• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于代謝組學(xué)及網(wǎng)絡(luò)藥理學(xué)分析不同品種芡實(shí)中活性成分及其對(duì)人糖尿病的作用

      2024-12-05 00:00:00張青強(qiáng)馬佳佳朱和權(quán)李勇李紅領(lǐng)劉歡蔡為榮李春陽(yáng)
      關(guān)鍵詞:分子對(duì)接代謝組學(xué)芡實(shí)

      摘要: 通過代謝組學(xué)、網(wǎng)絡(luò)藥理學(xué)及分子對(duì)接技術(shù)分析不同芡實(shí)品種中的活性成分及其對(duì)糖尿病的作用。使用四極桿飛行時(shí)間液質(zhì)聯(lián)用系統(tǒng)(LC-QTOF-MS)、Metaboanalyst(https://www.metaboanalyst.ca/)和TBtools軟件對(duì)芡實(shí)成分進(jìn)行檢測(cè)和分析;通過PubChem篩選出芡實(shí)中具有生物活性的成分;使用Swiss預(yù)測(cè)芡實(shí)成分靶點(diǎn),通過多種數(shù)據(jù)庫(kù)檢索疾病靶點(diǎn)取并集;繪制蛋白質(zhì)互作(PPI)網(wǎng)絡(luò)查找主要成分及核心靶點(diǎn);對(duì)交集靶點(diǎn)進(jìn)行GO富集分析和KEGG富集分析;最后通過分子對(duì)接技術(shù)進(jìn)行驗(yàn)證。結(jié)果表明,蘇芡和刺芡中有153種在含量方面具有顯著差異的成分;從蘇芡中篩選出12種具有緩解糖尿病及其并發(fā)癥效果的成分以及578個(gè)潛在靶點(diǎn),從刺芡中篩選出3種具有緩解糖尿病及其并發(fā)癥效果的成分及226個(gè)潛在靶點(diǎn);GO富集和KEGG富集分析結(jié)果顯示,蘇芡中的靶點(diǎn)主要富集在糖尿病性心肌病、胰島素抵抗、糖尿病并發(fā)癥中的高級(jí)糖基化終末產(chǎn)物-受體信號(hào)通路,刺芡中的靶點(diǎn)主要富集在癌癥的發(fā)病途徑、脂肪細(xì)胞脂解的調(diào)控、磷酸腺苷活化蛋白激酶信號(hào)通路;分子對(duì)接分析結(jié)果顯示,篩選出的成分均結(jié)合在靶點(diǎn)蛋白質(zhì)的凹陷處,結(jié)合自由能均為負(fù)值,分子對(duì)接構(gòu)象穩(wěn)定。說(shuō)明,蘇芡在緩解糖尿病及其并發(fā)癥等方面較刺芡具有更好的效果。

      關(guān)鍵詞: 芡實(shí);糖尿病;代謝組學(xué);網(wǎng)路藥理學(xué);分子對(duì)接

      中圖分類號(hào): R285;S645.9 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1000-4440(2024)11-2163-14

      Effects of active components in different varieties of Euryale ferox on human diabetes based on metabolomics and network pharmacology

      ZHANG Qingqiang1,2, MA Jiajia3, ZHU Hequan2, LI Yong4, LI Hongling5, LIU Huan2, CAI Weirong1, LI Chunyang2

      (1.College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;2.Institute of Agroproduct Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Taihu Research Institute of Agricultural Sciences, Suzhou 215000, China;4.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;5.College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China)

      Abstract: This study aims to elucidate the active ingredient differences in Euryale ferox and the alleviation of diabetes among different varieties, known as South Euryale and North Euryale, using metabolomics, network pharmacology, and molecular docking techniques. Liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS), Metaboanalyst(https://www.metaboanalyst.ca/), and TBtools were used for the detection and analysis of components in E. ferox. Bioactive components in E. ferox were screened through PubChem. Swiss was used to predict the targets of E. ferox components, and disease targets were searched from multiple databases and combined. Protein-protein interaction (PPI) networks were constructed to identify major components and core targets. GO analysis and KEGG analysis were conducted on the intersected targets. Finally, molecular docking models were used for validation. The results showed that 153 components with significant differences in the content were found between South Euryale and North Euryale. Twelve components with the potential to alleviate diabetes and its complications, along with 578 potential targets, were identified in South Euryale, while three components and 226 potential targets were identified in North Euryale. GO and KEGG enrichment analysis revealed that the targets in South Euryale were mainly enriched in the pathogenesis of diabetic cardiomyopathy, insulin resistance, and the advanced glycation end products-receptor of advanced glycation endproducts (AGE-RAGE) signaling pathway in diabetic complications, while the targets in North Euryale were primarily enriched in the pathogenesis of cancer, regulation of adipocyte lipolysis, and the adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Molecular docking results showed that the screened components combined to the depressed sites of target proteins, with negative binding free energy and stable molecular docking conformations. It can be concluded that South Euryale exhibited better effects in alleviating diabetes and its complications compared to North Euryale.

      Key words: Euryale ferox;diabetes;metabolomics;network pharmacology;molecular docking

      芡實(shí)(Euryale ferox Salish.)俗稱雞頭米,為睡蓮科芡屬一年水生草本植物,屬藥食同源作物。芡實(shí)主要分為2類:一類是刺芡,也叫北芡或者野芡,在福建省、浙江省、安徽省及江蘇省北部等地種植,籽粒殼薄、粒小、粳性,呈白色;另一類是蘇芡,也叫南芡或者栽培芡,主產(chǎn)于蘇州地區(qū),籽粒殼厚、粒大、糯性,呈玉白色[1]。

      糖尿病是影響人類壽命的主要疾病之一,2021年,全球有5.29×108名糖尿病患者[2],中國(guó)是世界糖尿病患者最多的國(guó)家,糖尿病及糖尿病前期發(fā)病率超過50%。預(yù)防糖尿病的首位措施就是生活方式干預(yù),飲食干預(yù)是其中一種[3]。

      人們對(duì)于芡實(shí)作用的研究包括益腎固精健脾止瀉等[4],也包括降血糖[5],但是對(duì)于不同品種的芡實(shí)降血糖效果的研究較少。代謝組學(xué)和網(wǎng)絡(luò)藥理學(xué)已成為揭示生物系統(tǒng)復(fù)雜功能和行為的強(qiáng)大工具,在藥食同源食品(鐵皮石斛[6]、天麻[7]等)加工過程中的成分及藥理活性變化研究上已有應(yīng)用。本試驗(yàn)擬基于四極桿飛行時(shí)間液質(zhì)聯(lián)用(LC-QTOF-MS)技術(shù)對(duì)芡實(shí)中化學(xué)成分進(jìn)行系統(tǒng)研究,采用代謝組學(xué)方法鑒定其差異代謝物,采用代謝分析工具富集代謝通路。然后應(yīng)用網(wǎng)絡(luò)藥理學(xué)方法,挖掘出與糖尿病有關(guān)的靶點(diǎn),用Cytoscape軟件構(gòu)建代謝組學(xué)與網(wǎng)絡(luò)藥理學(xué)的集成網(wǎng)絡(luò)。最后,對(duì)得到的關(guān)鍵靶標(biāo)進(jìn)行分子對(duì)接驗(yàn)證,為芡實(shí)功能性產(chǎn)品開發(fā)及生產(chǎn)加工提供理論基礎(chǔ)。

      1 材料與方法

      1.1 原料與試劑

      芡實(shí)分別為干燥的未剝皮刺芡(S1),來(lái)自廣東省肇慶市;干燥的剝皮刺芡(S2),來(lái)自蘇北洪澤湖;干燥的未剝皮蘇芡(S3),來(lái)自蘇州市吳中區(qū)甪直鎮(zhèn);干燥的剝皮蘇芡(S4),來(lái)自蘇州市吳中區(qū)東山鎮(zhèn)。

      甲醇(CH3OH)為分析純(國(guó)藥集團(tuán)化學(xué)試劑有限公司產(chǎn)品)。

      1.2 儀器與設(shè)備

      高效液相色譜串聯(lián)飛行時(shí)間質(zhì)譜(美國(guó)Agilent 公司產(chǎn)品),上海亞榮RE52-A旋轉(zhuǎn)蒸發(fā)儀(上海亞榮生化儀器廠產(chǎn)品),真空冷凍干燥機(jī)(北京博醫(yī)康實(shí)驗(yàn)儀器有限公司產(chǎn)品),臺(tái)式低速離心機(jī)(湖南可成儀器設(shè)備有限公司產(chǎn)品)。

      1.3 試驗(yàn)方法

      1.3.1 芡實(shí)提取液的分析 將蘇芡、刺芡凍干后,研磨成粉末狀。以甲醇為溶劑分別溶解重量相同(0.1 g)的芡實(shí)粉末,振蕩提取30 min,6 000 r/min離心15 min;取上清液,將沉淀用甲醇溶解后再次振蕩、提取、離心,取上清液,將2次上清液合并,并進(jìn)行減壓濃縮,得到無(wú)醇味的芡實(shí)提取液。參考Mu等[8]的方法,調(diào)整LC-QTOF-MS的色譜條件和質(zhì)譜條件,得到試驗(yàn)數(shù)據(jù)。對(duì)LC-QTOF-MS試驗(yàn)數(shù)據(jù)進(jìn)行整理分析,利用MS-DI-AL軟件,將試驗(yàn)數(shù)據(jù)與數(shù)據(jù)庫(kù)數(shù)據(jù)進(jìn)行比對(duì),鑒定化合物。使用Metaboanalyst 6.0和TBtools 2.029軟件繪制主成分(PCA)分析圖和熱圖(HeatMap)。通過方差分析(ANOVA)對(duì)差異代謝物進(jìn)行篩選,然后檢索PubChem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/)獲取成分標(biāo)志號(hào)(CID)及分類信息,通過Lipinski原則篩選出有更好的藥代動(dòng)力學(xué)的物質(zhì),查閱文獻(xiàn)獲取各成分作用的信息,選擇蘇芡和刺芡中有顯著含量差異的成分用于進(jìn)一步研究。

      1.3.2 芡實(shí)成分靶點(diǎn)及糖尿病作用靶點(diǎn)的篩選 在Swiss Target Prediction(http://www.swisstargetprediction.ch/)網(wǎng)站,以智人(Homo sapiens)為研究物種,輸入從PubChem數(shù)據(jù)庫(kù)中獲取的各成分的Smiles結(jié)構(gòu)式,檢索得到該成分可能作用的靶點(diǎn)蛋白質(zhì)。搜集所有成分的作用靶點(diǎn),取并集得到蘇芡和刺芡的作用靶點(diǎn)信息。

      以 “Diabetes”為檢索詞分別在GeneCards數(shù)據(jù)庫(kù)(https://www.genecards.org/)、TTD數(shù)據(jù)庫(kù)(Therapeutic Target Database)及OMIM數(shù)據(jù)庫(kù)(https://www.omim.org/)中進(jìn)行檢索,搜集所有靶點(diǎn)并去除其中的重復(fù)靶點(diǎn),得到與糖尿病有關(guān)的所有靶點(diǎn)信息。

      1.3.3 構(gòu)建蛋白質(zhì)互作(PPI)網(wǎng)絡(luò) 選擇“Homo sapiens”為研究物種,分別將蘇芡和刺芡的作用靶點(diǎn)數(shù)據(jù)輸入到STRING12.0 數(shù)據(jù)庫(kù)中進(jìn)行檢索,導(dǎo)出PPI圖。下載蛋白質(zhì)互作數(shù)據(jù)導(dǎo)入到Cytoscape 3.8.2軟件,通過CytoNCA插件計(jì)算出該互作網(wǎng)絡(luò)中各靶點(diǎn)度值(Degree)。選擇Degree較大的靶點(diǎn)并查找其對(duì)應(yīng)成分,重繪PPI圖凸顯關(guān)鍵靶點(diǎn)。

      1.3.4 GO富集分析及KEGG富集分析 將活性成分干預(yù)糖尿病的靶點(diǎn)蛋白質(zhì)借助David數(shù)據(jù)庫(kù)(https://david.ncifcrf.gov/)中的Functional Annotation Chart進(jìn)行檢索,選擇“Homo sapiens”物種,收集GOTERM_BP_DIRECT、GOTERM_CC_DIRECT、GOTERM_MF_DIRECT和KEGG_PATHWAY數(shù)據(jù);再使用Bioinformatics(https://www.bioinformatics.com.cn/)網(wǎng)站中的富集氣泡圖工具及BP、CC、MF三合一分析工具對(duì)靶點(diǎn)進(jìn)行信號(hào)通路富集分析。

      1.3.5 分子對(duì)接驗(yàn)證 配體文件:在PubChem數(shù)據(jù)庫(kù)下載靶點(diǎn)蛋白質(zhì)對(duì)應(yīng)成分的sdf格式的三維(3D)結(jié)構(gòu)文件,通過OpenBabel 3.1.1軟件轉(zhuǎn)化為pdb格式并且保存。受體文件:在RCSB PDB(https://www.rcsb.org/)網(wǎng)站檢索靶點(diǎn)蛋白質(zhì)并勾選“Homo sapiens”進(jìn)行篩選,在檢索結(jié)果中選擇分辨率最高的蛋白質(zhì)結(jié)構(gòu),下載為pdb格式文件,使用Pymol 2.6軟件,對(duì)蛋白質(zhì)結(jié)構(gòu)進(jìn)行去水并去除包含的其他配體,保存為pdbqt格式。通過AutoDock4對(duì)大分子蛋白質(zhì)加氫、計(jì)算電荷數(shù)等;對(duì)小分子配體進(jìn)行顯示擴(kuò)展性處理。使用autogrid4生成受體網(wǎng)絡(luò),使用autodock4進(jìn)行分子對(duì)接,完成對(duì)接后進(jìn)行結(jié)構(gòu)分析,選擇結(jié)合能為負(fù)值且數(shù)值最小的分子對(duì)接結(jié)構(gòu),最后通過Pymol 2.6軟件標(biāo)記出結(jié)合位點(diǎn),計(jì)算出分子間距離,輸出對(duì)接結(jié)構(gòu)圖。

      2 結(jié)果與分析

      2.1 代謝組學(xué)分析

      如圖1所示,S1和S2在化學(xué)組成及其成分含量方面存在較小差異,而S3和S4與S1、S2存在著較為顯著的差異。對(duì)S1、S2、S3、S4 4組樣品的峰面積大小進(jìn)行方差分析,經(jīng)過去重篩選,結(jié)果顯示,228種成分的含量存在顯著差異。按Lipinski原則[脂水分配系數(shù)(milogP)≤5,氫鍵給體(nOHNH)≤5,氫鍵受體(nOH)≤10],將主要成分篩選出來(lái)。最終篩選得到153種成分。對(duì)153種成分進(jìn)行層次聚類分析,結(jié)果如圖2所示。從整體上看,蘇芡中129種成分的含量顯著高于刺芡,其中包括多種氨基酸,如人體必需氨基酸(色氨酸、賴氨酸、蘇氨酸、苯丙氨酸、纈氨酸、異亮氨酸、甲硫氨酸、賴氨酸、蘇氨酸)、核酸及其衍生物(胞苷、鳥嘌呤、胸腺嘧啶、尿嘧啶、尿苷等)、維生素及其衍生物(煙酸、膽堿、吡哆醇、硫胺素、泛酸)以及其他重要的活性物質(zhì)(表兒茶素、培哚普利、阿糖胞苷、勞拉西泮等)。不同品種芡實(shí)成分具有顯著差異,蘇芡有機(jī)成分含量明顯優(yōu)于刺芡。而對(duì)于同一品種不同地區(qū)的蘇芡,其成分也有顯著差異。聚類熱圖分析結(jié)果(圖2)顯示,S3成分中,多種氨基酸及其衍生物、維生素及其衍生物含量高于S4。同一芡實(shí)品種成分在不同地區(qū)產(chǎn)生顯著差異的原因是不同產(chǎn)地的氣候、土壤、光照因素影響植物無(wú)機(jī)成分含量,而無(wú)機(jī)成分又影響著芡實(shí)中有機(jī)物成分的合成及生理功能的調(diào)控,從而導(dǎo)致芡實(shí)中的有機(jī)成分產(chǎn)生顯著差異[9]。

      圖2顯示,不同品種芡實(shí)有153種成分含量存在顯著差異,通過查詢相關(guān)文獻(xiàn),找出各成分的作用,找出了15種具有降血糖或改善糖尿病神經(jīng)性疼痛的成分。其中12種在蘇芡中具有較高含量,3種在刺芡中具有較高含量,對(duì)15種成分進(jìn)行注解,如表1所示。芡實(shí)中的活性成分不但可以調(diào)節(jié)血糖,還可以抗腫瘤、抗炎、抗氧化、避免細(xì)胞損傷以及保護(hù)神經(jīng)。其中多數(shù)活性成分在蘇芡中的含量較高,因此蘇芡相比刺芡可能會(huì)有更好的輔助降血糖效果。

      2.2 芡實(shí)成分靶點(diǎn)及糖尿病作用靶點(diǎn)的篩選結(jié)果

      將蘇芡中12種成分的Smiles化學(xué)結(jié)構(gòu)分別上傳到Swiss Target Prediction網(wǎng)站,得到預(yù)測(cè)靶點(diǎn),取并集,獲得578個(gè)預(yù)測(cè)靶點(diǎn);如圖3A所示,從疾病數(shù)據(jù)庫(kù)里檢索與糖尿病相關(guān)靶點(diǎn)后獲得去重后的777個(gè)靶點(diǎn)。如圖3B所示,刺芡中的3種活性成分得到成分靶點(diǎn)226個(gè)。蘇芡和刺芡與疾病相交的靶點(diǎn)數(shù)分別為87個(gè)和41個(gè)。甜菜堿與糖尿病不存在相交靶點(diǎn),甜菜堿可以降血糖是因?yàn)樘鸩藟A可以通過抑制內(nèi)質(zhì)網(wǎng)應(yīng)激的強(qiáng)度從而治療糖尿病型腎病[42],最終使血糖相對(duì)降低。在Cytoscape3.8.2 軟件中將靶點(diǎn)與成分文件導(dǎo)入,繪制出靶點(diǎn)、成分、芡實(shí)間的網(wǎng)絡(luò)關(guān)系圖(圖3C和3D)。蘇芡中,甘草苷(Liquiritin)具有23個(gè)潛在作用靶點(diǎn),鞣花酸(Ellagic acid)和北美圣草素(Eriodictyol)有22個(gè)潛在作用靶點(diǎn),硫胺素有20個(gè)潛在作用靶點(diǎn)。在刺芡中,柚皮素(Naringenin)有22個(gè)潛在作用靶點(diǎn),東莨菪亭(Scopoletin)有18個(gè)潛在作用靶點(diǎn),沒食子酸(Gallic acid)有15個(gè)潛在作用靶點(diǎn)。

      2.3 構(gòu)建PPI網(wǎng)絡(luò)圖

      將蘇芡和刺芡成分的潛在作用靶點(diǎn)分別與糖尿病靶點(diǎn)的交集靶點(diǎn)上傳至STRING12.0數(shù)據(jù)庫(kù)中,獲取靶點(diǎn)間作用關(guān)系圖。再把數(shù)據(jù)導(dǎo)入Cytoscape,利用CytoNCA插件計(jì)算出該互作網(wǎng)絡(luò)中各靶點(diǎn)度[43]值,篩選度值的平均值的2倍作為核心靶點(diǎn),繪制網(wǎng)絡(luò)圖(圖4)。圖4A和圖4B分別為蘇芡、刺芡成分干預(yù)下的糖尿病靶點(diǎn)相互作用網(wǎng)絡(luò)圖。其中蘇芡中核心靶點(diǎn)9個(gè),刺芡中核心靶點(diǎn)3個(gè),見表2。

      2.4 GO、KEGG富集結(jié)果分析

      在蘇芡關(guān)鍵靶點(diǎn)GO富集中,生物過程(BP)有20條功能途徑;細(xì)胞定位(CC)有47條功能途徑;分子功能(MF)有107條功能途徑。因此蘇芡成分中的12個(gè)關(guān)鍵靶點(diǎn)通過GO富集共獲得174條功能途徑。同樣在刺芡關(guān)鍵靶點(diǎn)GO富集中,BP、CC、MF分別有168條、23條、54條功能途徑。刺芡成分中3個(gè)關(guān)鍵靶點(diǎn)共有245條GO富集功能途徑。分別選擇蘇芡、刺芡中BP、CC、MF的P值較小的前10個(gè)(Plt;0.01)繪制氣泡圖和GO富集分析圖。蘇芡干預(yù)糖尿病靶點(diǎn)基因富集分析結(jié)果見圖5,刺芡干預(yù)糖尿病靶點(diǎn)基因富集分析結(jié)果見圖6。

      由圖5A可知,蘇芡成分干預(yù)糖尿病的靶點(diǎn)主要參與了對(duì)細(xì)胞凋亡過程的負(fù)調(diào)控、基因表達(dá)的負(fù)調(diào)控過程,以及積極調(diào)節(jié)細(xì)胞增殖,其次也參與了對(duì)缺氧的反應(yīng)、血管生成、葡萄糖穩(wěn)態(tài)、肽基絲氨酸磷酸化等生物過程。這些靶點(diǎn)主要集中在細(xì)胞膜、細(xì)胞質(zhì)、細(xì)胞核、外泌體、細(xì)胞外區(qū)、線粒體、大分子復(fù)合物、胞膜窖等部位,具有相同的蛋白質(zhì)結(jié)合、蛋白質(zhì)絲氨酸/蘇氨酸/酪氨酸激酶活性、酶結(jié)合、蛋白激酶結(jié)合、蛋白激酶活性、轉(zhuǎn)錄輔激活因子結(jié)合、類固醇結(jié)合、胰島素受體底物結(jié)合、四氫生物蝶呤結(jié)合等功能。由圖5B可知,蘇芡成分干預(yù)糖尿病的靶點(diǎn)主要集中在糖尿病性心肌病、胰島素抵抗、糖尿病并發(fā)癥中的高級(jí)糖基化終末產(chǎn)物-受體信號(hào)通路、癌癥中的通路、缺氧誘導(dǎo)因子1信號(hào)通路、前列腺癌、松弛素信號(hào)等通路。由圖6A可知,刺芡成分干預(yù)糖尿病的靶點(diǎn)參與了絲裂原活化蛋白激酶級(jí)聯(lián)的正向調(diào)控、蛋白激酶 B 信號(hào)的正向調(diào)節(jié)過程,以及參與血管生成、基因表達(dá)的負(fù)調(diào)控、胰島素受體信號(hào)通路、葡萄糖穩(wěn)態(tài)等過程,這些靶點(diǎn)主要集中在細(xì)胞膜、細(xì)胞外區(qū)、外泌體等,具有蛋白質(zhì)結(jié)合、蛋白質(zhì)同源二聚作用、蛋白質(zhì)絲氨酸/蘇氨酸/酪氨酸激酶活性、酶結(jié)合、絲氨酸型內(nèi)切肽酶活性、激酶活性、蛋白酶結(jié)合、胰島素受體底物結(jié)合、胰島素樣生長(zhǎng)因子Ⅰ結(jié)合等功能。圖6B顯示,這些靶點(diǎn)主要富集在癌癥通路、磷酸腺苷活化蛋白激酶信號(hào)通路、脂肪細(xì)胞的脂肪分解的調(diào)節(jié)信號(hào)通路、糖尿病性心肌病信號(hào)通路、磷脂酰肌醇3-激酶/蛋白激酶B信號(hào)通路等。

      2.5 分子對(duì)接驗(yàn)證

      成分-靶點(diǎn)網(wǎng)絡(luò)圖顯示,蘇芡中有9個(gè)關(guān)鍵靶點(diǎn),但是由于1個(gè)成分對(duì)應(yīng)多個(gè)靶點(diǎn),因此選擇所對(duì)應(yīng)的成分為硫胺素、瓜氨酸、丹參酮 ⅡA、北美圣草素、甘草苷、鞣花酸、葫蘆巴堿,選擇這些成分對(duì)應(yīng)的靶點(diǎn)進(jìn)行分子對(duì)接驗(yàn)證,分別為過氧化物酶體增殖物活化受體γ(PPARG)、蛋白激酶B(AKT1)、白蛋白(ALB)以及基質(zhì)金屬蛋白酶-9(MMP9)。同理在刺芡成分PPI網(wǎng)絡(luò)中,我們選擇ALB、PPARG以及AKT1所對(duì)應(yīng)的沒食子酸、柚皮素、東莨菪亭進(jìn)行分子對(duì)接驗(yàn)證。所有分子對(duì)接的能量均為負(fù)值,同時(shí)每個(gè)成分都結(jié)合在靶點(diǎn)蛋白質(zhì)的凹陷處(圖7),說(shuō)明芡實(shí)成分與靶點(diǎn)蛋白質(zhì)可以自發(fā)結(jié)合,推測(cè)每個(gè)組分在細(xì)胞內(nèi)都可以與靶點(diǎn)自發(fā)結(jié)合形成二元復(fù)合物。

      3 討論

      對(duì)蘇芡和刺芡的成分進(jìn)行代謝組學(xué)分析,結(jié)果顯示,蘇芡與刺芡中存在153種含量有顯著差異的代謝物,在蘇芡、刺芡中與干預(yù)糖尿病有關(guān)的成分含量分別有12種和3種存在顯著差異。正是這些含量差異的代謝物使蘇芡和刺芡在外觀及功效方面存在差異,在降血糖方面效果不同。

      在S1中,左旋肉堿的含量更高,左旋肉堿具有多種功能,包括降脂[44]、益精[45]、保護(hù)脊髓[46]等作用。與S2相比,S1具有含量更高的沒食子酸和七葉苷。沒食子酸具有抗腫瘤[47]、抗氧化[48]等作用;

      七葉苷具有抗氧化[49]、抗腫瘤[50]等作用。盡管S1中含有多種對(duì)人體健康有益的活性成分,但其含有的三甲胺-N-氧化物會(huì)對(duì)機(jī)體產(chǎn)生嚴(yán)重的危害,研究結(jié)果表明三甲胺-N-氧化物與心血管疾病有關(guān)[51],甚至與心機(jī)梗死有較強(qiáng)的臨床相關(guān)性[52]。這可能是因?yàn)槿装?N-氧化物主要是由芡實(shí)內(nèi)部生長(zhǎng)的微生物產(chǎn)生的,它們分解芡實(shí)中的氮化合物時(shí)會(huì)產(chǎn)生三甲胺-N-氧化物[53]。由于芡實(shí)表皮與外界接觸面積大,同時(shí)也是芡實(shí)中微生物生長(zhǎng)的場(chǎng)所,所以芡實(shí)表皮中的三甲胺-N-氧化物的含量相對(duì)較高。而去皮后,芡實(shí)的表皮被去除,其中的微生物也被去除,因此去皮芡實(shí)中的三甲胺-N-氧化物含量相對(duì)較低。

      通過查閱文獻(xiàn)及檢索數(shù)據(jù)庫(kù)對(duì)含量差異顯著的成分進(jìn)行功能性比較,結(jié)果表明,蘇芡具有更好的降血糖效果。在蘇芡中甘草苷、北美圣草素、鞣花酸、硫胺素存在較多靶點(diǎn),在關(guān)鍵靶點(diǎn)篩選中,關(guān)鍵靶點(diǎn)所對(duì)應(yīng)的成分為丹參酮 ⅡA、北美圣草素、鞣花酸、甘草苷、瓜氨酸等,因此丹參酮 ⅡA、北美圣草素、鞣花酸、甘草苷、瓜氨酸等在調(diào)節(jié)血糖中起到主要作用。北美圣草素可以刺激小鼠胰島和MIN6細(xì)胞分泌胰島素,從而在治療糖尿病及相關(guān)并發(fā)癥的藥物中作為組成成分發(fā)揮重要作用。丹參酮 ⅡA的抗氧化和神經(jīng)保護(hù)特性可用于緩解糖尿病最常見的并發(fā)癥神經(jīng)病變,治療糖尿病引起的神經(jīng)功能障礙以及修復(fù)對(duì)熱和機(jī)械損傷的感知能力[54];Amin等[27]通過研究經(jīng)高脂高糖誘導(dǎo)的2型糖尿病大鼠發(fā)現(xiàn),鞣花酸顯著改善了大鼠血糖平衡,增強(qiáng)了胰島素信號(hào)傳導(dǎo);Zhang等[55]研究發(fā)現(xiàn),甘草苷可以有效降低小鼠被喂養(yǎng)果糖后引起的脂質(zhì)積累和胰島素抵抗,并且甘草苷通過抑制核因子活化B細(xì)胞κ輕鏈增強(qiáng)子和絲裂原活化蛋白激酶信號(hào)通路對(duì)高果糖誘導(dǎo)的心肌纖維化具有保護(hù)作用。另外,蘇芡中的含量差異顯著的成分還起到抑制神經(jīng)損傷、抗腫瘤、抗氧化、抗炎等作用。在刺芡中,柚皮素存在較多的靶點(diǎn),在關(guān)鍵靶點(diǎn)篩選中,最關(guān)鍵靶點(diǎn)ALB對(duì)應(yīng)的成分為沒食子酸。研究結(jié)果表明,沒食子酸和對(duì)香豆酸具有明顯的抗糖尿病作用,通過調(diào)節(jié)腫瘤壞死因子-α和脂肪細(xì)胞因子分泌以及上調(diào)過氧化物酶體增殖物活化受體γ mRNA表達(dá)從而表現(xiàn)出顯著的抗糖尿病作用[56]。值得注意的是東莨菪亭可以通過抑制α-葡萄糖苷酶從而達(dá)到輔助調(diào)節(jié)血糖的效果。

      PPI網(wǎng)絡(luò)構(gòu)建結(jié)果顯示,蘇芡和刺芡與糖尿病作用的關(guān)鍵靶點(diǎn)都包含PPARG,PPARG是脂肪細(xì)胞分化和葡萄糖穩(wěn)態(tài)的關(guān)鍵調(diào)節(jié)因子。PPARG是PPAR的3種亞型之一,與許多疾病病理有關(guān),包括肥胖癥、糖尿病、動(dòng)脈粥樣硬化和癌癥病理[57]。PPARG已被證實(shí)與2 型糖尿病有關(guān),研究結(jié)果表明,PPARG H449L突變與胰島素抵抗、高甘油三酯血癥和非酒精性脂肪肝等疾病相關(guān)[58],發(fā)生突變個(gè)體更易罹患顯性糖尿病。有研究人員認(rèn)為,通過PPARG編碼基因中的變異可以預(yù)測(cè)個(gè)體患2型糖尿病的風(fēng)險(xiǎn)[59]。在蘇芡中PPARG對(duì)應(yīng)4種成分,分別為硫胺素、瓜氨酸、北美圣草素、甘草苷;在刺芡中對(duì)應(yīng)柚皮素。蘇芡中包含更多PPARG靶點(diǎn)結(jié)合成分。另外蘇芡中AKT1靶點(diǎn)由胰島素和多種生長(zhǎng)存活因子激活,在調(diào)節(jié)細(xì)胞生長(zhǎng)、分裂和抑制細(xì)胞凋亡等多種過程中發(fā)揮著關(guān)鍵作用。

      在GO富集以及KEGG富集中,蘇芡中的靶點(diǎn)主要富集在糖尿病性心肌病、胰島素抵抗等信號(hào)通路,刺芡中的靶點(diǎn)主要富集在癌癥的發(fā)病途徑、脂肪細(xì)胞脂解的調(diào)控、磷酸腺苷活化蛋白激酶信號(hào)通路。因此蘇芡中不僅存在更多能顯著降低血糖的成分,其靶點(diǎn)集中性也與治療糖尿病的需求更貼近。

      綜上所述,本研究基于代謝組學(xué)研究不同品種芡實(shí)中的差異顯著的成分,基于網(wǎng)絡(luò)藥理學(xué)篩選功能性成分并進(jìn)行分子對(duì)接技術(shù)驗(yàn)證,結(jié)果表明,干預(yù)糖尿病的含量差異顯著的成分?jǐn)?shù)量在蘇芡中更多。本研究結(jié)果為芡實(shí)干預(yù)糖尿病的研究提供了新的思路。

      參考文獻(xiàn):

      [1] 徐 君,尹渝來(lái),薛博文,等. 基于SSR標(biāo)記的芡實(shí)遺傳多樣性分析及指紋圖譜構(gòu)建[J]. 中國(guó)蔬菜,2023(12):79-85.

      [2] ONG K L, STAFFORD L K, MCLAUGHLIN S A, et al. Global,regional,and national burden of diabetes from 1990 to 2021,with projections of prevalence to 2050:a systematic analysis for the Global Burden of Disease Study 2021[J]. The Lancet,2023,402(10397):203-234.

      [3] GONG Q H, ZHANG P, WANG J P, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance:30-year results of the Da Qing diabetes prevention outcome study[J]. The Lancet Diabetes amp; Endocrinology,2019,7(6):452-461.

      [4] 王盈蘊(yùn),吉紅玉,朱向東. 芡實(shí)的臨床應(yīng)用及其用量探究[J]. 吉林中醫(yī)藥,2021,41(5):664-667.

      [5] 王華昆. 黃精芡實(shí)湯聯(lián)合撳針療法對(duì)輕型糖尿病患者的臨床療效分析[J]. 糖尿病新世界,2021,24(20):98-100,104.

      [6] XU L, ZUO S M, LIU M, et al. Integrated analysis of metabolomics combined with network pharmacology and molecular docking reveals the effects of processing on metabolites of Dendrobium officinale[J]. Metabolites,2023,13(8):886.

      [7] 朱和權(quán),李 勇,李春陽(yáng),等. 基于代謝組學(xué)及網(wǎng)絡(luò)藥理學(xué)分析天麻熟制過程中生物學(xué)活性變化[J]. 食品工業(yè)科技,2023,44(3):29-39.

      [8] MU Q E, ZHANG M X, LI Y, et al. Metabolomic analysis reveals the effect of insecticide chlorpyrifos on rice plant metabolism[J]. Metabolites,2022,12(12):1289.

      [9] 張 麗,曾嘉程,王 夢(mèng),等. 不同產(chǎn)地芡實(shí)的品質(zhì)特性評(píng)價(jià)[J]. 食品工業(yè)科技,2019,40(11):70-78.

      [10]LIN Y R, ZHENG F T, XIONG B J, et al. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization[J]. Journal of Ethnopharmacology,2023,311:116474.

      [11]LU J S, YANG L, CHEN J, et al. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine[J]. British Journal of Pharmacology,2023,180(10):1408-1428.

      [12]YUAN Z H, YANG M R, LIANG Z, et al. PI3K/AKT/mTOR,NF-κB and ERS pathway participated in the attenuation of H2O2-induced IPEC-J2 cell injury by koumine[J]. Journal of Ethnopharmacology,2023,304:116028.

      [13]XUE H, XING H J, WANG B, et al. Cinchonine,a potential oral small-molecule glucagon-like peptide-1 receptor agonist,lowers blood glucose and ameliorates non-alcoholic steatohepatitis[J]. Drug Design,Development and Therapy,2023,17:1417-1432.

      [14]WANG H, SHI Y T, MA D N, et al. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation[J]. Biomedicine amp; Pharmacotherapy,2023,164:114980.

      [15]WANG Q L, WEI C M, WENG W, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome[J]. International Journal of Pharmaceutics,2021,592:120036.

      [16]WANG Q L, ZHANG K Y, WENG W, et al. Liquiritin-hydroxypropyl-beta-cyclodextrin inclusion complex:preparation,characterization,bioavailability and antitumor activity evaluation[J]. Journal of Pharmaceutical Sciences,2022,111(7):2083-2092.

      [17]BAI D D, XIAO W H. Regulatory effects and mechanisms of branched chain amino acids and metabolic intermediates on insulin resistance[J]. Acta Physiologica Sinica, 2023,75(2):291-302.

      [18]PANGHAL A, KUMAR V, JENA G. Melphalan induced germ cell toxicity and dose-dependent effects of β-aminoisobutyric acid in experimental rat model:role of oxidative stress,inflammation and apoptosis[J]. Journal of Biochemical and Molecular Toxicology,2023,37(8):e23374.

      [19]GHAIAD H R, ALI S O, AL-MOKADDEM A K, et al. Regulation of PKC/TLR-4/NF-κB signaling by sulbutiamine improves diabetic nephropathy in rats[J]. Chemico-Biological Interactions,2023,381:110544.

      [20]MROWICKA M, MROWICKI J, DRAGAN G, et al. The importance of thiamine (Vitamin B1) in humans[J]. Bioscience Reports,2023,43(10):BSR20230374.

      [21]MOSKOWITZ A, BERG K M, GROSSESTREUER A V, et al. Thiamine for renal protection in septic shock (TRPSS):a randomized,placebo-controlled trial[J]. American Journal of Respiratory and Critical Care Medicine,2023,208(5):570-578.

      [22]LIANG Y D, DAI X L, CAO Y, et al. The neuroprotective and antidiabetic effects of trigonelline:a review of signaling pathways and molecular mechanisms[J]. Biochimie,2023,206:93-104.

      [23]ZIA S R, WASIM M, AHMAD S. Unlocking therapeutic potential of trigonelline through molecular docking as a promising approach for treating diverse neurological disorders[J]. Metabolic Brain Disease,2023,38(8):2721-2733.

      [24]WU Q, GUAN Y B, ZHANG K J, et al. Tanshinone ⅡA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. Journal of Ethnopharmacology,2023,316:116667.

      [25]SI J C, LIU B B, QI K R, et al. Tanshinone ⅡA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway[J]. Journal of Ethnopharmacology,2023,315:116677.

      [26]ZHANG W W, LIU M H, JI Y R, et al. Tanshinone ⅡA inhibits endometrial carcinoma growth through the MAPK/ERK/TRIB3 pathway[J]. Archives of Biochemistry and Biophysics,2023,743:109655.

      [27]AMIN M M, ARBID M S. Estimation of ellagic acid and/or repaglinide effects on insulin signaling,oxidative stress,and inflammatory mediators of liver,pancreas,adipose tissue,and brain in insulin resistant/type 2 diabetic rats[J]. Applied Physiology,Nutrition,and Metabolism,2017,42(2):181-192.

      [28]LU G Y, WANG X Z, CHENG M, et al. The multifaceted mechanisms of ellagic acid in the treatment of tumors:state-of-the-art[J]. Biomedicine amp; Pharmacotherapy,2023,165:115132.

      [29]SZKUDELSKA K, SZKUDELSKI T. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes[J]. Biomedicine amp; Pharmacotherapy,2022,150:112946.

      [30]ZHANG Y, JIA J P. Betaine mitigates amyloid-β-associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells[J]. Journal of Alzheimer’s Disease,2023,94(S1):9-19.

      [31]ZHENG L, LEE J, YUE L M, et al. Inhibitory effect of pyrogallol on α-glucosidase:integrating docking simulations with inhibition kinetics[J]. International Journal of Biological Macromolecules,2018,112:686-693.

      [32]OZTURK SARIKAYA S B. Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2015,30(5):761-766.

      [33]PATEL D K, PATEL K. Therapeutic importance of eriodictyol in the medicine for the treatment of diabetes and associated complication through its insulin secretagogue properties[J]. Metabolism,2022,128:155056.

      [34]AZIZI S, MAHDAVI R, VAGHEF-MEHRABANY E, et al. Potential roles of citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus,current evidence and future directions:a systematic review[J]. Clinical and Experimental Pharmacology and Physiology,2020,47(2):187-198.

      [35]IVANOVSKI N, WANG H H, TRAN H, et al. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats[J]. Pediatric Research,2023,94(5):1684-1695.

      [36]PARK H Y, KIM S W, SEO J, et al. Dietary arginine and citrulline supplements for cardiovascular health and athletic performance:a narrative review[J]. Nutrients,2023,15(5):1268.

      [37]LIN P B, ZHANG X J, ZHU B Y, et al. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β[J]. European Journal of Pharmacology,2023,960:176115.

      [38]CAI J, WEN H L, ZHOU H, et al. Naringenin:a flavanone with anti-inflammatory and anti-infective properties[J]. Biomedicine amp; Pharmacotherapy,2023,164:114990.

      [39]PUNITHAVATHI V R, PRINCE P S M, KUMAR R, et al. Antihyperglycaemic,antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats[J]. European Journal of Pharmacology,2011,650(1):465-471.

      [40]JANG J H, PARK J E, HAN J S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes[J]. European Journal of Pharmacology,2018,834:152-156.

      [41]LEE S G, KIM M M. Anti-inflammatory effect of scopoletin in RAW264. 7 macrophages[J]. Journal of Life Science,2015,25(12):1377-1383.

      [42]陳吉?jiǎng)?,?琦,曾薇等. 甜菜堿對(duì)糖尿病腎病小鼠的治療作用及其機(jī)制[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2012,34(11):1040-1043.

      [43]JEONG H,MASON S P,BARABáSI A L,et al. Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42.

      [44]蘆宇婷,周仙杰,雷 雨,等. 白蕓豆提取物聯(lián)合左旋肉堿對(duì)肥胖小鼠的減脂作用[J]. 衛(wèi)生研究,2022,51(6):1015-1018.

      [45]李 煥,鄧 浩,劉 晃,等. 左旋肉堿蝦青素復(fù)合營(yíng)養(yǎng)素治療特發(fā)性少精子癥和弱精子癥的多中心臨床觀察[J]. 中華男科學(xué)雜志,2021,27(4):334-339.

      [46]張夢(mèng)潔,郭垚輝,任 彬,等. 乙酰左旋肉堿對(duì)大鼠脊髓損傷保護(hù)作用的實(shí)驗(yàn)研究[J]. 中國(guó)實(shí)用神經(jīng)疾病雜志,2020,23(17):1479-1483.

      [47]JIANG Y, PEI J, ZHENG Y, et al. Gallic acid:a potential anti-cancer agent[J]. Chinese Journal of Integrative Medicine,2022,28(7):661-671.

      [48]BHATTACHARYYA S, AHAMMED S M, SAHA B P, et al. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability[J]. AAPS PharmSciTech,2013,14(3):1025-1033.

      [49]LIN W L, WANG C J, TSAI Y Y, et al. Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver[J]. Archives of Toxicology,2000,74(8):467-472.

      [50]WANG K, ZHANG Y, EKUNWE S I N,et al. Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini[J]. Medicinal Chemistry Research,2011,20(7):968-974.

      [51]KANITSORAPHAN C, RATTANAWONG P, CHAROENSRI S, et al. Trimethylamine N-oxide and risk of cardiovascular disease and mortality[J]. Current Nutrition Reports,2018,7(4):207-213.

      [52]陳 艷,許麗麗,王麗曼,等. 血漿三甲胺N-氧化物與心肌梗死關(guān)系的研究進(jìn)展[J]. 醫(yī)藥導(dǎo)報(bào),2023,42(4):524-528.

      [53]趙霄瀟,顏紅兵. 三甲胺-N-氧化物在心血管相關(guān)疾病發(fā)病機(jī)制中的研究進(jìn)展[J]. 心血管病學(xué)進(jìn)展,2020,41(11):1123-1125,1136.

      [54]LIU Y W, WANG L J, LI X K, et al. Tanshinone ⅡA improves impaired nerve functions in experimental diabetic rats[J]. Biochemical and Biophysical Research Communications,2010,399(1):49-54.

      [55]ZHANG Y, ZHANG L, ZHANG Y, et al. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway[J]. Biomedicine amp; Pharmacotherapy, 2016,84:1337-1349.

      [56]ABDEL-MONEIM A, EL-TWAB S M A, YOUSEF A I, et al. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid:the role of adipocytokines and PPARγ[J]. Biomedicine amp; Pharmacotherapy,2018,105:1091-1097.

      [57]MUSTAFA H A, ALBKRYE A M S, ABDALLA B M, et al. Computational determination of human PPARG gene:SNPs and prediction of their effect on protein functions of diabetic patients[J]. Clinical and Translational Medicine,2020,9(1):7.

      [58]DEMIR T, ONAY H, SAVAGE D B, et al. Familial partial lipodystrophy linked to a novel peroxisome proliferator activator receptor-γ (PPARG) mutation,H449L:a comparison of people with this mutation and those with classic codon 482 Lamin A/C (LMNA) mutations[J]. Diabetic Medicine,2016,33(10):1445-1450.

      [59]LYSSENKO V, ALMGREN P, ANEVSKI D, et al. Genetic prediction of future type 2 diabetes[J]. PLoS Medicine,2005,2(12):e345.

      (責(zé)任編輯:陳海霞)

      猜你喜歡
      分子對(duì)接代謝組學(xué)芡實(shí)
      秋風(fēng)送來(lái)芡實(shí)香
      秋補(bǔ)食療話芡實(shí)
      基于計(jì)算機(jī)輔助水解的中藥大豆寡肽的ETA拮抗活性預(yù)測(cè)
      靈芝三萜化合物的抗腫瘤靶點(diǎn)預(yù)測(cè)與活性驗(yàn)證
      基于UPLC—Q—TOF—MS技術(shù)的牛血清白蛋白誘導(dǎo)過敏反應(yīng)的代謝組學(xué)研究
      基于UPLC—Q—TOF—MS技術(shù)的牛血清白蛋白誘導(dǎo)過敏反應(yīng)的代謝組學(xué)研究
      藥用植物代謝組學(xué)研究
      計(jì)算機(jī)輔助藥物設(shè)計(jì)在分子對(duì)接中的應(yīng)用
      云南切梢小蠹?xì)馕督Y(jié)合蛋白的分子對(duì)接
      芡實(shí)組培快繁無(wú)菌體系的建立和優(yōu)化
      泉州市| 嵊州市| 元朗区| 沁水县| 含山县| 安义县| 新竹市| 庐江县| 蚌埠市| 桑日县| 峨眉山市| 东丽区| 淮滨县| 喀喇| 怀安县| 利辛县| 宁明县| 周口市| 佛冈县| 安丘市| 东源县| 汨罗市| 宣恩县| 永春县| 米林县| 天水市| 阿克陶县| 军事| 黄龙县| 湄潭县| 双桥区| 十堰市| 沧州市| 中西区| 石渠县| 那坡县| 平湖市| 定襄县| 新源县| 陆河县| 山丹县|