摘 要:
針對(duì)低脈沖重復(fù)頻率條件下的無(wú)人機(jī)微動(dòng)特征提取問(wèn)題,提出一種基于原子放縮正交匹配追蹤(orthogonal matching pursuit, OMP)分解的微動(dòng)參數(shù)估計(jì)方法。首先,通過(guò)計(jì)算時(shí)頻譜熵從無(wú)人機(jī)回波數(shù)據(jù)中篩選出具有顯著微動(dòng)特征的信號(hào)。其次,采用變分模態(tài)分解(variational modal decomposition, VMD)算法提取旋翼葉片的旋轉(zhuǎn)頻率,提出了基于原子放縮的OMP分解方法實(shí)現(xiàn)了對(duì)無(wú)人機(jī)旋翼葉片長(zhǎng)度的估計(jì)。仿真實(shí)驗(yàn)表明所提方法相比于傳統(tǒng)的OMP方法和VMD-OMP方法都具有明顯優(yōu)勢(shì)。最后,采用實(shí)測(cè)數(shù)據(jù)驗(yàn)證了所提算法的有效性。
關(guān)鍵詞:
無(wú)人機(jī); 微多普勒; 低脈沖重復(fù)頻率; 微動(dòng)特征
中圖分類號(hào):
TN 958.94
文獻(xiàn)標(biāo)志碼: A""" DOI:10.12305/j.issn.1001-506X.2024.05.05
Micro-motion parameters extraction for UAV under LPRF condition
ZHAO Xiaochen1, ZHAO Dongtao2, YUAN Hang1, WANG Huan1,3, ZHANG Qun1,*
(1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China;
2. Chinese Flight Test Establishment, Xi’an 710089, China;
3. Xi’an Electronic Engineering Research Institute, Xi’an 710100, China)
Abstract:
For solving the micro-motion parameters extraction problem of unmanned aerial vehicle (UAV) under low pulse repetition frequency (PRF) condition, a method of micro-motion parameters estimation based on atomic scaling orthogonal matching pursuit (OMP) decomposition is proposed. Firstly, the spectrum entropy of time-frequency distribution is calculated to sift out the proper segment signals from the echoes with significant micro-motion features. Then, the rotational frequency is obtained by using the variational modal decomposition (VMD), and an atomic scaling OMP algorithm is proposed to estimate the radius of the UAV rotor blade. Simulation results show that the proposed method has obvious advantages over the traditional OMP decomposition method and VMD-OMP method. Finally, the effectiveness of the proposed algorithm is also verified by using the actual measurement data.
Keywords:
unmanned aerial vehicle (UAV); micro-Doppler; low pulse repetition frequency; micro-motion features
0 引 言
無(wú)人機(jī)具有成本低、垂直起降、隨時(shí)懸停等諸多優(yōu)勢(shì),目前已在軍事和民用領(lǐng)域得到廣泛應(yīng)用[1]。在雷達(dá)探測(cè)無(wú)人機(jī)的場(chǎng)景下,無(wú)人機(jī)在飛行過(guò)程中除了平動(dòng)飛行以外,其葉片也會(huì)繞轉(zhuǎn)軸做自旋運(yùn)動(dòng),這些精細(xì)的運(yùn)動(dòng)會(huì)對(duì)目標(biāo)的后向散射回波產(chǎn)生周期性的頻率調(diào)制,即在無(wú)人機(jī)主體平動(dòng)多普勒譜的兩邊產(chǎn)生邊帶,這種附加的多普勒頻率調(diào)制稱為微多普勒效應(yīng)[2]。微多普勒效應(yīng)為無(wú)人機(jī)的運(yùn)動(dòng)狀態(tài)監(jiān)測(cè)、成像和分類識(shí)別研究提供了有效、豐富的信息。近年來(lái),針對(duì)無(wú)人機(jī)的微動(dòng)特征分析與提取已成為國(guó)內(nèi)外的研究熱點(diǎn)之一,受到了雷達(dá)自動(dòng)目標(biāo)識(shí)別(automatic target recognition, ATR)領(lǐng)域的持續(xù)廣泛關(guān)注[3-5]。
基于電磁波入射及反射機(jī)理,無(wú)人機(jī)或直升機(jī)的旋轉(zhuǎn)葉片會(huì)對(duì)雷達(dá)回波調(diào)制產(chǎn)生伴隨“閃爍效應(yīng)”的多個(gè)正弦調(diào)頻信號(hào)分量[6-7]。當(dāng)具有較高脈沖重復(fù)頻率(high pulse repetition frequency, HPRF)時(shí),雷達(dá)可以獲取包含多分量正弦調(diào)頻信號(hào)和葉片閃爍特征的時(shí)頻譜圖。無(wú)人機(jī)回波信號(hào)的閃爍效應(yīng)周期、正弦調(diào)頻信號(hào)的瞬時(shí)頻率與無(wú)人機(jī)葉片的長(zhǎng)度和旋轉(zhuǎn)頻率存在直接關(guān)系[8]。近年來(lái),針對(duì)閃爍效應(yīng)和微動(dòng)瞬時(shí)頻率的無(wú)人機(jī)微動(dòng)特征提取方法被相繼提出,最常用的方法是從回波的時(shí)頻譜圖中提取無(wú)人機(jī)微動(dòng)參數(shù)[9-10]。清華大學(xué)的李剛教授團(tuán)隊(duì)將無(wú)人機(jī)回波信號(hào)的時(shí)頻譜圖轉(zhuǎn)換為節(jié)奏速度圖,并通過(guò)提取節(jié)奏速度圖的頻率來(lái)估計(jì)無(wú)人機(jī)葉片的閃爍周期[11]。武漢大學(xué)萬(wàn)顯榮教授團(tuán)隊(duì)通過(guò)外輻射源雷達(dá),運(yùn)用時(shí)頻分析和正交匹配追蹤(orthogonal matching pursuit, OMP)算法實(shí)現(xiàn)了直升機(jī)旋翼微動(dòng)參數(shù)的估計(jì)[12]。De等[13]提出采用魯棒的奇異值分解(singular value decomposition, SVD)從無(wú)人機(jī)回波時(shí)頻譜圖中分解出左奇異向量和右奇異向量,并提取出閃爍周期和頻譜寬度。針對(duì)正弦調(diào)頻信號(hào)[14-16]特征提取問(wèn)題,Hou等[17]采用分?jǐn)?shù)階傅里葉變換去除無(wú)人機(jī)的加速度和速度帶來(lái)的回波調(diào)制,并采用快速同步擠壓變換估計(jì)正弦調(diào)頻信號(hào)的瞬時(shí)頻率。中科院空天創(chuàng)新研究院的宋晨等[18]將無(wú)人機(jī)信號(hào)從時(shí)頻域投影到時(shí)頻旋轉(zhuǎn)域,并采用粒子群算法提取時(shí)頻旋轉(zhuǎn)域的時(shí)頻集中度指標(biāo),實(shí)現(xiàn)了對(duì)正弦調(diào)頻信號(hào)瞬時(shí)頻率的估計(jì)。Qin等[19]采用逆約旦變換(iRadon)從太赫茲雷達(dá)探測(cè)的無(wú)人機(jī)信號(hào)中提取正弦調(diào)頻的瞬時(shí)頻率信息。但是,當(dāng)無(wú)人機(jī)葉片旋轉(zhuǎn)引起的最大多普勒頻移超過(guò)脈沖重復(fù)頻率(pulse repetition frequency, PRF)的一半時(shí),微多普勒信號(hào)在時(shí)頻域會(huì)出現(xiàn)頻譜混疊、卷繞等現(xiàn)象,上述方法難以有效提取微多普勒特征。
當(dāng)雷達(dá)具有低脈沖重復(fù)頻率(low pulse repetition frequency, LPRF)時(shí),可以采用長(zhǎng)度為幾個(gè)旋轉(zhuǎn)周期的數(shù)據(jù)從頻域和時(shí)頻域分別觀測(cè)到無(wú)人機(jī)的噴氣發(fā)動(dòng)機(jī)調(diào)制(jet engine modulation, JEM)和直升機(jī)旋翼調(diào)制(helicopter rotor modulation, HERM)特征,通過(guò)提取JEM/HERM的譜峰/譜線間隔可以估計(jì)其對(duì)應(yīng)的微動(dòng)參數(shù)[20]。Huang等[21]用較長(zhǎng)的時(shí)間窗對(duì)目標(biāo)回波進(jìn)行短時(shí)傅里葉變換得到HERM特征的基頻,并使用對(duì)數(shù)諧波求和算法估計(jì)了HERM的譜線間隔。Fioranelli等[22]通過(guò)提取HERM特征的重心和第一諧波的譜寬對(duì)載重不同的無(wú)人機(jī)進(jìn)行分類。Klaer等[23]將HERM特征提取轉(zhuǎn)化為音調(diào)檢測(cè)問(wèn)題,提出一種多頻率檢測(cè)器獲取HERM的譜線間隔。但上述方法只能提取無(wú)人機(jī)旋轉(zhuǎn)頻率,無(wú)法估計(jì)無(wú)人機(jī)的葉片長(zhǎng)度。
針對(duì)上述問(wèn)題,本文提出一種LPRF探測(cè)條件下的無(wú)人機(jī)微動(dòng)參數(shù)提取方法。首先建立了多旋翼無(wú)人機(jī)的回波模型,分析了PRF對(duì)微動(dòng)參數(shù)提取的影響;其次通過(guò)估計(jì)時(shí)頻譜熵從回波數(shù)據(jù)中選取HERM特征較為明顯的信號(hào)片段,并采用變分模態(tài)分解(variational modal decomposition, VMD)算法估計(jì)HERM的譜線間隔;然后提出了一種原子放縮的OMP方法,結(jié)合HERM的譜線間隔估計(jì)無(wú)人機(jī)旋翼的葉片長(zhǎng)度;最后基于仿真和實(shí)測(cè)數(shù)據(jù)驗(yàn)證了所提方法的有效性。
1 無(wú)人機(jī)回波建模與分析
在高頻電磁波照射下,空中剛體目標(biāo)可以用點(diǎn)散射模型來(lái)構(gòu)建[3-4,24-25]。如圖1所示,以雷達(dá)為全局坐標(biāo)系原點(diǎn)建立雷達(dá)坐標(biāo)系(X,Y,Z),以無(wú)人機(jī)葉片旋轉(zhuǎn)中心(或轉(zhuǎn)軸)為目標(biāo)本地坐標(biāo)系(x,y,z)。設(shè)葉片相對(duì)于雷達(dá)坐標(biāo)系水平旋轉(zhuǎn),即雷達(dá)坐標(biāo)系XOY平面與目標(biāo)坐標(biāo)系xoy平面平行,且葉片水平旋轉(zhuǎn)平面也與xoy平面平行;初始時(shí)刻無(wú)人機(jī)相對(duì)于雷達(dá)的方位角為α,俯仰角為β,無(wú)人機(jī)以角速度ωl逆時(shí)針繞本地坐標(biāo)系z(mì)軸旋轉(zhuǎn),葉片旋轉(zhuǎn)中心到雷達(dá)的距離為R0,葉片末端的強(qiáng)散射點(diǎn)P到旋轉(zhuǎn)中心(或轉(zhuǎn)軸)的距離為lP且其初始相位為φ0。
表2中葉片長(zhǎng)度、旋轉(zhuǎn)頻率和運(yùn)算時(shí)間分別反映了3種方法的性能。計(jì)算機(jī)硬件參數(shù)為:Inter(R) Core(TM)2 Duo CPU 2.4 GHz,內(nèi)存32 G,Windows 7 64位操作系統(tǒng)。從仿真結(jié)果得出,OMP算法、VMD-OMP方法以及本文所提方法對(duì)葉片長(zhǎng)度估計(jì)的相對(duì)誤差分別為40%、16%和5.8%;VMD算法、OMP算法對(duì)葉片旋轉(zhuǎn)頻率估計(jì)的相對(duì)誤差分別為0.36%和16.32%,VMD-OMP方法以及本文所提方法的運(yùn)算時(shí)間數(shù)量級(jí)相當(dāng),且均優(yōu)于OMP算法。經(jīng)過(guò)以上3組仿真實(shí)驗(yàn)對(duì)比可見(jiàn),本文所提方法在雷達(dá)低脈沖重復(fù)頻率條件下提取無(wú)人機(jī)葉片的微動(dòng)參數(shù)是有效的。
3.2 實(shí)測(cè)數(shù)據(jù)分析
為檢驗(yàn)本文所提方法在實(shí)際應(yīng)用中的有效性,采用中國(guó)航空工業(yè)集團(tuán)有限公司630研究所提供的旋翼無(wú)人機(jī)窄帶雷達(dá)回波實(shí)測(cè)數(shù)據(jù)進(jìn)行驗(yàn)證,旋翼無(wú)人機(jī)的外形如圖9所示。
窄帶雷達(dá)和旋翼無(wú)人機(jī)參數(shù)分別如表3和表4所示。
3.2.1 數(shù)據(jù)預(yù)處理
實(shí)測(cè)數(shù)據(jù)包含I/Q兩路的采樣數(shù)據(jù)。為了最大程度提取數(shù)據(jù)中所含信息,采取以下方法進(jìn)行數(shù)據(jù)預(yù)處理。
(1) 判定狀態(tài)。通過(guò)時(shí)間、距離信息分析判定無(wú)人機(jī)的運(yùn)動(dòng)狀態(tài)。圖10(a)為無(wú)人機(jī)回波的慢時(shí)間-距離像,從圖中可以看出,觀測(cè)時(shí)間內(nèi)無(wú)人機(jī)與雷達(dá)距離在7 476 m至7 486 m之間,基本處于相對(duì)靜止的懸停狀態(tài)。
(2) 信號(hào)合成。將I/Q兩路數(shù)據(jù)通過(guò)式(23)合并為復(fù)信號(hào),復(fù)信號(hào)在時(shí)域的表征如圖10(b)所示:
s(t)=I(t)+jQ(t)(23)
(3) 切片選取。通過(guò)計(jì)算所有分段信號(hào)的時(shí)頻譜熵進(jìn)行切片選取。圖10(c)為以1 024個(gè)采樣點(diǎn)為切片單元對(duì)整個(gè)數(shù)據(jù)段進(jìn)行切片分段處理,比較所有分段信號(hào)的時(shí)頻譜熵,選定時(shí)頻譜熵最大的數(shù)據(jù)切片(第39段)進(jìn)行后續(xù)處理;如圖10(d)所示,時(shí)頻譜熵最大的數(shù)據(jù)切片信號(hào)時(shí)頻表征中包含比較明顯的HERM特征。
3.2.2 旋轉(zhuǎn)頻率提取
基于以上數(shù)據(jù)預(yù)處理分析,采用VMD算法對(duì)時(shí)頻譜熵最大的數(shù)據(jù)進(jìn)行處理。圖11(a)為時(shí)頻譜熵最大的數(shù)據(jù)切片信號(hào)在頻域中表現(xiàn)出較為明顯的JEM特征。圖11(b)為VMD算法提取的數(shù)據(jù)切片信號(hào)的譜峰,回波信號(hào)可以分解成12個(gè)模態(tài)。圖11(b)中12個(gè)模態(tài)的中心頻率fk見(jiàn)表5。
表5中對(duì)應(yīng)模態(tài)的中心頻率的頻率間隔均值估計(jì)為81.665 4 Hz,則葉片旋轉(zhuǎn)頻率估計(jì)值為40.832 7 Hz,而葉片真實(shí)轉(zhuǎn)速為41.7 r/s,兩者較為接近,估計(jì)的相對(duì)誤差約為2.08%。
3.2.3 葉片長(zhǎng)度提取
本文所提葉片長(zhǎng)度提取方法是在VMD算法獲取葉片旋轉(zhuǎn)頻率基礎(chǔ)上,使用原子放縮OMP方法對(duì)回波數(shù)據(jù)微多普勒特征能量集中化,從而估計(jì)出葉片長(zhǎng)度。
圖12(a)~圖12(d)為在載頻為fc=9.5 GHz,初始值l0=0.2 m,等效長(zhǎng)度L=2.8 m,長(zhǎng)度單元為2 000,門限值δ=10,放縮系數(shù)分別取η1=1、η2=0.75、η3=0.5、η4=0.25條件下使用OMP算法分解數(shù)據(jù)切片信號(hào)的結(jié)果。
圖12(a)為長(zhǎng)度單元位置為100、164和225時(shí)能量估計(jì)為極大值,分別對(duì)應(yīng)的葉片長(zhǎng)度估計(jì)值為0.338 7 m、0.428 3 m和0.513 8 m;圖12(b)為經(jīng)放縮匹配后的長(zhǎng)度單元估計(jì)位置為135、219和295;圖12(c)為經(jīng)放縮匹配后的長(zhǎng)度單元估計(jì)位置為192、320和440;圖12(d)為經(jīng)放縮匹配后的長(zhǎng)度單元估計(jì)位置為393、661和899。圖12(e)為長(zhǎng)度單元位置為100、164和225時(shí)經(jīng)3次原子放縮OMP處理后的能量累加值比較,最終將長(zhǎng)度單元位置為100時(shí)對(duì)應(yīng)的葉片長(zhǎng)度估計(jì)值0.338 7 m作為葉片長(zhǎng)度最終估計(jì)結(jié)果。
從圖12(e)可以看出,葉片長(zhǎng)度的估計(jì)值為0.338 7 m,而葉片長(zhǎng)度為0.355 m,估計(jì)誤差為4.59%,因此,本文所提方法在實(shí)際場(chǎng)景下可以提取六旋翼無(wú)人機(jī)的葉片長(zhǎng)度參數(shù)。
4 結(jié) 論
本文提出了一種LPRF條件下的無(wú)人機(jī)微動(dòng)參數(shù)提取方法。首先對(duì)回波信號(hào)進(jìn)行預(yù)處理,計(jì)算時(shí)頻譜熵,選取HERM特征明顯的數(shù)據(jù)切片信號(hào);然后采用VMD算法估計(jì)無(wú)人機(jī)回波信號(hào)的頻譜間隔,計(jì)算出無(wú)人機(jī)葉片的旋轉(zhuǎn)頻率;最后在獲得旋轉(zhuǎn)頻率的基礎(chǔ)上,提出基于原子放縮OMP方法估計(jì)無(wú)人機(jī)的葉片長(zhǎng)度。仿真實(shí)驗(yàn)表明,在信噪比為10 dB條件下,所提方法估計(jì)無(wú)人機(jī)旋翼葉片長(zhǎng)度的相對(duì)誤差相比于OMP算法提高了34.2%,相比于VMD-OMP方法提高了10.2%,并通過(guò)實(shí)測(cè)數(shù)據(jù)證明了所提方法的有效性。本文所提方法需要葉片個(gè)數(shù)的先驗(yàn)信息,后續(xù)將針對(duì)無(wú)人機(jī)葉片個(gè)數(shù)未知的情況,進(jìn)一步研究旋翼無(wú)人機(jī)目標(biāo)的微動(dòng)參數(shù)提取。
參考文獻(xiàn)
[1] 王培, 李楊, 崔根, 等. 多旋翼無(wú)人機(jī): 新設(shè)計(jì)、 新應(yīng)用及新發(fā)展[J]. 人工智能, 2021(4): 78-91.
WANG P, LI Y, CUI G, et al. Multi-rotor UAVs: new designs, applications and developments[J]. AI-View, 2021(4): 78- 91.
[2] 陳小龍, 陳唯實(shí), 饒?jiān)迫A, 等. 飛鳥與無(wú)人機(jī)目標(biāo)雷達(dá)探測(cè)與識(shí)別技術(shù)進(jìn)展與展望[J]. 雷達(dá)學(xué)報(bào), 2020, 9(5): 803-827.
CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827.
[3] CHEN V C. Analysis of radar micro-Doppler signature with time-frequency transform[C]∥Proc.of the 10th IEEE Workshop on Statistical Signal and Array Processing, 2000: 463-466.
[4] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
[5] 張群, 胡健, 羅迎, 等. 微動(dòng)目標(biāo)雷達(dá)特征提取、成像與識(shí)別研究進(jìn)展[J]. 雷達(dá)學(xué)報(bào), 2018, 7(5): 531-547.
ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547.
[6] HERR D B, KRAMER T J, GANNON Z, et al. UAV micro-Doppler signature analysis[C]∥Proc.of the IEEE Radar Conference, 2000.
[7] 陳永彬, 李少東, 楊軍, 等. 旋翼葉片回波建模與閃爍現(xiàn)象機(jī)理分析[J]. 物理學(xué)報(bào), 2016, 65(13): 138401.
CHEN Y B, LI S D, YANG J, et al. Rotor blades echo mode-ling and mechanism analysis of flashes phenomena[J]. Acta Physica Sinica, 2016, 65(13): 138401.
[8] KANG K B, CHOI J H, CHO B L, et al. Analysis of micro-Doppler signatures of small UAVs based on doppler spectrum[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57(5): 3252-3267.
[9] TAN R, LIM H S, SMITH A B, et al. Improved micro-Doppler features extraction using smoothed-pseudo Wigner-Ville distribution[C]∥Proc.of the IEEE Region 10 Conference, 2016: 730- 733.
[10] ZHAO Y, SU Y. The extraction of micro-Doppler signal with EMD algorithm for radar-based small UAV’s detection[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 69(3): 929-940.
[11] ZHANG W Y, LI G. Detection of multiple micro-drones via cadence velocity diagram analysis[J]. Electronics Letters, 2018, 54(7): 441-443.
[12] 李宇倩, 易建新, 萬(wàn)顯榮, 等. 外輻射源雷達(dá)直升機(jī)旋翼參數(shù)估計(jì)方法[J]. 雷達(dá)學(xué)報(bào), 2018, 7(3): 313-319.
LI Y Q, YI J X, WAN X R, et al. Helicopter rotor parameter estimation method for passive radar[J]. Journal of Radars, 2018, 7(3): 313-319.
[13] DE WIT J J M, HARMANNY R I A, MOLCHANOV P. Radar micro-Doppler feature extraction using the singular value decomposition[C]∥Proc.of the International Radar Conference, 2014.
[14] HE Q F, ZHANG Q, LUO Y, et al. Sinusoidal frequency modulation Fourier-Bessel series for multicomponent SFM signal estimation and separation[J]. Mathematical Problems in Engineering, 2017, 2017: 5852171.
[15] 何其芳, 張群, 羅迎, 等. 正弦調(diào)頻Fourier-Bessel變換及其在微動(dòng)目標(biāo)特征提取中的應(yīng)用[J]. 雷達(dá)學(xué)報(bào), 2018, 7(5): 593-601.
HE Q F, ZHANG Q, LUO Y, et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-Doppler feature extraction[J]. Journal of Radars, 2018, 7(5): 593-601.
[16] ZHANG Q, YEO T S, TAN H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46(1): 291-299.
[17] HOU H L, YANG Z L, PANG C S. Rotor UAV’s micro-Doppler signal detection and parameter estimation based on FRFT-FSST[J]. Sensors (Basel), 2021, 21(21): 7314.
[18] 宋晨, 周良將, 吳一戎, 等. 基于時(shí)頻集中度指標(biāo)的多旋翼無(wú)人機(jī)微動(dòng)特征參數(shù)估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 2029-2036.
SONG C, ZHOU L J, WU Y R, et al. An estimation method of micro-movement parameters of UAV based on the concentration of time-frequency[J]. Journal of Electronics amp; Information Technology, 2020, 42(8): 2029-2036.
[19] QIN X Y, DENG B, WANG H Q. Micro-Doppler feature extraction of rotating structures of aircraft targets with terahertz radar[J]. Remote Sensing, 2022, 14(16): 3856.
[20] MARKOW J, BALLERI A. Examination of drone micro-Doppler and JEM/HERM signatures[C]∥Proc.of the IEEE Radar Conference, 2020.
[21] HUANG A, SEVIGNY P, BALAJI B, et al. Fundamental frequency estimation of HERM lines of drones[C]∥Proc.of the IEEE International Radar Conference, 2020: 1013-1018.
[22] FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Classification of loaded/unloaded micro-drones using multistatic radar[J]. Electronics Letters, 2015, 51(22): 1813-1815.
[23] KLAER P, HUANG A, SEVIGNY P, et al. An investigation of rotary drone HERM Line spectrum under maneuvering conditions[J]. Sensors (Basel), 2020, 20(20): 5940.
[24] 陳小龍, 南釗, 張海, 等. 飛鳥與旋翼無(wú)人機(jī)雷達(dá)微多普勒測(cè)量實(shí)驗(yàn)研究[J]. 電波科學(xué)學(xué)報(bào), 2021, 36(5): 704-714.
CHEN X L, NAN Z, ZHANG H, et al. Experimental research on radar micro-Doppler of flying bird and rotor UAV[J]. Chinese Journal of Radio Science, 2021, 36(5): 704-714.
[25] WANG H, ZHANG Q, LUO Y, et al. Obtaining TFR from incomplete and phase-corrupted m-D signal in real time[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8003105.
[26] COHEN L. Time-frequency analysis[M]. New York: Prentice Hall, 1995.
[27] PETER D F T. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)[M]. London: The Institution of Engineering and Technology, 2013.
[28] 李春, 趙知?jiǎng)牛?岳克強(qiáng), 等. 定頻干擾下的基于時(shí)頻譜熵的跳頻信號(hào)檢測(cè)[J]. 杭州電子科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 42(4): 1-6.
LI C, ZHAO Z J, YUE K Q, et al. The detection of frequency hopping signal based on time-frequency spectrum entropy under fixed-frequency interference[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2022, 42(4): 1-6.
[29] LI Y, XIA W J, DONG S Q. Time-based multi-component irregular FM micro-Doppler signals decomposition via STVMD[J]. IET Radar, Sonar and Navigation, 2020, 14(10): 1502-1511.
[30] 羅迎, 張群, 王國(guó)正, 等. 基于復(fù)圖像OMP分解的寬帶雷達(dá)微動(dòng)特征提取方法[J]. 雷達(dá)學(xué)報(bào), 2012, 1(4): 361-369.
LUO Y, ZHANG Q, WANG G Z, et al. Micro-motion signature extraction method for wideband radar based on complex image OMP decomposition[J]. Journal of Radars, 2012, 1(4): 361-369.
[31] 張朝偉, 夏賽強(qiáng), 楊軍, 等. 低信噪比條件下直升機(jī)微動(dòng)特征提取方法[J]. 雷達(dá)科學(xué)與技術(shù), 2021, 19(6): 659-696.
ZHANG C W, XIA S Q, YANG J, et al. An extraction method for helicopter micro-motion features under low SNR[J]. Radar Science and Technology, 2021, 19(6): 659-696.
作者簡(jiǎn)介
趙曉?。?989—),男,碩士研究生,主要研究方向?yàn)槔走_(dá)信號(hào)處理與應(yīng)用技術(shù)。
趙東濤(1981—),男,高級(jí)工程師,碩士,主要研究方向?yàn)槟繕?biāo)散射與輻射特性。
袁 航(1997—),男,博士研究生,主要研究方向?yàn)槔走_(dá)目標(biāo)微動(dòng)特征提取。
王 歡(1990—),男,高級(jí)工程師,博士研究生,主要研究方向?yàn)榉瞧椒€(wěn)信號(hào)處理、雷達(dá)成像。
張 群(1964—),男,教授,博士,主要研究方向?yàn)槔走_(dá)成像、目標(biāo)識(shí)別及電子對(duì)抗。