspase-1的細胞程序性死亡,其特征是大量炎癥因子釋放。其經(jīng)典途徑通過病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)/損傷相關(guān)分子模式(damage-associated molecular pattern,DAMP)刺激,形成炎癥小體激活caspase-1,裂解Gasdermin D蛋白(GSDMD)和pro-IL-1β/18,導(dǎo)致細胞死亡和IL-1β/IL-18釋放。在非經(jīng)典途徑中,細胞質(zhì)脂多糖(lipopolysaccharide,LPS)激活caspase-4/5/11裂解GSDMD。氧化1-棕櫚酰-2-花生四烯酰-sn-甘油-3-磷酸膽堿抑制此過程。GSDMD裂解引起K+外流,促核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3,NLRP3)炎癥小體組裝。caspase-11激活誘導(dǎo)腺苷三磷酸(adenosine triphosphate,ATP)釋放,引起嘌呤能受體P2X7相關(guān)死亡。caspase-3裂解Gasdermin E蛋白(GSDME),caspase-8裂解GSDMD也可引發(fā)細胞焦亡。缺氧的情況下,程序性死亡受體配體1和p-Stat3調(diào)節(jié)"Gasdermin C蛋白(GSDMC)轉(zhuǎn)錄,TNF-α通過caspase-8激活轉(zhuǎn)變?yōu)榧毎雇?。CAR-T細胞通過顆粒酶B激活靶細胞caspase-3,顆粒酶A/B通過穿孔素誘導(dǎo)細胞焦亡[29]。
有研究發(fā)現(xiàn)與正常主動脈相比,AAD的血管組織中NLRP3、含有CARD的凋亡相關(guān)斑點樣蛋白質(zhì)、切割型caspase-1和黑色素瘤缺乏因子2的表達上調(diào),這提示細胞焦亡可能參與了AAD的發(fā)生[30]。NLRP3炎癥小體的激活會導(dǎo)致SMC收縮功能障礙,并導(dǎo)致收縮蛋白降解,也會促進SMC的表型轉(zhuǎn)變并參與一些不良刺激誘導(dǎo)的血管損傷。其中,ATP結(jié)合和水解對于NLRP3炎癥小體的功能至關(guān)重要[31-32]。目前很多研究表明阻斷NLRP3 ATP酶活性是抑制NLRP3的有效模式[33]。MCC950(CRID3)是一種特異性的NLRP3信號抑制劑,通過直接阻斷體內(nèi)基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)9的激活,有效阻礙主動脈擴張和AAD的發(fā)生[34]。針對NLRP3炎癥小體的抑制劑無疑會成為通過細胞焦亡來治療AD的熱點。
既往研究已表明,VSMC細胞焦亡在促進動脈粥樣硬化的進展中起重要作用,VSMC的細胞焦亡一方面增加了斑塊的不穩(wěn)定性,另一方面釋放了大量的促炎因子,引起持續(xù)的炎癥反應(yīng)并破壞血管壁的結(jié)構(gòu),另外,GSDMD是炎癥小體信號轉(zhuǎn)導(dǎo)的關(guān)鍵效應(yīng)器,其能控制細胞焦亡及由此產(chǎn)生的促炎細胞內(nèi)容物的釋放[35]。通過抑制NLRP3炎癥小體信號轉(zhuǎn)導(dǎo)的關(guān)鍵效應(yīng)器GSDMD可抑制細胞焦亡的發(fā)生[36],GSDMD敲除可減少動脈粥樣硬化斑塊壞死核心形成,可見GSDMD抑制劑在治療動脈粥樣硬化具有潛在價值[37]。而動脈粥樣硬化也是AD的重要危險因素,靶向GSDMD也有望在AD的治療中發(fā)揮作用。Polo樣激酶1(plok-like kinase 1,PLK1)抑制劑已被證明可減少Bax/caspase-3/GSDMD通路介導(dǎo)的細胞焦亡,PLK1抑制劑也可能是靶向AAD細胞焦亡的有力參照藥物。
2 "結(jié)論與展望
越來越多的研究發(fā)現(xiàn),VSMC死亡與AD的發(fā)生與進展存在密切的聯(lián)系。本文初步總結(jié)并歸納了目前已知的VSMC程序性死亡及其調(diào)節(jié)機制,包括自噬、凋亡、鐵死亡、細胞焦亡等,調(diào)控這些死亡途徑可能有助于減少VSMC死亡從而延緩AD的發(fā)生發(fā)展。調(diào)控細胞程序性死亡來抑制AD的發(fā)生可能是未來重要的臨床轉(zhuǎn)化方向,例如:靶向抑制鐵死亡、研究表觀遺傳學(xué)調(diào)節(jié)劑介導(dǎo)的鐵死亡細胞或靶向ALDH2和miR-31-5p等。聚焦VSMC細胞程序性死亡的具體作用,尤其是各類程序性死亡方式在VSMC中的調(diào)控機制以及不同死亡方式之間的相關(guān)性,對闡明AD的發(fā)病機制具有重要意義,對臨床防治AD藥物的研發(fā)具有重要的理論價值。
參考文獻
[1]Isselbacher EM,Preventza O,Hamilton Black J 3rd,et al. 2022 ACC/AHA Guideline for the diagnosis and management of aortic disease:a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines[J]. Circulation,2022,146(24):e334-e482.
[2]Clément M,Chappell J,Raffort J,et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms[J]. Arterioscler Thromb Vasc Biol,2019,39(6):1149-1159.
[3]Qin HL,Bao JH,Tang JJ,et al. Arterial remodeling:the role of mitochondrial metabolism in vascular smooth muscle cells[J]. Am J Physiol Cell Physiol,2023,324(1):C183-C192.
[4]You J,Ouyang S,Xie Z,et al. The suppression of hyperlipid diet-induced ferroptosis of vascular smooth muscle cells protests against atherosclerosis independent of p53/SCL7A11/GPX4 axis[J]. J Cell Physiol,2023,238(8):1891-1908.
[5]Liu S,Huang T,Liu R,et al. Spermidine suppresses development of experimental abdominal aortic aneurysms[J]."J Am Heart Assoc,2020,9(8):e014757.
[6]Kari S,Subramanian K,Altomonte IA,et al. Programmed cell death detection methods:a systematic review and a categorical comparison[J]. Apoptosis,2022,27(7-8):482-508.
[7]Gentle IE. Supramolecular complexes in cell death and inflammation and their regulation by autophagy[J]."Front Cell Dev Biol,2019,7:73.
[8]Lu W,Zhou Y,Zeng S,et al. Loss of FoxO3a prevents aortic aneurysm formation through maintenance of VSMC homeostasis[J]. Cell Death Dis,2021,12(4):378.
[9]Li R,Wei X,Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy[J]. Cell Mol Life Sci,2019,76(19):3711-3722.
[10]He Y,Yi X,Zhang Z,et al. JIB-04,a histone demethylase Jumonji C domain inhibitor,regulates phenotypic switching of vascular smooth muscle cells[J]. Clin Epigenetics,2022,14(1):101.
[11]Lei L,Zhou Y,Wang T,et al. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells[J]. Int Immunopharmacol,2022,112:109177.
[12]Ohno-Urabe S,Aoki H,Nishihara M,et al. Role of macrophage Socs3 in the pathogenesis of aortic dissection[J]. J Am Heart Assoc,2018.7(2):e007389.
[13]Yang K,Ren J,Li X,et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype[J]. Eur Heart J,2020,41(26):2442-2453.
[14]Luo C,Zhou B,Cui Y,et al. ALDH2 knockout protects against aortic dissection[J]. BMC Cardiovasc Disord,2022,22(1):443.
[15]Chen TQ,Hu N,Huo B,et al. EHMT2/G9a inhibits aortic smooth muscle cell death by suppressing autophagy activation[J]. Int J Biol Sci,2020,16(7):1252-1263.
[16]Pistritto G,Trisciuoglio D,Ceci C,et al. Apoptosis as anticancer mechanism:function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging (Albany NY),2016,8(4):603-619.
[17]D'Arcy MS. Cell death:a review of the major forms of apoptosisnecrosis and autophagy[J]. Cell Biol Int,2019,43(6):582-592.
[18]Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body:disease message and therapeutic target potentials[J]. Biosci Rep,2019.39(1):BSR20180992..
[19]Chen YY,Hsieh CY,Jayakumar T,et al. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade[J]. Sci Rep,2014,4:5651.
[20]Chakraborty A,Li Y,Zhang C,et al. Programmed cell death in aortic aneurysm and dissection:a potential therapeutic target[J]. J Mol Cell Cardiol,2022,163:67-80.
[21]Jiang N,Zhang X,Gu X,et al. Progress in understanding the role of lncRNA in programmed cell death[J]. Cell Death Discov,2021,7(1):30.
[22]Zhao G,F(xiàn)u Y,Cai Z,et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction[J]. Circ Res,2017,121(12):1331-1345.
[23]Li P,Jiang M,Li K,et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol,2021,22(9):1107-1117.
[24]Shi F,Wang Z,Wu Q,et al. Iron deficiency promotes aortic media degeneration by activating endoplasmic reticulum stress-mediated IRE1 signaling pathway[J]. Pharmacol Res,2022,183:106366.
[25]Li N,Jiang W,Wang W,et al. Ferroptosis and its emerging roles in cardiovascular diseases[J]. Pharmacol Res,2021,166:105466.
[26]Chen Y,F(xiàn)ang ZM,Yi X,et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis,2023,14(3):205.
[27]Li N,Yi X,He Y,et al. Targeting ferroptosis as a novel approach to alleviate aortic dissection[J]. Int J Biol Sci,2022,18(10):4118-4134.
[28]Yang M,Luo H,Yi X,et al. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases[J]. MedComm (2020),2023,4(3):e267.
[29]Yu P,Zhang X,Liu N,et al. Pyroptosis:mechanisms and diseases[J]. Signal Transduct Target Ther,2021,6(1):128.
[30]Chen Y,He Y,Wei X,et al. Targeting regulated cell death in aortic aneurysm and dissection therapy[J]. Pharmacol Res,2022,176:106048.
[31]Billingham LK,Stoolman JS,Vasan K,et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation[J]. Nat Immunol,2022,23(5):692-704.
[32]Brinkschulte R,F(xiàn)u?h?ller DM,Hoss F,et al. ATP-binding and hydrolysis of human NLRP3[J]. Commun Biol,2022,5(1):1176.
[33]Ma Q. Pharmacological inhibition of the NLRP3 inflammasome:structure,molecular activation,and inhibitor-NLRP3 interaction[J]. Pharmacol Rev,2023,75(3):487-520.
[34]Coll RC,Hill JR,Day CJ,et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol,2019,15(6):556-559.
[35]Li Z,Ji S,Jiang ML,et al. The regulation and modification of GSDMD signaling in diseases[J]. Front Immunol,2022,13:893912.
[36]Coll RC,Schroder K,Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci,2022,43(8):653-668.
[37]Yang Z,Shi J,Chen L,et al. Role of pyroptosis and ferroptosis in the progression of atherosclerotic plaques[J]. Front Cell Dev Biol,2022,10:811196.
收稿日期:2024-02-18