摘 要: "青枯病是番茄(Solanum lycopersicum)生產(chǎn)中的一種毀滅性土傳病害,致病菌生理小種復(fù)雜、易變異,而MLO基因隱性突變mlo具有廣譜抗性,前期研究表明Slmlo1/6可能參與番茄青枯病抗性反應(yīng)。為進(jìn)一步研究番茄Slmlo1/6青枯病抗性基因功能,該文利用CRISPR/Cas9技術(shù)創(chuàng)制Slmlo1/6基因突變材料,并進(jìn)行表型鑒定。結(jié)果表明:(1)設(shè)計(jì)SlMLO1/6靶點(diǎn)序列g(shù)RNA,并與U6啟動(dòng)子組裝,再將含高效靶點(diǎn)的U6-gRNA1/6片段通過Bsa I酶切連入CRISPR載體pBGK,構(gòu)建形成雙基因融合敲除載體pBGK-SlMLO1/6。重組質(zhì)粒經(jīng)轉(zhuǎn)化大腸桿菌(Escherichia coli)感受態(tài)DH5α和平板培養(yǎng),挑選陽(yáng)性單克隆。驗(yàn)證正確后,再經(jīng)根癌農(nóng)桿菌(Agobacterium tumefaciens) GV3101介導(dǎo)的遺傳轉(zhuǎn)化和潮霉素抗性篩選,最終獲得9株番茄編輯苗。(2) 靶點(diǎn)區(qū)測(cè)序顯示,植株M2和M8分別缺失177 bp和7 bp的SlMLO1片段,M7缺失12 bp的SlMLO6片段,M9發(fā)生SlMLO6單堿基T插入,總計(jì)4株單基因純合突變體,其他均為雜合型突變。(3)RT-qPCR分析表明,與野生型相比,突變株SlMLO1/6基因表達(dá)水平顯著下降,尤其是M2、M7和M8。(4)表型鑒定表明,SlMLO1/6可能是番茄青枯病易感基因。綜上,該文成功構(gòu)建了MLO基因編輯載體并實(shí)現(xiàn)了番茄轉(zhuǎn)化,純合突變體獲得了青枯病抗性。氨基酸丟失和移碼突變可能是Slmlo1/6抗性功能轉(zhuǎn)變的主要原因。該研究結(jié)果為番茄抗青枯病基因功能研究和抗病育種應(yīng)用提供了理論參考和遺傳工程材料。
關(guān)鍵詞: 番茄, Slmlo1/6, 基因編輯, 遺傳轉(zhuǎn)化, 突變體
中圖分類號(hào): "Q943"文獻(xiàn)標(biāo)識(shí)碼: "A
文章編號(hào): "1000-3142(2024)12-2163-09
Bacterial wilt resistance gene Slmlo1/6 mutants in tomato created by CRISPR/Cas9 technology
SHI Jianlei1, 2, XIONG Zili1, SU Shiwen1, FU Cunnian1, ZAI Wenshan1*
( 1. Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006,
Zhejiang, China; 2. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China )
Abstract: "Bacterial wilt is a devastating soil-borne disease in tomato (Solanum lycopersicum) production. The pathogenic species are complex and tend to have a variation, while mlo caused by the recessive mutation of MLO genes has a broad-spectrum resistance. The previous study suggested that Slmlo1/6 may be involved in the resistance response to bacterial wilt in tomato. In order to further study the gene function of Slmlo1/6 in tomato bacterial wilt resistance, the genetic mutant plants were created by CRISPR/Cas9 technology and their phenotypes were identified followed. The results were as follows: (1) gRNA sequences of SlMLO1/6 were designed and assembled with the U6 promoters, then U6-gRNA1/6 fragments containing highly effective targets were ligated to CRISPR vector of pBGK via restriction enzyme Bsa I digestion, to construct the two-gene fusion knockout vector of pBGK-SlMLO1/6. The recombinant plasmid of pBGK-SlMLO1/6 was transformed into Escherichia coli DH5α competent cells and positive monoclonal clones were selected via plate cultivation. Using Agrobacterium tumefaciens GV3101 strains-mediated genetic transformation and resistance screening to hygromycin, a total of nine edited tomato plants were obtained with sequencing validation. (2) Target region sequencing showed that M2 and M8 plants had the 177 bp and 7 bp deletion of SlMLO1, respectively, M7 had the 12 bp deletion of SlMLO6, and M9 had a single base T insertion of SlMLO6. Except for four single gene homozygous mutants above, the other mutations were heterozygous. (3) RT-qPCR showed that compared with the wild type plant, SlMLO1/6 gene expression of the mutants was significantly decreased, especially M2, M7, and M8 plants. (4) Phenotypic identification indicated that SlMLO1/6 might be tomato bacterial wilt susceptibility genes. In conclusion, the knockout vector is successfully constructed for resistance MLO genes and tomato transformation is also achieved, homozygous mutants acquire resistance to bacterial wilt. Amino acid deletion and frameshift mutation may be the crucial reasons for the gene function change of Slmlo1/6 in resistance. The results provide a theoretical reference and genetic engineering materials for the gene function study in resistance to bacterial wilt and disease resistance breeding application of" tomato.
Key words: tomato, Slmlo1/6, gene editing, genetic transformation, mutant
作為植物基因功能研究和作物遺傳改良的有力工具,規(guī)律成簇間隔短回文重復(fù)序列及其相關(guān)系統(tǒng)(clustered regularly interspaced short palindromic repeat/CRISPR-associated 9, CRISPR/Cas9)是目前應(yīng)用最廣的一項(xiàng)基因編輯技術(shù),主要由單導(dǎo)RNA (single guide RNA, sgRNA)和Cas9組成(Mali et al., 2013)。sgRNA通過識(shí)別目的基因前間區(qū)鄰近基序(protospacer aceradjacent motif, PAM),引導(dǎo)Cas9對(duì)靶序列進(jìn)行切割,產(chǎn)生雙鏈斷裂,修復(fù)過程中引起靶點(diǎn)突變,進(jìn)而產(chǎn)生表型變異。
MLO (mildew resistance locus O)是一類最早在大麥(Hordeum vulgare)中發(fā)現(xiàn)并克隆的白粉病易感基因(Buschges et al., 1997),其隱性突變mlo對(duì)白粉菌的幾乎所有生理小種都具有高效和持久抗性(Reinstdler et al., 2010)。此后,在多種高等植物中相繼發(fā)現(xiàn)其同源基因,突變同樣具有白粉病抗性(Kusch amp; Panstruga, 2017)。利用基因編輯技術(shù),多個(gè)mlo被證明是白粉病抗性基因,如番茄(Solanum lycopersicum) Slmlo1、辣椒(Capsicum annuum) Camlo1/2、茄子(Solanum melongena) Smmlo1、煙草(Nicotiana tabacum) Ntmlo1和黃瓜(Cucumis sativus) Csmlo1等(Zheng et al., 2013; Appiano et al., 2015; Nie et al., 2015; Bracuto et al., 2017)。除白粉病以外,mlo也參與假單胞菌、黃單胞菌、卵菌、尖孢鐮刀菌、炭疽菌和稻瘟病菌等多種病原體引起的植物病害反應(yīng)(Kim amp; Hwang, 2012; Kim et al., 2014; Acevedo-Garcia et al., 2017)。
番茄是全球范圍內(nèi)重要的蔬菜作物,也是一種理想的基因編輯作物,但在生產(chǎn)中頻繁遭受各種逆境脅迫。作為最重要的植物病原細(xì)菌之一,青枯菌(Ralstonia solanacearum)引起的青枯病對(duì)番茄危害尤為嚴(yán)重,因此建立快速高效的抗病品種選育方法勢(shì)在必行。前期研究發(fā)現(xiàn),SlMLO1/6均含有7個(gè)跨膜結(jié)構(gòu)域,定位于原生質(zhì)膜,SlMLO1含1個(gè)鈣調(diào)素結(jié)合區(qū)(calmodulin binding domain, CaMBD) (Shi et al., 2020)。同時(shí),SlMLO1是已知的白粉病易感基因,SlMLO6與辣椒感青枯病基因CaMLO6同源(Bai et al., 2008; Yang et al., 2020)。RT-qPCR顯示兩者均能在轉(zhuǎn)錄水平上響應(yīng)番茄青枯病害(Shi et al., 2020)。本研究以番茄青枯病抗性突變體創(chuàng)制為對(duì)象,依托植物廣譜抗性因子mlo和番茄遺傳轉(zhuǎn)化體系,基于已有MLO生物信息學(xué)和基因定量表達(dá)研究,采用CRISPR/Cas9基因編輯技術(shù),通過構(gòu)建SlMLO1/6基因敲除載體并轉(zhuǎn)化番茄,擬探討以下問題:(1)番茄中MLO的精準(zhǔn)敲除和純合突變體的創(chuàng)制;(2)靶點(diǎn)突變類型和突變前后目的基因的表達(dá)變化;(3)突變株的青枯病抗性表型。旨在為抗青枯病基因功能研究和品種改良提供理論基礎(chǔ)和遺傳工程材料。
1 材料與方法
1.1 材料試劑
供試番茄(Solanum lycopersicum) Ailsa Craig (AC),是分子功能研究的模式品種。CRISPR系統(tǒng)pBGK購(gòu)自百格基因科技(江蘇)有限公司。大腸桿菌(Escherichia coli) DH5α和根癌農(nóng)桿菌(Agobacterium tumefaciens) GV3101為本實(shí)驗(yàn)室保存。
Trizol總RNA提取試劑盒、凝膠回收試劑盒、熒光定量染料SYBR Premix Ex Taq等購(gòu)自生工生物工程(上海)股份有限公司;PCR Master Mix、DNA Marker、T4 DNA連接酶(Ligase)、T4多聚核苷酸激酶(PNK)等購(gòu)自寶生物工程(大連)有限公司;限制性核酸內(nèi)切酶Bsa I和Sph I購(gòu)自TaKaRa公司;卡那霉素和潮霉素購(gòu)自鼎國(guó)生物公司。培養(yǎng)基組分等所需生化試劑均為國(guó)產(chǎn)分析純。PCR引物由生工生物工程(上海)股份有限公司合成。
1.2 試驗(yàn)方法
1.2.1 靶點(diǎn)設(shè)計(jì)與載體構(gòu)建 利用在線工具CRISPR-P2.0 (http://cbi.hzau.edu.cn/CRISPR2/)于目的基因第1和第3外顯子處設(shè)計(jì)2個(gè)CRISPR靶位點(diǎn),選取高效靶點(diǎn)設(shè)計(jì)引物(表1)。將gRNA靶點(diǎn)序列復(fù)性形成Oligo二聚體后,連接至經(jīng)Bsa I酶切的CRISPR載體pBGK。反應(yīng)體系如下:gRNA-U6片段1 μL、Oligo二聚體0.3 μL、T4 ligase 0.3 μL和T4 PNK 0.1 μL 23 ℃反應(yīng)1 h后,加T4 ligase 0.3 μL、ddH2O 4 μL和pBGK 1 μL 23 ℃連接反應(yīng)1 h。取5 μL上述反應(yīng)液,加入20 μL大腸桿菌DH5α感受態(tài)細(xì)胞,混合后冰浴靜置30 min;輕輕取出,42 ℃熱激35 s,立即置于冰上2 min;加入100 μL LB,37 ℃振蕩培養(yǎng)1 h;取60 μL菌液涂布于含50 μg·mL-1卡那霉素的LB平板上,37 ℃倒置培養(yǎng)過夜。挑選陽(yáng)性單克隆送樣測(cè)序。測(cè)序引物SR:CTGCAGAATTGGCGCACGCGCTACG。
1.2.2 根癌農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化 利用凍融法轉(zhuǎn)入根癌農(nóng)桿菌GV3101,經(jīng)鑒定正確的單菌落用葉盤法轉(zhuǎn)化番茄AC (簡(jiǎn)興等, 2015)。主要操作如下:1/2 MS培養(yǎng)基播種番茄無菌種子,待子葉展開第一片真葉還未出現(xiàn)時(shí),剪取子葉進(jìn)行預(yù)培養(yǎng),根癌農(nóng)桿菌侵染后共培養(yǎng),轉(zhuǎn)至潮霉素分化選擇培養(yǎng)基,經(jīng)3次繼代培養(yǎng)后,將減去愈傷組織的芽轉(zhuǎn)至生根培養(yǎng)基培養(yǎng),待幼苗長(zhǎng)至合適大小煉苗移栽。
1.2.3 轉(zhuǎn)化株靶點(diǎn)擴(kuò)增與測(cè)序 提取轉(zhuǎn)化單株幼嫩葉片基因組DNA。根據(jù)目的基因序列設(shè)計(jì)引物(表1),對(duì)靶點(diǎn)區(qū)進(jìn)行PCR檢測(cè)。將擴(kuò)增目的條
帶進(jìn)行純化和測(cè)序,結(jié)合測(cè)序峰圖及序列比對(duì)分析突變類型。PCR擴(kuò)增體系:1 μL DNA,2 μL 10×PCR buffer,0.4 μL dNTP Mixture,正反向引物各0.2 μL,0.2 μL Taq酶,加ddH2O補(bǔ)充至20 μL。擴(kuò)增條件:94 ℃預(yù)變性5 min;94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸30 s,30個(gè)循環(huán);72 ℃延伸10 min。
1.2.4 目的基因RT-qPCR檢測(cè) 取樣4~6葉期番茄幼苗嫩葉,錫箔紙包裹置于液氮中,2次生物學(xué)重復(fù)。提取野生型和突變株RNA并反轉(zhuǎn)錄成cDNA。以Slactin和SlRPL2為內(nèi)參基因,利用Primer Premier 5.0軟件設(shè)計(jì)定量引物(表1)。RT-qPCR反應(yīng)體系包括2 μL cDNA, 0.4 μL PCR primer, 10 μL SYBR, 7.2 μL ddH2O。擴(kuò)增程序?yàn)?5 ℃ 3 min; 95 ℃ 5 s, 60 ℃ 30 s, 45個(gè)循環(huán),整體反應(yīng)在StepOne Plus型熒光定量PCR儀(ABI, USA)中進(jìn)行,采用2-ΔΔCt法計(jì)算基因相對(duì)表達(dá)量。
1.2.5 苗期青枯病接種鑒定 番茄幼苗長(zhǎng)至4~6片真葉時(shí),剪傷部分根系,用濃度OD600=1.0的青枯菌液浸根20 min,30 ℃條件下培養(yǎng),第3天觀察植株抗性表型。
2 結(jié)果與分析
2.1 融合載體的構(gòu)建與轉(zhuǎn)化
SlMLO1靶點(diǎn)1序列為CCACAGCAATTGCCCACGTAGGG,靶點(diǎn)2序列為ATGGCATCCTTGTATGGCAAAGG;SlMLO6靶點(diǎn)1序列為ACACCAACTTGGGCTGTGGCTGG,靶點(diǎn)2序列為CAAAGGAGGAGGAACACCGTAGG,靶點(diǎn)長(zhǎng)20 bp (圖1)。對(duì)應(yīng)的脫靶位點(diǎn)數(shù)分別為5/31和26/33,因此雙基因均選用第1靶點(diǎn)。融合載體命名為pBGK-SlMLO1/6,含U6啟動(dòng)子驅(qū)動(dòng)表達(dá)的雙基因靶點(diǎn)gRNA克隆盒、35S啟動(dòng)子驅(qū)動(dòng)表達(dá)的Cas9酶基因和潮霉素(HYG)篩選標(biāo)記基因(圖2)?;厥誗ph I酶切后的產(chǎn)物,經(jīng)0.8%瓊脂糖凝膠電泳分別得到5 500 bp和10 000 bp左右的兩個(gè)條帶(圖3),與重組質(zhì)粒15 386 bp大小相符,測(cè)序與設(shè)計(jì)靶點(diǎn)相同,表明2個(gè)靶點(diǎn)gRNA元件插入載體。隨后,融合載體經(jīng)根癌農(nóng)桿菌介導(dǎo)的番茄遺傳轉(zhuǎn)化(圖4)和PCR測(cè)序(圖5),最終獲得9個(gè)編輯單株(M1、M2、M3、M4、M6、M7、M8、M9、M10)。
2.2 編輯株靶點(diǎn)序列突變型
測(cè)序結(jié)果表明,編輯植株M1為SlMLO6雜合突變體;M2和M8分別缺失1個(gè)大小為177 bp (包括起始密碼子,翻譯MEATPTWAIAVVCFILLAIS)和7 bp (GGGCAAT,翻譯WAI)的SlMLO1基因片段,而SlMLO6為雜合型突變;M3和M10為SlMLO1雜合突變體;M4和M6均為雙基因雜合突變體;M7缺失1個(gè)大小為12 bp (CAACTTGGGCTG,翻譯PTWAV)的SlMLO6基因片段,而SlMLO1為雜合型突變;M9基因SlMLO6位置382~383間插入了1個(gè)單堿基T (翻譯V),而SlMLO1為雜合型突變(圖5)。
2.3 目的基因定量表達(dá)分析
基因定量表達(dá)結(jié)果表明,兩個(gè)內(nèi)參下,與野生型(WT)相比,純合突變株M2和M8 SlMLO1表達(dá)水平均極顯著(Plt;0.01)下降,前者表達(dá)水平更低但兩者差異不顯著(圖6:A,C)。以Slactin為內(nèi)參,純合突變株M7和M9 SlMLO6表達(dá)水平均極顯著(Plt;0.01)下降,前者表達(dá)水平更低且兩者差異顯著(圖6:B);以SlRPL2為內(nèi)參,M7和M9 SlMLO6表達(dá)水平均比野生型低,但顯著性水平不同,前者為極顯著(Plt;0.01)而后者為顯著(Plt;0.05)突變用位置、類型(缺失或插入)和堿基的組合表示,WT和M分別代表野生型和突變體。
(圖6:D)。整體而言,Slactin更適合用作內(nèi)參基因,M2、M7和M8突變效果更為明顯。
2.4 編輯株青枯病抗性表型
基于基因測(cè)序和定量表達(dá)結(jié)果,對(duì)敲除效果明顯的3個(gè)純合單株M2、M7和M8進(jìn)行青枯病抗性表型鑒定。發(fā)現(xiàn)接種青枯菌后,植株長(zhǎng)勢(shì)明顯優(yōu)于野生型(WT)番茄,觀察期內(nèi)基本未出現(xiàn)病癥(圖7),說明SlMLO1/6可能參與番茄青枯病負(fù)調(diào)控。
3 討論與結(jié)論
青枯菌具有廣泛的環(huán)境和生態(tài)適應(yīng)性。目前,利用正向遺傳學(xué)僅在擬南芥中克隆到一個(gè)抗青枯病基因RRS1 (Deslandes et al., 1998),相關(guān)基因鑒定、功能研究及生產(chǎn)應(yīng)用還非常有限。因此,廣譜抗性挖掘和感病基因失活成為研究熱點(diǎn)。與其他基因功能研究技術(shù)相比,基因編輯具有克隆策略相對(duì)簡(jiǎn)單、可多靶點(diǎn)敲除、脫靶率較低、適用范圍廣等優(yōu)點(diǎn)(Ma et al., 2015)。利用CRISPR/Cas9基因編輯技術(shù)定向敲除不利基因,能實(shí)現(xiàn)目標(biāo)性狀的遺傳改良。并且,通過后代遺傳分離可以獲得不含載體元件的突變株系。mlo代表了一類由寄主基因突變控制的廣譜抗性新機(jī)制,能夠參與多種生物和非生物脅迫響應(yīng)(Nguyen et al., 2016)?;诖?,本研究利用CRISPR/Cas9系統(tǒng)成功構(gòu)建了SlMLO1/6基因編輯載體,經(jīng)轉(zhuǎn)化番茄和測(cè)序鑒定,獲得9株突變體,約50%為純合突變株。
Slmlo1/6突變體不同位點(diǎn)編輯效果和類型不同,純合突變包括片段缺失和單堿基插入,說明二倍體植物基因編輯多產(chǎn)生簡(jiǎn)單突變(Ma et al., 2015)。M2和M8 SlMLO1編碼蛋白分別丟失了20個(gè)和3個(gè)氨基酸且發(fā)生移碼突變;M7 SlMLO6丟失了5個(gè)氨基酸但新增了1個(gè)亮氨酸,下游序列不變;M9 SlMLO6密碼子GTG突變?yōu)镚TT,兩者均翻譯纈氨酸,但后續(xù)氨基酸移碼突變,推測(cè)基因功能轉(zhuǎn)變主要源自氨基酸丟失和移碼突變。蒲艷等(2018)研究表明,多個(gè)活性U6啟動(dòng)子可驅(qū)動(dòng)多個(gè)sgRNA,造成染色體大片段缺失。同時(shí),穩(wěn)定轉(zhuǎn)化植株中以堿基缺失和插入為主,可能是sgRNA和Cas9可持續(xù)表達(dá),靶點(diǎn)產(chǎn)生的堿基替換被繼續(xù)編輯。非同源末端連接(non-homologous end joining, NHEJ)修復(fù)過程中容易發(fā)生錯(cuò)誤,使DNA斷裂位置產(chǎn)生小片段缺失或插入;而同源重組(homologous recombination, HR)可實(shí)現(xiàn)基因的定點(diǎn)修復(fù)或插入(Hsu et al., 2014)。本研究中,雙基因靶點(diǎn)編輯支持上述穩(wěn)定轉(zhuǎn)化突變結(jié)論,并且可能以NHEJ修復(fù)為主。定量分析表明,純合突變體靶基因表達(dá)水平下降且SlMLO1較SlMLO6效果更加明顯,但雜合株需分離純化。M1 SlMLO1、M3和M10 SlMLO6未發(fā)生突變,可能與脫靶效應(yīng)有關(guān)。
MLO借助乳突作用負(fù)調(diào)控植物抗性及葉肉細(xì)胞死亡,通過協(xié)助病原菌侵染抑制防御反應(yīng)(Kim et al., 2002a)。同時(shí),MLO可通過結(jié)合鈣調(diào)素(calmodulin, CaM)提高自身功能活性以降低植物抗病力(Kim et al., 2002b)。本課題組前期研究表明SlMLO1含有CaMBD,推測(cè)其通過結(jié)合CaM促進(jìn)番茄感病。辣椒CaMLO6通過與CaWRKY40互作負(fù)調(diào)控青枯病抗性(Yang et al., 2020)。鑒于番茄和辣椒的親緣關(guān)系,推測(cè)SlMLO6具有相似功能??剐员硇统醪借b定說明SlMLO1/6可能是青枯病易感基因。但是,青枯病抗性遺傳復(fù)雜,受多基因控制。由于脫靶效應(yīng)的存在,因此非目的基因(編碼區(qū)和非編碼區(qū))打靶如何影響編輯效果和植株表型需進(jìn)一步通過全基因組或脫靶位點(diǎn)測(cè)序進(jìn)行評(píng)估。同時(shí),MLO家族基因是否存在功能冗余和多等位基因效應(yīng),也需進(jìn)一步驗(yàn)證??傊?,需從表型、理化和分子水平對(duì)不同品種番茄Slmlo1/6突變體及其后代進(jìn)行綜合鑒定,以獲得純合穩(wěn)定有生產(chǎn)應(yīng)用價(jià)值的育種材料。
參考文獻(xiàn):
ACEVEDO-GARCIA J, GRUNER K, REINSTDLER A, et al., 2017. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens" [J]. Sci Rep, 7: 9319.
APPIANO M, PAVAN S, CATALANO D, et al., 2015. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1" [J]. Transgen Res, 24(5): 847-858.
BAI Y, PAVAN S, ZHENG Z, et al., 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function" [J]. Mol Plant Microbe In, 21(1): 30-39.
BRACUTO V, APPIANO M, RICCIARDI L, et al., 2017. Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum melongena L.)" [J]. Transgen Res, 26(3): 323-330.
BUSCHGES R, HOLLRICHER K, PANSTRUGA R, et al., 1997. The barley MLO gene: A novel control element of plant pathogen resistance" [J]. Cell, 88(5): 695-705.
DESLANDES L, PILEUR F, LIAUBET L, et al., 1998. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum" [J]. Mol Plant Microbe In, 11(7): 659-667.
HSU PD, LANDER ES, ZHANG F, 2014. Development and applications of CRISPR-Cas9 for genome engineering" [J]. Cell, 157(6): 1262-1278.
JIAN X, MIAO YM, SUI YH, et al., 2015. Cloning and expression vector construction of cucumber LDC and transformation to tabacco" [J]. Guihaia, 35(2): 255-260." [簡(jiǎn)興, 苗永美, 隋益虎, 等, 2015. 黃瓜LDC克隆、表達(dá)載體的構(gòu)建及煙草轉(zhuǎn)化研究[J]. 廣西植物, 35(2): 255-260.]
KIM DS, CHOI HW, HWANG BK, 2014. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses" [J]. Planta, 240: 827-839.
KIM DS, HWANG BK, 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation" [J]. Plant J, 72(5): 843-855.
KIM MC, LEE SH, KIM JK, et al., 2002a. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein" [J]. J Biol Chem, 277(22): 19304-19314.
KIM MC, PANSTRUGA R, ELLIOTT C, et al., 2002b. Calmodulin interacts with MLO protein to regulate defence against mildew in barley" [J]. Nature, 416(6879): 447-451.
KUSCH S, PANSTRUGA R, 2017. mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease" [J]. Mol Plant Microbe Interact, 30(3): 179-189.
MA XL, ZHANG QY, ZHU QL, et al., 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants" [J]. Mol Plant, 8(8): 1274-1284.
MALI P, ESVELT KM, CHURCH GM, 2013. Cas9 as a versatile tool for engineering biology" [J]. Nat Methods, 10(10): 957-963.
NGUYEN VNT, VO KTX, PARK H, et al., 2016. A systematic view of the MLO family in rice suggests their novel roles in morphological development, diurnal responses, the light-signaling pathway, and various stress responses" [J]. Front Plant Sci, 7: 1413.
NIE JT, WANG YL, HE HL, et al., 2015. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.)" [J]. Front Plant Sci, 6: 1155.
PU Y, LIU C, LI JY, et al., 2018. Different SlU6 promoters cloning and establishment of CRISPR/Cas9 mediated gene editing system in tomato" [J]. Sci Agric Sin, 51(2): 315-326." [蒲艷, 劉超, 李繼洋, 等, 2018. 番茄U6啟動(dòng)子的克隆及CRISPR/Cas9基因編輯體系的建立[J]. 中國(guó)農(nóng)業(yè)科學(xué), 51(2): 315-326.]
REINSTDLER A, MLLER J, CZEMBOR JH, et al., 2010. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein" [J]. BMC Plant Biol, 10(1): 31.
SHI JL, WAN HJ, ZAI WS, et al., 2020. Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to Ralstonia solanacearum in tomato" [J]. Genes, 11(5): 487.
YANG S, SHI YY, ZOU LY, et al., 2020. Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses" [J]. Plant Cell Physiol, 61(7): 1223-1238.
ZHENG Z, NONOMURA T, APPIANO M, et al., 2013. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica" [J]. PLoS ONE, 8(7): e70723.
(責(zé)任編輯 李 莉 王登惠)
基金項(xiàng)目: "浙江省農(nóng)業(yè)新品種選育重大科技專項(xiàng)子課題(2021C02065); 浙江省基礎(chǔ)公益研究計(jì)劃(LTGN23C020002); 溫州市農(nóng)業(yè)新品種選育協(xié)作組項(xiàng)目(ZX2024002-2)。
第一作者: 史建磊(1982—),博士,副教授,主要從事作物遺傳育種與生物技術(shù)研究,(E-mail) sjlhebau@163.com。
*通信作者: "宰文珊,碩士,研究員,研究方向?yàn)槭卟诉z傳育種,(E-mail) 273493129@qq.com。