摘要銅(Cu)是植物所必需的營(yíng)養(yǎng)元素,廣泛參與多種生理生化過程,但過量的銅會(huì)產(chǎn)生毒害作用,嚴(yán)重影響植物生長(zhǎng)發(fā)育。為了抵御銅毒害,植物進(jìn)化出多種機(jī)制來嚴(yán)格調(diào)控環(huán)境中銅的吸收及其在體內(nèi)的轉(zhuǎn)運(yùn)。近年來,隨著人類工業(yè)化的發(fā)展,土壤中的銅污染日益加劇。闡述了銅毒害對(duì)植物造成的危害,總結(jié)分析植物利用根系分泌物、細(xì)胞壁、轉(zhuǎn)運(yùn)蛋白、抗氧化劑等響應(yīng)銅脅迫的各類防御機(jī)制,此外,還探討了囊泡運(yùn)輸在植物抗銅毒害中的潛在功能,以期為耐銅作物的培育提供新的思路和理論依據(jù)。
關(guān)鍵詞植物;銅毒害;吸收;轉(zhuǎn)運(yùn);囊泡運(yùn)輸
中圖分類號(hào)X173"文獻(xiàn)標(biāo)識(shí)碼A"文章編號(hào)0517-6611(2024)24-0023-06
doi:10.3969/j.issn.0517-6611.2024.24.005
開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
ResearchProgressontheMechanismofPlantResistancetoCopperToxicity
WANGLiu-fan,RANYu-ling,ZHANGGuo-chaoetal
(CollegeofLifeandEnvironmentalSciences,ShaoxingUniversity,Shaoxing,Zhejiang312000)
AbstractCopper(Cu)isanessentialnutrientelementforplantsandwidelyparticipatesinvariousphysiologicalandbiochemicalprocesses.However,excessivecopperhastoxiceffectsandseriouslyaffectsthegrowthanddevelopmentofplants.Inordertoresistcoppertoxicity,plantshaveevolvedmultiplemechanismstostrictlyregulatetheabsorptionofcopperintheenvironmentanditstransportwithinthebody.Inrecentyears,withtheadvancementofhumanindustrialization,copperpollutioninsoilhassignificantlyincreased.Thispaperelaboratesontheharmcausedbycoppertoxicitytoplants,andsummarizesandanalyzesvariousdefensemechanismsofplantsinresponsetocopperstress,suchasrootexudates,cellwalls,transportproteins,andantioxidant.Inaddition,weexploredthepotentialfunctionofvesicletransportinplantresistancetocoppertoxicity,hopingtoprovidenewideasandtheoreticalbasisforthecultivationofcoppertolerantcrops.
KeywordsPlant;Coppertoxicity;Absorption;Transport;Vesicletrafficking
目前,重金屬污染已經(jīng)是一個(gè)世界性的環(huán)境問題,它給地球上的生物安全帶來嚴(yán)重隱患。在眾多重金屬中,銅作為植物生長(zhǎng)所必需的八種微量元素之一,與植物的許多生理和生化過程有關(guān),包括光合作用、呼吸作用、超氧化物清除、細(xì)胞壁代謝、木質(zhì)化以及乙烯感知等[1],是一種對(duì)植物正常代謝至關(guān)重要的營(yíng)養(yǎng)元素。植物在缺銅條件下會(huì)出現(xiàn)各種異常表型,包括生長(zhǎng)發(fā)育遲緩、嫩葉扭曲和水分運(yùn)輸不足等[2]。近年來由于人類工業(yè)和農(nóng)業(yè)上含銅制品的大量使用和排放,導(dǎo)致銅污染日益加劇。高濃度的銅會(huì)抑制植物生長(zhǎng),影響一些關(guān)鍵細(xì)胞成分的功能[1],并且對(duì)土壤微生物具有毒害作用,阻礙植物對(duì)氮、鉀、磷等營(yíng)養(yǎng)元素的吸收利用[3]。這些積聚在植物體內(nèi)的銅不僅會(huì)減少作物產(chǎn)量,最終還將通過食物鏈對(duì)人類的健康構(gòu)成威脅。該研究圍繞銅對(duì)植物的毒害作用以及植物對(duì)銅的吸收和轉(zhuǎn)運(yùn),著重探討植物抗銅毒害機(jī)制的研究進(jìn)展,旨在為提高植物耐銅性和土壤銅污染的植物修復(fù)提供借鑒和參考。
1銅對(duì)植物的毒害
銅對(duì)植物的毒性取決于其在土壤中的溶解度和有效性[4],而銅在土壤中的溶解度又依賴于pH和可溶性有機(jī)質(zhì)的含量[5],它的生物利用率則受到總銅濃度、陽離子交換能力、土壤有機(jī)質(zhì)和土壤pH的影響[6]。一旦體內(nèi)的銅過量就會(huì)產(chǎn)生大量自由基與活性氧,對(duì)植物造成毒害,影響植物的種子萌發(fā)、礦質(zhì)營(yíng)養(yǎng)元素的吸收、光合作用和根部生長(zhǎng)等[7]。
1.1銅毒害對(duì)種子萌發(fā)的影響
種子萌發(fā)是植物生命的重要階段,在此期間植物對(duì)周圍介質(zhì)的變化高度敏感[8],而銅的過度積累會(huì)導(dǎo)致萌發(fā)率顯著下降[9-12]。研究表明,銅脅迫抑制種子萌發(fā)可能由三方面原因造成:①種子長(zhǎng)期處于銅脅迫條件下,種皮對(duì)銅的滲透性增強(qiáng),導(dǎo)致銅滲透到胚胎中,進(jìn)而抑制種子萌發(fā);②銅毒害會(huì)阻礙糖的轉(zhuǎn)運(yùn),抑制碳水化合物從源到庫的輸出,從而影響種子萌發(fā)[13];③銅毒害會(huì)下調(diào)ɑ-淀粉酶、轉(zhuǎn)化酶以及烯醇化酶的活性[14],導(dǎo)致蔗糖和葡萄糖水解,其產(chǎn)物過量積累從而降低種子萌發(fā)率[15]。
1.2銅毒害對(duì)吸收礦質(zhì)營(yíng)養(yǎng)元素的影響
研究表明,銅脅迫會(huì)使得植物對(duì)其他營(yíng)養(yǎng)元素(N、Fe、Zn、Ca和Mn等)的吸收率下降[3,16-18]。在擬南芥(Arabidopsis thaliana)中,NRT1.1、NRT1.2是高親和力硝酸鹽轉(zhuǎn)運(yùn)蛋白[19],NRT1.5負(fù)責(zé)調(diào)節(jié)硝酸鹽長(zhǎng)距離運(yùn)輸,介導(dǎo)硝酸鹽從木質(zhì)部向地上部分的轉(zhuǎn)運(yùn)[20],它們與植物的N吸收密切相關(guān)。長(zhǎng)期處于銅脅迫條件下,擬南芥NRT1.1、NRT1.2和NRT1.5的轉(zhuǎn)錄水平都明顯下調(diào),進(jìn)而影響植株對(duì)N元素的吸收。此外,銅脅迫還會(huì)通過抑制硝酸還原酶的活性來阻礙硝酸鹽還原成銨,造成擬南芥對(duì)N的吸收減少[3]。銅毒害會(huì)增加擬南芥細(xì)胞中的有機(jī)螯合劑(煙酰胺和谷胱甘肽),進(jìn)而減少Fe從根部到地上部分的運(yùn)輸,導(dǎo)致Fe在植物根部積累[17]。另有研究顯示,高粱(Sorghum bicolor)幼苗處于銅脅迫條件下其根系對(duì)Fe、Zn、Ca和Mn的吸收率顯著降低[18]。
1.3銅毒害對(duì)光合作用的影響
銅離子在植物中參與光合電子傳遞和氧化還原反應(yīng),它是質(zhì)體藍(lán)蛋白、Cu/Zn超氧化物歧化酶、車前花青素以及銅依賴性胺氧化酶等的重要組分[21]。植物將銅傳遞給葉綠體類囊體腔的質(zhì)體藍(lán)素和基質(zhì)中的CSD2。質(zhì)體藍(lán)素和CSD2都是核基因編碼的,其中質(zhì)體藍(lán)素參與光合作用,對(duì)植物的生長(zhǎng)發(fā)育至關(guān)重要。當(dāng)銅缺乏時(shí),植物會(huì)調(diào)節(jié)細(xì)胞內(nèi)銅離子的分布,優(yōu)先將銅傳遞給質(zhì)體藍(lán)素,從而保證光合作用的正常進(jìn)行[22-24]。但是當(dāng)銅過量時(shí),反而會(huì)破壞葉綠體和類囊體膜的組成,降低光合色素和電子載體的含量,從而抑制光合作用的電子轉(zhuǎn)移,使得葉片變黃[25]。銅過量還會(huì)導(dǎo)致鐵從根部向地上部分的轉(zhuǎn)移減少,引發(fā)代謝紊亂,使葉綠素濃度降低,進(jìn)一步影響光合作用[26]。
1.4銅毒害對(duì)根部生長(zhǎng)的影響
銅過量會(huì)破壞植物根角質(zhì)層和根部的細(xì)胞膜,抑制主根伸長(zhǎng),促進(jìn)側(cè)根形成,并減少根毛的產(chǎn)生,從而使根系的生長(zhǎng)速度下降[7]。研究顯示,銅脅迫抑制初生根的生長(zhǎng)與生長(zhǎng)素的再分配密切相關(guān),而生長(zhǎng)素的再分配受生長(zhǎng)素輸出載體PIN1(PIN-formed1)調(diào)控[27]。生長(zhǎng)素報(bào)告基因DR5顯示,銅脅迫條件下生長(zhǎng)素在根尖上方積累,進(jìn)而促進(jìn)側(cè)根的形成[28]。此外,銅過量還會(huì)使根部細(xì)胞分裂減少,細(xì)胞壁厚度增加,導(dǎo)致根部形態(tài)發(fā)生改變[29]。同時(shí),銅毒害會(huì)使代謝失衡,增加細(xì)胞膜中的活性氧和脂質(zhì)過氧化,致使植物根部形態(tài)異常[23]。有證據(jù)顯示,長(zhǎng)期處于銅脅迫下的大蒜(Allium sativum)根部出現(xiàn)有絲分裂指數(shù)逐漸下降,線粒體結(jié)構(gòu)改變,核膜破裂,染色質(zhì)物質(zhì)凝聚以及細(xì)胞器解體等現(xiàn)象[30]??傊?,銅毒害會(huì)抑制植物根的初級(jí)生長(zhǎng),減緩根分生細(xì)胞的增殖,破壞細(xì)胞的完整性。
2植物對(duì)銅的吸收與運(yùn)輸
植物正常生長(zhǎng)發(fā)育除了需要吸收C、H、O、N和P等大量元素外,還需要吸收微量元(Fe、B、Cu、Zn、Mo和Mn等)以維持正常的生理生化活動(dòng)。微量元素中的銅作為一種重要的輔酶因子,參與植物的光合作用和呼吸作用。在長(zhǎng)期的進(jìn)化過程中,植物產(chǎn)生了一套完善的吸收機(jī)制,以便從環(huán)境中獲得銅離子來滿足自身需求。
首先,由纖維素、果膠和糖蛋白構(gòu)成的細(xì)胞壁帶有負(fù)電荷,因此可以與銅離子結(jié)合[31]。此外,植物根部會(huì)分泌檸檬酸、蘋果酸等有機(jī)酸以及呼吸作用形成的碳酸來溶解難溶性物質(zhì)以獲取銅,在銅離子被根部吸收后,再通過木質(zhì)部、韌皮部進(jìn)而到達(dá)地上部分[32]。其中,木質(zhì)部加載可以分為質(zhì)外體途徑和共質(zhì)體途徑兩條。質(zhì)外體途徑通過細(xì)胞間隙進(jìn)行,是從土壤溶液擴(kuò)散到細(xì)胞間隙;共質(zhì)體途徑是由不同的轉(zhuǎn)運(yùn)蛋白通過細(xì)胞質(zhì)膜完成[33]。銅轉(zhuǎn)運(yùn)蛋白(copper transporter)COPT1、COPT2定位于植物根尖質(zhì)膜,主要負(fù)責(zé)銅離子的吸收[34]。COPT6同樣也是一種質(zhì)膜蛋白,主要在地上部分起吸收銅離子的作用[35]。當(dāng)缺銅時(shí),植物體內(nèi)COPT1、COPT2、COPT6轉(zhuǎn)錄水平上調(diào),以增加銅離子的攝取[36],且COPT6在mRNA水平上的上升明顯高于COPT2[37]。ZIP家族是陽離子轉(zhuǎn)運(yùn)蛋白,現(xiàn)已證明在Zn、Mn、Fe、Cu 4種必需微量營(yíng)養(yǎng)元素的運(yùn)輸中發(fā)揮重要作用[38]。ZIP家族有15個(gè)成員,其中只有ZIP2和ZIP4會(huì)受缺銅誘導(dǎo)使其轉(zhuǎn)錄水平上調(diào)[39]。研究顯示,擬南芥中P1B型重金屬ATP酶(heavy metal ATPase,HMA)具有介導(dǎo)潛在有毒金屬跨膜轉(zhuǎn)運(yùn)的能力[40]。其中,HMA7(RAN1)定位于內(nèi)質(zhì)網(wǎng),主要在根和花中表達(dá)[41],其功能是將銅傳遞到乙烯受體ETR1家族中[42]。HMA6和HMA8則定位于葉綠體,負(fù)責(zé)葉綠體中的銅轉(zhuǎn)運(yùn)。HMA6負(fù)責(zé)將銅運(yùn)輸?shù)交|(zhì),而HMA8負(fù)責(zé)將銅運(yùn)輸?shù)筋惸殷w以便合成質(zhì)體藍(lán)蛋白或?yàn)镃u/Zn-SOD提供輔助因子[43]。黃色條紋蛋白YSL(yellow stripe-like protein)家族介導(dǎo)煙酰胺螯合的銅離子,在銅的長(zhǎng)距離運(yùn)輸中發(fā)揮功能[44]。
植物根系對(duì)銅的吸收及其內(nèi)部運(yùn)輸和儲(chǔ)存在轉(zhuǎn)錄和轉(zhuǎn)錄后水平上均受到嚴(yán)格調(diào)控,以適應(yīng)各類不良環(huán)境[45]。例如,在缺銅條件下為了維持銅穩(wěn)態(tài),植物會(huì)增加細(xì)胞對(duì)銅的攝取并減少銅的使用。在擬南芥中,這2種機(jī)制都由保守的轉(zhuǎn)錄因子鱗狀啟動(dòng)子結(jié)合蛋白7(SPL7)調(diào)控。近期研究表明,SPL7主要在擬南芥維管系統(tǒng)中表達(dá),并局部調(diào)節(jié)地上部分和地下部分對(duì)缺銅的反應(yīng)[46]。除了SPL7之外,銅缺乏誘導(dǎo)轉(zhuǎn)錄因子1(CITF1,也稱為bHLH160)調(diào)節(jié)銅從根的吸收、傳遞到葉、花和花藥的過程[22]。
3植物銅解毒機(jī)制
當(dāng)植物中的含銅量超標(biāo)時(shí),會(huì)引起活性氧的快速積累,活性氧會(huì)破壞核酸、氧化蛋白并導(dǎo)致脂質(zhì)過氧化,從而影響細(xì)胞的諸多功能,產(chǎn)生毒害作用。植物抵御銅毒害主要有以下策略:①通過增加根系分泌物對(duì)土壤中的銅離子進(jìn)行螯合和沉淀,減少根部對(duì)銅離子的吸收;②以細(xì)胞壁為屏障,吸附過量的銅離子;③誘導(dǎo)銅轉(zhuǎn)運(yùn)蛋白基因的表達(dá)和重定位,在減少銅離子吸收的同時(shí)增加銅離子的外排;④將過量的銅離子隔離到液泡,降低胞質(zhì)中的銅含量;⑤利用不同類型的抗氧化劑來清除銅脅迫下產(chǎn)生的活性氧和自由基。
3.1根系分泌物
根系分泌物是多種化合物的混合物,包括初級(jí)和次級(jí)代謝物。植物通過不同類型的主動(dòng)運(yùn)輸和被動(dòng)運(yùn)輸將這些代謝物分泌到根際[47]。主動(dòng)運(yùn)輸是由位于根質(zhì)膜中的蛋白(ABC家族和MATE家族)所介導(dǎo)[48],被動(dòng)運(yùn)輸分為擴(kuò)散、離子通道和囊泡運(yùn)輸三類。擴(kuò)散負(fù)責(zé)低分子物質(zhì)的釋放,例如糖、氨基酸、羧酸和酚類[49];離子通道負(fù)責(zé)碳水化合物和特定羧酸鹽(草酸鹽)的分泌[50];囊泡運(yùn)輸則是將高分子代謝物包裹在囊泡中進(jìn)行轉(zhuǎn)運(yùn)[50]。
當(dāng)處于銅脅迫下,根系分泌物成分會(huì)發(fā)生明顯變化,其中的有機(jī)酸成分可以通過促進(jìn)螯合來減少根系對(duì)銅離子的吸收,增加植物的銅抗性[51-53]。研究表明,寬葉香蒲(Typha latifolia)在過量硫酸銅處理下,其根部的草酸、乙酸分泌物濃度在最初幾個(gè)小時(shí)內(nèi)迅速上升[54]。用高銅處理會(huì)使毛竹(Phyllostachys pubescens)根部分泌大量的草酸和蘋果酸[55]。此外,研究人員還發(fā)現(xiàn)銅處理會(huì)導(dǎo)致柑橘(Citrus L.)根表面積聚的沉積物中的蘋果酸鹽和檸檬酸鹽濃度升高[51]。因此,這些有機(jī)酸也被稱為細(xì)胞內(nèi)的重金屬螯合劑,植物利用它們將過量的重金屬轉(zhuǎn)化為無活性或者無毒的形式來達(dá)到解毒效果。
3.2細(xì)胞壁的吸附作用
細(xì)胞壁是阻止重金屬離子進(jìn)入植物細(xì)胞的第一道屏障。細(xì)胞壁可以通過帶負(fù)電荷的基團(tuán)如果膠的—OH、—COOH、氨基和醛基團(tuán)結(jié)合銅離子,減少細(xì)胞對(duì)銅的吸收[56]。苔蘚(Scopelophila cataractae)中,果膠能結(jié)合細(xì)胞壁中的銅,緩解過量銅的毒害作用[57]。此外,有證據(jù)顯示,細(xì)胞壁中果膠的甲基酯化和乙?;潭扰c其對(duì)重金屬的親和力緊密相關(guān)。在石竹科植物(Silene paradoxa)中,耐銅性高的品種的細(xì)胞壁果膠含量相對(duì)較低,這與果膠的甲基酯化增加有關(guān)[58]。此外,細(xì)胞壁中的木質(zhì)素可能在螯合重金屬中也發(fā)揮重要作用[59-60]。研究表明,銅對(duì)木質(zhì)素的生物合成有積極影響[61]。在暴露于高水平銅的人參(Panax ginseng C.A.Mey.)中,木質(zhì)素的生物合成表現(xiàn)出顯著增強(qiáng)[62]。
除了細(xì)胞壁的成分外,細(xì)胞壁的厚度在植物抵御重金屬毒害中同樣起到關(guān)鍵作用。研究表明,細(xì)胞壁增厚能夠?qū)㈦蓦召|(zhì)層與質(zhì)膜分離,而胼胝質(zhì)層是重金屬不可滲透的化合物,從而阻止重金屬進(jìn)入胞內(nèi)[63]。在Cu2+的誘導(dǎo)下,柑橘根系細(xì)胞的細(xì)胞壁顯著增厚,減少Cu2+從根到地上的運(yùn)輸[64]。過量銅也會(huì)使得綠藻(Chlorophyta)的細(xì)胞壁增厚,從而避免細(xì)胞出現(xiàn)損傷[65]。以上研究都證明,增厚細(xì)胞壁能使植物有效減少銅的毒害[66]。
3.3銅轉(zhuǎn)運(yùn)蛋白豐度和活性的調(diào)控
植物在長(zhǎng)期進(jìn)化過程中產(chǎn)生了一套依賴轉(zhuǎn)運(yùn)蛋白來迅速控制銅離子透過質(zhì)膜攝?。╱ptake)和外排(efflux)的系統(tǒng),以維持體內(nèi)銅穩(wěn)態(tài)[67]。植物細(xì)胞的銅攝取主要依賴于對(duì)銅具有高親和力和專一性的銅轉(zhuǎn)運(yùn)蛋白COPT家族[34]。擬南芥中COPT家族包含6個(gè)成員:AtCOPT1~6。過量銅條件下,擬南芥AtCOPT1和AtCOPT2的轉(zhuǎn)錄受到抑制[68],并且已有的AtCOPT1和AtCOPT2蛋白會(huì)通過蛋白酶體途徑降解,從而降低它們的質(zhì)膜豐度,減少細(xì)胞對(duì)銅的攝取[69-70]。擬南芥YSL家族中的AtYSL1和AtYSL3定位于質(zhì)膜,當(dāng)過表達(dá)AtYSL1和AtYSL3時(shí)植物地上部分的銅含量高于野生型,證明AtYSL1和AtYSL3介導(dǎo)銅從根系轉(zhuǎn)移到地上部分[71]。而在過量銅刺激下,AtYSL1和AtYSL3轉(zhuǎn)錄水平會(huì)受到SUMO E3連接酶SIZ1的調(diào)控而明顯下降,進(jìn)而抑制銅在植物體內(nèi)的運(yùn)輸[72]。
擬南芥基因組編碼8個(gè)HMA蛋白:HMA1~8[73],其中HMA5~HMA8與細(xì)胞內(nèi)銅的轉(zhuǎn)運(yùn)有關(guān)[21]。近年來的研究結(jié)果表明,AtHMA5能將銅離子排出細(xì)胞,是調(diào)控植物銅穩(wěn)態(tài)的重要功能蛋白[74]。擬南芥HMA5功能缺失突變體在銅脅迫處理試驗(yàn)中其5 d苗和土上3周植株都明顯小于野生型,表現(xiàn)出對(duì)銅毒害超敏感,證明HMA5是植物耐銅性的關(guān)鍵基因[75]。Li等[76]對(duì)HMA5在植物抗銅毒害中的功能做了進(jìn)一步分析,發(fā)現(xiàn)在正常培養(yǎng)條件下根部細(xì)胞中的AtHMA5定位于內(nèi)質(zhì)網(wǎng),而一旦感知到銅脅迫,這些AtHMA5會(huì)在短時(shí)間內(nèi)完成從內(nèi)質(zhì)網(wǎng)到胞內(nèi)小體再到質(zhì)膜的定位變化,并且它們?cè)谫|(zhì)膜上明顯聚集在靠近土壤一側(cè),以便將多余的銅離子排出植物體外。待銅離子含量恢復(fù)到正常范圍后,質(zhì)膜上的AtHMA5通過內(nèi)吞(endocytosis)途徑進(jìn)入胞內(nèi),之后它們重新回到內(nèi)質(zhì)網(wǎng)或者被運(yùn)輸?shù)揭号萁到狻3薍MA外,植物中還存在一類銅伴侶蛋白,它們能結(jié)合胞內(nèi)的銅離子并將其傳遞給特定的銅轉(zhuǎn)運(yùn)蛋白[77]。擬南芥銅伴侶蛋白ATX1(antioxidant protein1)和CCH(ATX1-like Cu chaperone)功能缺失突變體表現(xiàn)出對(duì)過量銅敏感,而AtATX1過表達(dá)則使植物對(duì)銅的耐受性顯著增加,表明ATX1參與調(diào)控植物耐銅性[78-79]。進(jìn)一步研究發(fā)現(xiàn),擬南芥ATX1和CCH能夠與HMA5的金屬結(jié)合域互作,暗示兩者在銅解毒機(jī)制上存在關(guān)聯(lián)[74]。確實(shí),之后水稻(Oryza sativa)中的研究證明OsATX1可以與OsHMA4、OsHMA5、OsHMA6和OsHMA9協(xié)同調(diào)控植物各組織中銅的分布[79]。
3.4液泡的區(qū)隔化作用
在成熟的植物細(xì)胞中,液泡是儲(chǔ)存離子和代謝物的最大細(xì)胞器,也是許多重金屬運(yùn)輸?shù)淖罱K目的地,它所含有的多種有機(jī)酸堿、蛋白質(zhì)等物質(zhì)可以與重金屬結(jié)合從而削弱其對(duì)細(xì)胞的傷害,對(duì)植物緩解重金屬毒性至關(guān)重要。水稻、小麥(Triticum aestivum L.)、大麥(Hordeum vulgare L)、洋蔥(Allium cepa L.)等植物均會(huì)通過改變液泡的形態(tài)和數(shù)量來應(yīng)對(duì)環(huán)境中的重金屬脅迫[80-85]。
透射電子顯微鏡和EELS(electron energy loss spectroscopy)分析顯示,銅處理后大蒜細(xì)胞中出現(xiàn)了含銅的電子致密顆粒,其中根尖細(xì)胞的液泡是主要的銅積累位點(diǎn)[82]。駱駝刺(Alhagi camelorum Fisch)則是通過將銅離子運(yùn)輸?shù)饺~片中的液泡隔離來適應(yīng)高銅環(huán)境[86]。水稻中P型ATP酶OsHMA4定位在液泡膜,銅脅迫處理會(huì)誘導(dǎo)OsHMA4在根部的表達(dá)顯著升高[87],暗示金屬轉(zhuǎn)運(yùn)蛋白在銅離子隔離到液泡的過程中可能起關(guān)鍵作用。
3.5抗氧化劑的作用
過量銅會(huì)產(chǎn)生ROS反應(yīng),ROS反應(yīng)會(huì)催化有害自由基的產(chǎn)生[15]。銅脅迫下,植物會(huì)利用抗氧化酶清除這些有害自由基,這些抗氧化酶包括超氧化物歧化酶(SOD)、過氧化物酶(POX)和過氧化氫酶(CAT)[88]。研究表明,50 μmol/L CuSO4處理下,向日葵(Helianthus annuus L.)幼苗根系中總抗氧化酶活性升高[89]。小麥葉片中所有過氧化酶(抗壞血酸過氧化物酶,APOD;愈創(chuàng)木酚過氧化物酶,GPOD;丁香氮嗪過氧化物酶,SPOD)都能被高濃度銅處理誘導(dǎo)升高,并且根中的SPOD、GPOD、APOD和SOD的酶活性明顯高于葉片[90]。1 μmol/L CuSO4明顯誘導(dǎo)了蘿卜(Raphanus sativus)根系中過氧化物酶(POD)的活性升高[91]。100 μmol/L CuSO4處理?xiàng)l件下,水培生長(zhǎng)12 d的水稻幼苗中超氧化物歧化酶(SOD)、抗壞血酸過氧化物酶(APX)、單脫氫抗壞血酸還原酶(MDHAR)等過氧化酶活性顯著增加[92]。300 μmol/L CuSO4條件下,擬南芥植株中SOD和POX活性增加,但CAT活性降低[93]。玉米(Zea mays L.)植株用100 μmol/L CuSO4處理24 h后,葉片中SOD、CAT和AP活性增加[94]。銅脅迫誘導(dǎo)金魚藻(Ceratophyllum demersum L.)中SOD、APX和CAT酶的過量產(chǎn)生[95],以及浮萍(Lemna minor)中CAT、POD和APX的活性增加[96]。
除了上述抗氧化酶外,植物體內(nèi)還有許多非酶抗氧化劑也在解銅毒害中發(fā)揮重要作用。當(dāng)胞質(zhì)中的銅離子過量時(shí),植物可通過特定的螯合劑與多余游離銅離子形成無毒復(fù)合物,再將其隔離到對(duì)銅離子不敏感的部位。銅離子的首選配體是硫醇基,硫醇基存在于谷胱甘肽(GSH)、植物螯合素(PC)以及金屬硫蛋白(MTs)的半胱氨基殘基中[97]。GSH作為抗氧化劑屏障的一部分,參與許多氧化還原反應(yīng),可與ROS反應(yīng),防止敏感的細(xì)胞成分被過度氧化。PC可以螯合胞外的銅離子,降低銅的生物利用度并減弱其穿過細(xì)胞壁和細(xì)胞膜的能力[98]。研究表明,水稻幼苗銅處理48 h后,GSH和PC含量顯著增加,且施加外源GSH可減少銅誘導(dǎo)的有害自由基的產(chǎn)生[92]。在培養(yǎng)液中添加400 μmol/L的Cu2+會(huì)導(dǎo)致希臘鼠尾草(S.fruticose)中GSH含量的減少和PC含量的增加[99]。銅脅迫條件下,雙對(duì)柵藻(Scenedesmus bijugatus)中GSH的含量隨時(shí)間遞增[100]。此外,GSH和PC還參與扁滸苔(U.compressa)對(duì)銅的耐性,用10 μmol/L Cu2+處理后扁滸苔的GSH在第5天上升至最高水平,PC含量在第7天達(dá)到峰值[101]。MTs是一類低分子量、富含半胱氨酸(Cys)的金屬結(jié)合蛋白。植物MTs可以通過Cys硫醇基團(tuán)螯合包括銅在內(nèi)的金屬離子,保護(hù)細(xì)胞免受重金屬的毒害[102]。研究表明,將來自甘藍(lán)(Brassica oleracea var.capitata L.)、水稻和乳鳶尾(Iris tectorum Maxim.)的MTs基因過表達(dá)至擬南芥中,這些轉(zhuǎn)基因植株對(duì)銅脅迫均表現(xiàn)出更大的耐受性[103]。在用100 μmol/L Cu2+處理的水稻胚根中,表達(dá)OsMT基因組顯著高于對(duì)照組,且OsMT轉(zhuǎn)錄水平的提高可以明顯改善水稻懸浮細(xì)胞對(duì)銅的耐受性[104]。另外,Elsholtzia haichowensis metallothionein 1(EhMT)過表達(dá)至煙草中,使其具有更有效的抗氧化系統(tǒng)、更高的過氧化物酶活性,可以更好地應(yīng)對(duì)氧化應(yīng)激,具有更強(qiáng)的銅耐受性[105]。
4研究展望
隨著人類對(duì)銅礦的開采、含銅化合物的生產(chǎn)、生活廢水的排放以及農(nóng)藥、化肥的使用等,土壤中的銅含量已經(jīng)逐漸超過植物耐受范圍,造成其生長(zhǎng)發(fā)育受阻,并終將影響人類自身健康。如何提高植物的耐銅性來增加作物產(chǎn)量,以及研發(fā)富集銅植物用以修復(fù)銅污染土地是當(dāng)前亟待解決的科學(xué)問題。盡管人們對(duì)植物抵御銅脅迫的多種抗性機(jī)制有了一定程度的了解,但仍缺乏系統(tǒng)的認(rèn)知。只有深入探究其內(nèi)在的分子機(jī)理,才能更有效地利用基因工程等手段全方面改善植物對(duì)銅的解毒能力。綜合目前國內(nèi)外研究進(jìn)展,筆者推測(cè)囊泡運(yùn)輸(vesicletrafficking)可能在植物銅抗性中發(fā)揮基礎(chǔ)作用,統(tǒng)籌調(diào)控著植物對(duì)外界銅濃度的響應(yīng)。
囊泡運(yùn)輸是指細(xì)胞中的蛋白質(zhì)等大分子被脂雙層包裹起來形成囊泡,從而進(jìn)行轉(zhuǎn)運(yùn)的一類運(yùn)輸機(jī)制,廣泛存在于真核生物中[106-108]。越來越多的證據(jù)表明,囊泡運(yùn)輸在植物響應(yīng)各類環(huán)境脅迫中發(fā)揮重要作用[109-113],但目前對(duì)其在植物抗銅性中的研究極其匱乏。細(xì)胞壁的增厚有利于植物抵抗銅脅迫,而合成細(xì)胞壁所需的纖維素酶在質(zhì)膜的豐度受網(wǎng)格蛋白介導(dǎo)內(nèi)吞(clathrin-mediated endocytosis,CME)的調(diào)控[114]。植物根系分泌物響應(yīng)銅濃度同樣需要依賴囊泡運(yùn)輸中的分泌途徑(secretory pathway)將這些物質(zhì)運(yùn)送到根表皮外[49,115]。此外,植物生長(zhǎng)素能促進(jìn)抗氧化劑谷胱甘肽GSH的合成[116],而生長(zhǎng)素在植物體內(nèi)的分布又與囊泡運(yùn)輸調(diào)控的生長(zhǎng)素輸出載體PIN蛋白的定位和豐度密切相關(guān)[117-119]。值得注意的是,調(diào)節(jié)各類銅轉(zhuǎn)運(yùn)蛋白在細(xì)胞中的分布很可能是囊泡運(yùn)輸在植物抗銅脅迫中發(fā)揮作用的另一種重要方式。類似機(jī)制已經(jīng)在植物對(duì)硼(Boron)元素的響應(yīng)中發(fā)現(xiàn):植物利用CME和液泡轉(zhuǎn)運(yùn)(vacuolar trafficking)2種囊泡運(yùn)輸途徑協(xié)同調(diào)控硼輸入載體NIP5;1(Nodulin 26-like intrinsic protein 5;1)和輸出載體BOR1在質(zhì)膜的定位和豐度,以適應(yīng)環(huán)境中硼濃度的變化[120-122]。擬南芥AtHMA5受到銅離子刺激后,其定位從內(nèi)質(zhì)網(wǎng)到胞內(nèi)小體再到質(zhì)膜的轉(zhuǎn)變,以及銅脅迫解除后到液泡的降解[76],這些細(xì)胞生物學(xué)現(xiàn)象更是有力地證明了囊泡運(yùn)輸可以通過調(diào)控這些銅轉(zhuǎn)運(yùn)蛋白的動(dòng)態(tài)定位來維持銅穩(wěn)態(tài)。在之后的研究中,應(yīng)該將探索囊泡運(yùn)輸提高植物耐銅性的分子機(jī)理作為一個(gè)重點(diǎn),以更全面的視角系統(tǒng)地將植物抗銅毒害機(jī)制整合串聯(lián)起來,為耐銅植物的培育提供新的思路和理論參考。參考文獻(xiàn)
[1]GONGQ,LIZH,WANGL,etal.Gibberellicacidapplicationonbiomass,oxidativestressresponse,andphotosynthesisinspinach(SpinaciaoleraceaL.)seedlingsundercopperstress[J].EnvironSciPollutRes,2021,28(38):53594-53604.
[2]ZHANGDJ,LIUXQ,MAJH,etal.Genotypicdifferencesandglutathionemetabolismresponseinwheatexposedtocopper[J].EnvironExpBot,2019,157:250-259.
[3]HIPPLERFWR,MATTOS-JRD,BOARETTORM,etal.CopperexcessreducesnitrateuptakebyArabidopsisrootswithspecificeffectsongeneexpression[J].JPlantPhysiol,2018,228:158-165.
[4]MEDIOUNIC,HOULN"G,CHABOUT"ME,etal.Cadmiumandcoppergenotoxicityinplants[M]//ABDELLYC,ZTRKM,ASHRAFM,etal.Biosalineagricultureandhighsalinitytolerance.Basel:BirkhuserBasel,2008:325-333.
[5]BRAVINMN,GARNIERC,LENOBLEV,etal.Root-inducedchangesinpHanddissolvedorganicmatterbindingcapacityaffectcopperdynamicspeciationintherhizosphere[J].GeochimCosmochimActa,2012,84:256-268.
[6]ROZHDESTVENSKIVI,VIL’IAMSMV,TSVETKOVAIV,etal.Controlofmineralnutritionofhigherplantsinbiologicallifesupportsystems[J].KosmBiolAviakosmMed,1975,9(6):30-35.
[7]ADREESM,ALIS,RIZWANM,etal.Theeffectofexcesscopperongrowthandphysiologyofimportantfoodcrops:Areview[J].EnvironSciPollutResInt,2015,22(11):8148-8162.
[8]SUGIYAMAA,F(xiàn)RIDAYJB,GIARDINACP,etal.IntraspecificvariationalonganelevationalgradientaltersseedscarificationresponsesinthepolymorphictreespeciesAcaciakoa[J].FrontPlantSci,2021,12:1-16.
[9]VASILACHI-MITOSERUIC,STOLERUV,GAVRILESCUM.IntegratedassessmentofPb(II)andCu(II)metalionphytotoxicityonMedicagosativaL.,TriticumaestivumL.,andZeamaysL.plants:Insightsintogerminationinhibition,seedlingdevelopment,andecosystemhealth[J].Plants(Basel),2023,12(21):1-26.
[10]DURANNM,SAVASSASM,LIMARG,etal.X-rayspectroscopyuncoveringtheeffectsofCubasednanoparticleconcentrationandstructureonPhaseolusvulgarisgerminationandseedlingdevelopment[J].JAgricFoodChem,2017,65(36):7874-7884.
[11]KADRIO,KARMOUSI,KHARBECHO,etal.CuandCuOnanoparticlesaffectedthegerminationandthegrowthofbarley(HordeumvulgareL.)seedling[J].BullEnvironContamToxicol,2022,108(3):585-593.
[12]WANGW,RENYF,HEJY,etal.Impactofcopperoxidenanoparticlesonthegermination,seedlinggrowth,andphysiologicalresponsesinBrassicapekinensisL.[J].EnvironSciPollutResInt,2020,27(25):31505-31515.
[13]MOYAJL,ROSR,PICAZOI.Influenceofcadmiumandnickelongrowth,netphotosynthesisandcarbohydratedistributioninriceplants[J].PhotosynthRes,1993,36(2):75-80.
[14]SETHYSK,GHOSHS.Effectofheavymetalsongerminationofseeds[J].JNatSciBiolMed,2013,4(2):272-275.
[15]SFAXI-BOUSBIHA,CHAOUIA,ElFERJANIE.Copperaffectsthecotyledonarycarbohydratestatusduringthegerminationofbeanseed[J].BiolTraceElemRes,2010,137(1):110-116.
[16]HUOK,SHANGGUANXC,XIAY,etal.Excesscopperinhibitsthegrowthofriceseedlingsbydecreasinguptakeofnitrate[J].EcotoxicolEnvironSaf,2020,190:1-9.
[17]ANDRS-BORDERAA,ANDRSF,GARCIA-MOLINAA,etal.CopperandectopicexpressionoftheArabidopsistransportproteinCOPT1alterironhomeostasisinrice(OryzasativaL.)[J].PlantMolBiol,2017,95(1/2):17-32.
[18]ROYSK,CHOSW,KWONSJ,etal.Proteomecharacterizationofcopperstressresponsesintherootsofsorghum[J].BioMetals,2017,30(5):765-785.
[19]WANGYY,HSUPK,TSAYYF.Uptake,allocationandsignalingofnitrate[J].TrendsPlantSci,2012,17(8):458-467.
[20]TEGEDERM,MASCLAUX-DAUBRESSEC.Sourceandsinkmechanismsofnitrogentransportanduse[J].NewPhytol,2018,217(1):35-53.
[21]BURKHEADJL,GOGOLINREYNOLDSKA,ABDEL-GHANGYSE,etal.Copperhomeostasis[J].NewPhytol,2009,182(4):799-816.
[22]BERNALM,CASEROD,SINGHV,etal.TranscriptomesequencingidentifiesSPL7-regulatedcopperacquisitiongenesFRO4/FRO5andthecopperdependenceofironhomeostasisinArabidopsis[J].PlantCell,2012,24(2):738-761.
[23]YRUELAI.Transitionmetalsinplantphotosynthesis[J].Metallomics,2013,5(9):1090-1109.
[24]RAVETK,DANFORDFL,DIHLEA,etal.SpatiotemporalanalysisofcopperhomeostasisinPopulustrichocarparevealsanintegratedmolecularremodelingforapreferentialallocationofcoppertoplastocyanininthechloroplastsofdevelopingleaves[J].PlantPhysiol,2011,157(3):1300-1312.
[25]GONZLEZ-MENDOZAD,ESPADASYGILF,ESCOBOZA-GARCIAF,etal.Copperstressonphotosynthesisofblackmangle(Avicenniagerminans)[J].AnAcadBrasCienc,2013,85(2):665-670.
[26]PTSIKKE,KAIRAVUOM,ERENF,etal.ExcesscopperpredisposesphotosystemIItophotoinhibitioninvivobyoutcompetingironandcausingdecreaseinleafchlorophyll[J].PlantPhysiol,2002,129(3):1359-1367.
[27]YUANHM,XUHH,LIUWC,etal.CopperregulatesprimaryrootelongationthroughPIN1-mediatedauxinredistribution[J].PlantCellPhysiol,2013,54(5):766-778.
[28]YUANHM,LIUWC,JINY,etal.RoleofROSandauxininplantresponsetometal-mediatedstress[J].PlantSignalBehav,2013,8(7):1-3.
[29]SHELDONAR,MENZIESNW.TheeffectofcoppertoxicityonthegrowthandrootmorphologyofRhodesgrass(ChlorisgayanaKnuth.)inresinbufferedsolutionculture[J].PlantSoil,2005,278(1/2):341-349.
[30]LIUDH,JIANGWS,MENGQM,etal.CytogeneticalandultrastructuraleffectsofcopperonrootmeristemcellsofAlliumsativumL.[J].Biocell,2009,33(1):25-32.
[31]ALLANDL,JARRELLWM.Protonandcopperadsorptiontomaizeandsoybeanrootcellwalls[J].PlantPhysiol,1989,89(3):823-832.
[32]ANDOY,NAGATAS,YANAGISAWAS,etal.Copperinxylemandphloemsapsfromrice(Oryzasativa):Theeffectofmoderatecopperconcentrationsinthegrowthmediumontheaccumulationoffiveessentialmetalsandaspeciationanalysisofcopper-containingcompounds[J].FunctPlantBiol,2012,40(1):89-100.
[33]WHITEMC,DECKERAM,CHANEYRL.Metalcomplexationinxylemfluid:I.Chemicalcompositionoftomatoandsoybeanstemexudate[J].PlantPhysiol,1981,67(2):292-300.
[34]SANCENNV,PUIGS,MIRAH,etal.IdentificationofacoppertransporterfamilyinArabidopsisthaliana[J].PlantMolBiol,2003,51(4):577-587.
[35]JUNGHI,GAYOMBASR,RUTZKEMA,etal.COPT6isaplasmamembranetransporterthatfunctionsincopperhomeostasisinArabidopsisandisanoveltargetofSQUAMOSApromoter-bindingprotein-like7[J].JBiolChem,2012,287(40):33252-33267.
[36]YANJP,CHIAJC,SHENGHJ,etal.ArabidopsispollenfertilityrequiresthetranscriptionfactorsCITF1andSPL7thatregulatecopperdeliverytoanthersandjasmonicacidsynthesis[J].PlantCell,2017,29(12):3012-3029.
[37]GARCIA-MOLINAA,ANDRS-COLSN,PEREA-GARCAA,etal.TheArabidopsisCOPT6transportproteinfunctionsincopperdistributionundercopper-deficientconditions[J].PlantCellPhysiol,2013,54(8):1378-1390.
[38]CARRI-SEGU"",ROMEROP,CURIEC,etal.CoppertransporterCOPT5participatesinthecrosstalkbetweenvacuolarcopperandironpoolsmobilisation[J].SciRep,2019,9(1):1-14.
[39]MILNERMJ,SEAMONJ,CRAFTE,etal.TransportpropertiesofmembersoftheZIPfamilyinplantsandtheirroleinZnandMnhomeostasis[J].JExpBot,2013,64(1):369-381.
[40]MATTLED,ZHANGL,SITSELO,etal.Asulfur-basedtransportpathwayinCu+-ATPases[J].EMBORep,2015,16(6):728-740.
[41]MIRAH,MARTNEZN,PEARRUBIAL.Expressionofavegetative-storage-proteingenefromArabidopsisisregulatedbycopper,senescenceandozone[J].Planta,2002,214(6):939-946.
[42]HIRAYAMAT,KIEBERJJ,HIRAYAMAN,etal.RESPONSIVE-TO-ANTAGONIST1,aMenkes/Wilsondisease-relatedcoppertransporter,isrequiredforethylenesignalinginArabidopsis[J].Cell,1999,97(3):383-393.
[43]BLABY-HAASCE,PADILLA-BENAVIDEST,STBER,etal.Evolutionofaplant-specificcopperchaperonefamilyforchloroplastcopperhomeostasis[J].ProcNatlAcadSciUSA,2014,111(50):E5480-E5487.
[44]COLANGELOEP,GUERINOTML.Putthemetaltothepetal:Metaluptakeandtransportthroughoutplants[J].CurrOpinPlantBiol,2006,9(3):322-330.
[45]SPIELMANNJ,VERTG.Themanyfacetsofproteinubiquitinationanddegradationinplantrootiron-deficiencyresponses[J].JExpBot,2021,72(6):2071-2082.
[46]ARAKIR,MERMODM,YAMASAKIH,etal.SPL7locallyregulatescopper-homeostasis-relatedgenesinArabidopsis[J].JPlantPhysiol,2018,224/225:137-143.
[47]BAETZU,MARTINOIAE.Rootexudates:Thehiddenpartofplantdefense[J].TrendsPlantSci,2014,19(2):90-98.
[48]THEODOULOUFL.PlantABCtransporters[J].BiochimBiophysActa,2000,1465(1/2):79-103.
[49]BADRIDV,VIVANCOJM.Regulationandfunctionofrootexudates[J].PlantCellEnviron,2009,32(6):666-681.
[50]DREYERI,GOMEZ-PORRASJL,RIAO-PACHNDM,etal.Molecularevolutionofslowandquickanionchannels(SLACsandQUACs/ALMTs)[J].FrontPlantSci,2012,3:1-12.
[51]CHENHH,ZHENGZC,CHENWS,etal.Regulationoncopper-toleranceinCitrussinensisseedlingsbyboronaddition:Insightsfromrootexudates,relatedmetabolism,andgeneexpression[J].JHazardMater,2023,459:1-11.
[52]DECONTIL,CESCOS,MIMMOT,etal.Ironfertilizationtoenhancetolerancemechanismstocoppertoxicityofryegrassplantsusedascovercropinvineyards[J].Chemosphere,2020,243:1-12.
[53]QINRJ,HIRANOY,BRUNNERI.ExudationoforganicacidanionsfrompoplarrootsafterexposuretoAl,CuandZn[J].TreePhysiol,2007,27(2):313-320.
[54]LYUBENOVAL,KUHNAJ,HLTKEMEIERA,etal.RootexudationpatternofTyphalatifoliaL.plantsaftercopperexposure[J].PlantSoil,2013,370(1):187-195.
[55]CHENJR,SHAFIM,WANGY,etal.OrganicacidcompoundsinrootexudationofMosoBamboo(Phyllostachyspubescens)anditsbioactivityasaffectedbyheavymetals[J].EnvironSciPollutResInt,2016,23(20):20977-20984.
[56]PENGJS,WANGYJ,DINGG,etal.ApivotalroleofcellwallincadmiumAccumulationinthecrassulaceaehyperaccumulatorSedumplumbizincicola[J].MolPlant,2017,10(5):771-774.
[57]KONNOH,NAKASHIMAS,KATOHK.Metal-tolerantmossScopelophilacataractaeaccumulatescopperinthecellwallpectinoftheprotonema[J].JPlantPhysiol,2010,167(5):358-364.
[58]JIANGXY,WANGCH.Zincdistributionandzinc-bindingformsinPhragmitesaustralisunderzincpollution[J].JPlantPhysiol,2008,165(7):697-704.
[59]ELOBEIDM,GBELC,F(xiàn)EUSSNERI,etal.Cadmiuminterfereswithauxinphysiologyandlignificationinpoplar[J].JExpBot,2012,63(3):1413-1421.
[60]CHENGH,JIANGZY,LIUY,etal.Metal(Pb,ZnandCu)uptakeandtolerancebymangrovesinrelationtorootanatomyandlignification/suberization[J].TreePhysiol,2014,34(6):646-656.
[61]CLAUSH.Laccases:Structure,reactions,distribution[J].Micron,2004,35(1/2):93-96.
[62]ALIMB,SINGHN,SHOHAELAM,etal.PhenolicsmetabolismandligninsynthesisinrootsuspensionculturesofPanaxginsenginresponsetocopperstress[J].PlantSci,2006,171(1):147-154.
[63]KRZESOWSKAM,LENARTOWSKAM,MELLEROWICZEJ,etal.Pectinouscellwallthickeningsformation-aresponseofmossprotonematacellstolead[J].EnvironExpBot,2009,65(1):119-131.
[64]LIXY,LINML,LUF,etal.Physiologicalandultrastructuralresponsestoexcessive-copper-inducedtoxicityintwodifferentiallycoppertolerantCitrusspecies[J].Plants(Basel),2023,12(2):1-14.
[65]ANDRADELR,F(xiàn)ARINAM,AMADOFILHOGM.EffectsofcopperonEnteromorphaflexuosa(Chlorophyta)invitro[J].EcotoxicolEnvironSaf,2004,58(1):117-125.
[66]PROBSTA,LIUHY,F(xiàn)ANJULM,etal.ResponseofViciafabaL.tometaltoxicityonminetailingsubstrate:Geochemicalandmorphologicalchangesinleafandroot[J].EnvironExpBot,2009,66(2):297-308.
[67]KIMBE,NEVITTT,THIELEDJ.Mechanismsforcopperacquisition,distributionandregulation[J].NatChemBiol,2008,4:176-185.
[68]CAIY,LIANGG.CITF1functionsdownstreamofSPL7tospecificallyregulateCuuptakeinArabidopsis[J].IntJMolSci,2022,23(13):1-15.
[69]RETRACTIONto:ArabidopsisCOPPERTRANSPORTER1undergoesdegradationinaproteasome-dependentmanner[J].JExpBot,2022,73(18):6509.
[70]LIJJ,WANGWW,YUANJH,etal.Ubiquitin-independentproteasomesystemisrequiredfordegradationofArabidopsisCOPPERTRANSPORTER2[J].PlantSci,2021,304:1-11.
[71]CHUHH,CHIECKOJ,PUNSHONT,etal.SuccessfulreproductionrequiresthefunctionofArabidopsisYellowStripe-Like1andYellowStripe-Like3metal-nicotianaminetransportersinbothvegetativeandreproductivestructures[J].PlantPhysiol,2010,154(1):197-210.
[72]CHENCC,CHENYY,TANGIC,etal.ArabidopsisSUMOE3ligaseSIZ1isinvolvedinexcesscoppertolerance[J].PlantPhysiol,2011,156(4):2225-2234.
[73]PUIGS,ANDRS-COLSN,GARCA-MOLINAA,etal.CopperandironhomeostasisinArabidopsis:Responsestometaldeficiencies,interactionsandbiotechnologicalapplications[J].PlantCellEnviron,2007,30(3):271-290.
[74]ANDRS-COLSN,SANCENNV,RODRIGUEZ-NAVARROS,etal.TheArabidopsisheavymetalP-typeATPaseHMA5interactswithmetallochaperonesandfunctionsincopperdetoxificationofroots[J].PlantJ,2006,45(2):225-236.
[75]KOBAYASHIY,KURODAK,KIMURAK,etal.AminoacidpolymorphismsinstrictlyconserveddomainsofaP-typeATPaseHMA5areinvolvedinthemechanismofcoppertolerancevariationinArabidopsis[J].PlantPhysiol,2008,148(2):969-980.
[76]LIY,IQBALM,ZHANGQ,etal.TwoSilenevulgariscoppertransportersresidingindifferentcellularcompartmentsconfercopperhypertolerancebydistinctmechanismswhenexpressedinArabidopsisthaliana[J].NewPhytol,2017,215(3):1102-1114.
[77]O’HALLORANTV,CULOTTAVC.Metallochaperones,anintracellularshuttleserviceformetalions[J].JBiolChem,2000,275(33):25057-25060.
[78]SHINLJ,LOJC,YEHKC.Copperchaperoneantioxidantprotein1isessentialforcopperhomeostasis[J].PlantPhysiol,2012,159(3):1099-1110.
[79]ZHANGY,CHENK,ZHAOFJ,etal.OsATX1interactswithheavymetalP1B-typeATPasesandaffectscoppertransportanddistribution[J].PlantPhysiol,2018,178(1):329-344.
[80]MINKINAT,F(xiàn)EDORENKOG,NEVIDOMSKAYAD,etal.BiogeochemicalandmicroscopicstudiesofsoilandPhragmitesaustralis(Cav.)Trin.exsteud.plantsaffectedbycoalminedumps[J].EnvironSciPollutResInt,2024,31(1):406-421.
[81]TUSZYNSKAS,DAVIESD,TURNAUK,etal.ChangesinvacuolarandmitochondrialmotilityandtubularityinresponsetozincinaPaxillusinvolutusisolatefromazinc-richsoil[J].FungalGenetBiol,2006,43(3):155-163.
[82]LIUDH,KOTTKEI.SubcellularlocalizationofcopperintherootcellsofAlliumsativumbyelectronenergylossspectroscopy(EELS)[J].BioresourTechnol,2004,94(2):153-158.
[83]DAVIESKL,DAVIESMS,F(xiàn)RANCISD.Zinc-inducedvacuolationinrootmeristematiccellsofcereals[J].AnnBot,1992,69(1):21-24.
[84]NISHIKAWAK,YAMAKOSHIY,UEMURAI,etal.UltrastructuralchangesinChlamydomonasacidophila(Chlorophyta)inducedbyheavymetalsandpolyphosphatemetabolism[J].FEMSMicrobiolEcol,2003,44(2):253-259.
[85] FAN J L,WEI X Z,WAN L C,et al.Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J].J Plant Physiol,2011,168(11):1157-1167.
[86]BOOJARMMA,TAVAKKOLIZ.RoleofantioxidantenzymeresponsesandphytochelatinsintolerancestrategiesofAlhagicamelorumFischgrowingoncoppermine[J].ActaBotCroat,2010,69(1):107-121.
[87]HUANGXY,DENGFL,YAMAJIN,etal.AheavymetalP-typeATPaseOsHMA4preventscopperaccumulationinricegrain[J].NatCommun,2016,7:1-13.
[88]S,ERI""D,KRPEDA,YURTCUE,etal.Copper-inducedoxidativedamage,antioxidantresponseandgenotoxicityinLycopersicumesculentumMill.andCucumissativusL.[J].PlantCellRep,2011,30(9):1713-1721.
[89]JOUILIH,BOUAZIZIH,ROSSIGNOLM,etal.Partialpurificationandcharacterizationofacopper-inducedanionicperoxidaseofsunflowerroots[J].PlantPhysiolBiochem,2008,46(8/9):760-767.
[90]SGHERRIC,MILONEMTA,CLIJSTERSH,etal.Antioxidativeenzymesintwowheatcultivars,differentlysensitivetodroughtandsubjectedtosubsymptomaticcopperdoses[J].JPlantPhysiol,2001,158(11):1439-1447.
[91]CHENEL,CHENYN,CHENLM,etal.EffectofcopperonperoxidaseactivityandlignincontentinRaphanussativus[J].PlantPhysiolBiochem,2002,40(5):439-444.
[92]MOSTOFAMG,SERAJZI,F(xiàn)UJITAM.Exogenoussodiumnitroprussideandglutathionealleviatecoppertoxicitybyreducingcopperuptakeandoxidativedamageinrice(OryzasativaL.)seedlings[J].Protoplasma,2014,251(6):1373-1386.
[93]DRAcKIEWICZM,SKRZYN'SKA-POLITE,KRUPAZ.Copper-inducedoxidativestressandantioxidantdefenceinArabidopsisthaliana[J].Biometals,2004,17(4):379-387.
[94]LIUJX,WANGJX,LEESC,etal.Copper-causedoxidativestresstriggerstheactivationofantioxidantenzymesviaZmMPK3inmaizeleaves[J].PLoSOne,2018,13(9):1-12.
[95]RAMADEVIS,PRASADMNV.CoppertoxicityinCeratophyllumdemersumL.(Coontail),afreefloatingmacrophyte:Responseofantioxidantenzymesandantioxidants[J].PlantSci,1998,138(2):157-165.
[96]TEISSEIREH,VERNETG.Ascorbateandglutathionecontentsinduckweed,Lemnaminor,asbiomarkersofthestressgeneratedbycopper,folpetanddiuron[J].Biomarkers,2000,5(4):263-273.
[97]ANSARIMKA,OZTETIKE,AHMADA,etal.Identificationofthephytoremediationpotentialofindianmustardgenotypesforcopper,evaluatedfromahydroponicexperiment[J].CLEAN-SoilAirWater,2013,41(8):789-796.
[98]VATAMANIUKOK,MARIS,LUYP,etal.Mechanismofheavymetalionactivationofphytochelatin(PC)synthase:BlockedthiolsaresufficientforPCsynthase-catalyzedtranspeptidationofglutathioneandrelatedthiolpeptides[J].JBiolChem,2000,275(40):31451-31459.
[99]BANKAJII,CAADORI,SLEIMIN.PhysiologicalandbiochemicalresponsesofSuaedafruticosatocadmiumandcopperstresses:Growth,nutrientuptake,antioxidantenzymes,phytochelatin,andglutathionelevels[J].EnvironSciPollutRes,2015,22(17):13058-13069.
[100]NAGALAKSHMIN,PRASADMNV.ResponsesofglutathionecycleenzymesandglutathionemetabolismtocopperstressinScenedesmusbijugatus[J].PlantSci,2001,160(2):291-299.
[101]MELLADOM,CONTRERASRA,GONZLEZA,etal.Copper-inducedsynthesisofascorbate,glutathioneandphytochelatinsinthemarinealgaUlvacompressa(Chlorophyta)[J].PlantPhysiolBiochem,2012,51:102-108.
[102]NAVARRETEA,GONZALEZA,GMEZM,etal.Copperexcessdetoxificationismediatedbyacoordinatedandcomplementaryinductionofglutathione,phytochelatinsandmetallothioneinsinthegreenseaweedUlvacompressa[J].PlantPhysiolBiochem,2019,135:423-431.
[103]LIUJ,SHIXT,QIANM,etal.Copper-inducedhydrogenperoxideupregulationofametallothioneingene,OsMT2c,fromOryzasativaL.conferscoppertoleranceinArabidopsisthaliana[J].JHazardMater,2015,294:99-108.
[104]ZHANGHX,LVSF,XUHW,etal.H2O2isinvolvedinthemetallothionein-mediatedricetolerancetocopperandcadmiumtoxicity[J].IntJMolSci,2017,18(10):1-12.
[105]XIAY,QIY,YUANYX,etal.OverexpressionofElsholtziahaichowensismetallothionein1(EhMT1)intobaccoplantsenhancescoppertoleranceandaccumulationinrootcytoplasmanddecreaseshydrogenperoxideproduction[J].JHazardMater,2012,233/234:65-71.
[106]KHOSOMA,ZHANGHL,KHOSOMH,etal.Synergismofvesicletraffickingandcytoskeletonduringregulationofplantgrowthanddevelopment:Amechanisticoutlook[J].Heliyon,2023,9(11):1-17.
[107]SIRISAENGTAKSINN,O’DONOGHUEEJ,JABBARIS,etal.BacterialoutermembranevesiclesprovideanalternativepathwayfortraffickingofEscherichiacoliO157typeIIIsecretedeffectorstoepithelialcells[J].mSphere,2023,8(6):1-13.
[108]ZENGYL,LIANGZZ,LIUZQ,etal.Recentadvancesinplantendomembraneresearchandnewmicroscopicaltechniques[J].NewPhytol,2023,240(1):41-60.
[109]SALINAS-CORNEJOJ,MADRID-ESPINOZAJ,VERDUGOI,etal.ASNARE-likeproteinfromSolanumlycopersicumincreasessalttolerancebymodulatingvesiculartraffickingintomato[J].FrontPlantSci,2023,14:1-16.
[110]CHENX,SELVARAJP,LINL,etal.Rab7/Retromer-basedendolysosomaltraffickingisessentialforproperhostinvasioninriceblast[J].NewPhytol,2023,239(4):1384-1403.
[111]LUOMQ,LAWKC,HEYL,etal.ArabidopsisAUTOPHAGY-RELATED2isessentialforATG18aandATG9traffickingduringautophagosomeclosure[J].PlantPhysiol,2023,193(1):304-321.
[112]ZHAOR,CAOY,GEY,etal.Single-moleculeandvesicletraffickinganalysisofubiquitinationinvolvedintheactivityofammoniumtransporterAMT1;3inArbidopsisunderhighammoniumstress[J].Cells,2022,11(22):1-12.
[113]MARTN-DAVISONAS,PREZ-DAZR,SOTOF,etal.InvolvementofSchRabGDI1fromSolanumchilenseinendocytictraffickingandtolerancetosaltstress[J].PlantSci,2017,263:1-11.
[114]BASHLINEL,LIS,ANDERSONCT,etal.TheendocytosisofcellulosesynthaseinArabidopsisisdependentonμ2,aclathrin-mediatedendocytosisadaptin[J].PlantPhysiol,2013,163(1):150-160.
[115]WESTONLA,RYANPR,WATTM.Mechanismsforcellulartransportandreleaseofallelochemicalsfromplantrootsintotherhizosphere[J].JExpBot,2012,63(9):3445-3454.
[116]BOOV"B,HUTTOV"J,MISTRKI,etal.Auxinsignallingisinvolvedincadmium-inducedglutathione-S-transferaseactivityinbarleyroot[J].ActaPhysiolPlant,2013,35(9):2685-2690.
[117]YANGG,CHENBX,CHENT,etal.BYPASS1-LIKEregulateslateralrootinitiationviaexocyticvesiculartrafficking-mediatedPINrecyclinginArabidopsis[J].JIntegrPlantBiol,2022,64(5):965-978.
[118]WANGY,YANX,XUM,etal.Transmembranekinase1-mediatedauxinsignalregulatesmembrane-associatedclathrininArabidopsisroots[J].JIntegrPlantBiol,2023,65(1):82-99.
[119]ZHANGY,YUQ,JIANGN,etal.Clathrinregulatesbluelight-triggeredlateralauxindistributionandhypocotylphototropisminArabidopsis[J].PlantCellEnviron,2017,40(1):165-176.
[120]YOSHINARIA,HOSOKAWAT,BEIERMP,etal.Transport-coupledubiquitinationoftheboratetransporterBOR1foritsboron-dependentdegradation[J].PlantCell,2021,33(2):420-438.
[121]YOSHINARIA,HOSOKAWAT,AMANOT,etal.PolarlocalizationoftheborateexporterBOR1requiresAP2-dependentendocytosis[J].PlantPhysiol,2019,179(4):1569-1580.
[122]WANGS,YOSHINARIA,SHIMADAT,etal.PolarlocalizationoftheNIP5;1boricacidchannelismaintainedbyendocytosisandfacilitatesborontransportinArabidopsisroots[J].PlantCell,2017,29(4):824-842.