摘 要:波形設(shè)計(jì)是集中式MIMO組網(wǎng)雷達(dá)信號(hào)處理的關(guān)鍵技術(shù)之一。為了提高該系統(tǒng)在雜波或干擾下的目標(biāo)探測(cè)能力,同時(shí)兼顧硬件兼容性以及所設(shè)計(jì)波形良好的模糊函數(shù)和脈沖壓縮特性,本文考慮在恒模約束和波形相似性度量下構(gòu)建關(guān)于雷達(dá)輸出信雜噪比(SCNR)的優(yōu)化模型;通過對(duì)原非凸問題的等價(jià)轉(zhuǎn)換,提出了一種基于連續(xù)凸近似的多項(xiàng)式時(shí)間迭代算法,并分析了其收斂性;為了進(jìn)一步降低計(jì)算復(fù)雜度,提出了一種基于梯度投影(GP)的算法。最后,對(duì)所提方法進(jìn)行了仿真驗(yàn)證,結(jié)果表明,該方法能夠?yàn)榻M網(wǎng)雷達(dá)系統(tǒng)下各發(fā)射站點(diǎn)的波形設(shè)計(jì)提供一種新的可行方法。
關(guān)鍵詞:組網(wǎng)雷達(dá)系統(tǒng); 波形相似性; 可行點(diǎn)追蹤-連續(xù)凸近似; 梯度投影
中圖分類號(hào):TN958 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.19452/j.issn1007-5453.2024.08.010
基金項(xiàng)目: 航空科學(xué)基金 (20182098002)
與發(fā)射特定波形的相控陣?yán)走_(dá)相比,多輸入多輸出(MIMO)雷達(dá)可經(jīng)其不同的天線發(fā)射不同的波形(波形分集)。這種波形分集也是其在目標(biāo)探測(cè)、估計(jì)和跟蹤方面優(yōu)于傳統(tǒng)雷達(dá)的關(guān)鍵因素[1-2]。根據(jù)不同的天線間隔,MIMO雷達(dá)可以分為分布式MIMO雷達(dá)和集中式MIMO雷達(dá)兩類[3-5]。前者天線間隔較大,使得各個(gè)天線陣元從不同的視角觀測(cè)目標(biāo),因此能夠充分利用空間分集增益;后者天線間隔較小,各個(gè)天線陣元對(duì)目標(biāo)的觀測(cè)角近似相同,能夠獲得波形分集增益。
近年來,波形設(shè)計(jì)作為雷達(dá)領(lǐng)域中的一個(gè)重要問題已經(jīng)引起了研究人員的廣泛關(guān)注。一般來說,與集中式MIMO雷達(dá)波形設(shè)計(jì)相關(guān)的工作主要集中在以下4個(gè)方面:(1)設(shè)計(jì)具有良好自相關(guān)/互相關(guān)特性的波形,這意味著發(fā)射波形與其自身或者其他發(fā)射波形在任意時(shí)延處互不相關(guān)[6-8];(2)通過最大化雷達(dá)回波信號(hào)與目標(biāo)沖激響應(yīng)之間的互信息來設(shè)計(jì)波形[9-11];(3)設(shè)計(jì)期望的MIMO雷達(dá)發(fā)射波束方向圖,使得發(fā)射功率在期望的角度下達(dá)到最大,同時(shí)抑制雜波等干擾所在角度的發(fā)射功率[12-14];(4)著眼于收發(fā)處理,通過最大化信干噪比來完成對(duì)發(fā)射波形的設(shè)計(jì)或發(fā)射波形和接收濾波器的聯(lián)合設(shè)計(jì)[15-21]。
為了使接收機(jī)區(qū)分來自不同發(fā)射機(jī)的回波,分布式MIMO雷達(dá)的大部分波形設(shè)計(jì)標(biāo)準(zhǔn)旨在獲得彼此正交的發(fā)射波形[26-35]。Stoica等[27]提出了三種新的計(jì)算效率高的用于MIMO雷達(dá)恒模波形設(shè)計(jì)的循環(huán)算法。Chen Yifan等[28]基于認(rèn)知雷達(dá)開發(fā)了一個(gè)自適應(yīng)分布式MIMO雷達(dá)框架,并在該框架下設(shè)計(jì)了一種新的兩階段波形優(yōu)化算法。Xu Leilei等[30]考慮了多普勒靈敏度對(duì)恒模分布式MIMO發(fā)射波形自相關(guān)和互相關(guān)旁瓣的影響。隨后又提出了一種正交相位編碼信號(hào)和失配濾波器組的設(shè)計(jì)方法[30-31]。Dontamsetti等[32]提出了一種發(fā)射和接收信號(hào)聯(lián)合優(yōu)化的分布式MIMO雷達(dá)方案,基于信道矩陣的估計(jì)情況來最大限度地提高輸出信噪比。Luo Xi等[33]利用遺傳算法設(shè)計(jì)了步進(jìn)頻分線性調(diào)頻和步進(jìn)頻分脈沖編碼調(diào)制兩種正交波形。
值得注意的是,之前大部分學(xué)者對(duì)分布式MIMO雷達(dá)波形設(shè)計(jì)問題的研究都是基于每個(gè)波形站點(diǎn)是相控陣的情況下進(jìn)行的。而本文中所提到的集中式MIMO組網(wǎng)雷達(dá)系統(tǒng)對(duì)分布式和集中式MIMO雷達(dá)的優(yōu)點(diǎn)進(jìn)行了融合,在這種情況下不僅能夠利用分布式MIMO雷達(dá)的空間分集增益,同時(shí)也能夠充分利用集中式MIMO雷達(dá)波形分集的優(yōu)勢(shì)來對(duì)每一個(gè)站點(diǎn)的波形進(jìn)行重新設(shè)計(jì)。目前,在這種組網(wǎng)雷達(dá)系統(tǒng)下的波形設(shè)計(jì)研究相對(duì)較少,主要的研究工作集中在總功率約束下對(duì)發(fā)射波形進(jìn)行設(shè)計(jì)[36],但沒有考慮實(shí)際的系統(tǒng)實(shí)現(xiàn)問題。事實(shí)上,雷達(dá)放大器往往工作在飽和條件,若沒有恒模約束,則不能有效利用非線性功率放大器。此外,現(xiàn)有設(shè)計(jì)沒有考慮到目標(biāo)方向上波形的模糊特性和脈沖壓縮特性,本文擬對(duì)發(fā)射波形施加相似性約束,以保證所設(shè)計(jì)波形在目標(biāo)方向上獲得優(yōu)良的模糊特性[15, 37-39]。
本文討論的是一種集中式MIMO組網(wǎng)雷達(dá)系統(tǒng),該系統(tǒng)的各節(jié)點(diǎn)由集中式MIMO雷達(dá)構(gòu)成,因而同時(shí)具備了分布式和集中式MIMO雷達(dá)的優(yōu)點(diǎn)。目前,針對(duì)這種組網(wǎng)雷達(dá)系統(tǒng)的研究大多集中在資源管理方面[40-44],但波形設(shè)計(jì)也對(duì)提升該系統(tǒng)目標(biāo)探測(cè)性能具有重要意義。
具體來說,本文的主要貢獻(xiàn)如下:(1)研究了在恒模約束下的集中式MIMO組網(wǎng)雷達(dá)系統(tǒng)各發(fā)射站點(diǎn)的波形設(shè)計(jì)問題。為了使設(shè)計(jì)的波形具有優(yōu)良的模糊特性,本文將波形相似性度量作為懲罰項(xiàng)引入優(yōu)化問題和信雜噪比(SCNR)一起構(gòu)成新的優(yōu)化目標(biāo)。為了解決這個(gè)NP-Hard問題,本文提出了基于可行點(diǎn)追蹤-連續(xù)凸近似(FPPSCA)和梯度投影(GP)算法框架下的兩種解決方案,然后對(duì)兩種算法的收斂性和復(fù)雜性進(jìn)行了分析。(2)與以往相似性約束中參考波形的選取有所不同。在之前的工作中往往選取線性調(diào)頻信號(hào)來使設(shè)計(jì)波形擁有好的模糊函數(shù)和脈沖壓縮特性,但在實(shí)際應(yīng)用中僅僅需要使目標(biāo)方向上的波形擁有好的波形特性。因此,本文設(shè)計(jì)了一種新的角度依賴的參考波形以及相應(yīng)的波形相似性度量。(3)仿真結(jié)果驗(yàn)證了所提解決方案在不同的模擬場(chǎng)景中的性能。對(duì)基于FPP-SCA和GP框架下所設(shè)計(jì)的波形進(jìn)行了對(duì)比,試驗(yàn)結(jié)果表明FPP-SCA算法的性能優(yōu)于GP算法,但GP算法的計(jì)算復(fù)雜度低于FPP-SCA算法。
1 集中式MIMO組網(wǎng)雷達(dá)信號(hào)模型
同時(shí),本文考慮了設(shè)計(jì)波形在目標(biāo)方向上的模糊特性。從圖7中兩種算法下不同的相似性水平曲線,不難推測(cè)出在FPP-SCA算法下設(shè)計(jì)波形在目標(biāo)方向上的模糊特性基本不會(huì)隨著相似性度量權(quán)重λ的變化而變化,而在GP算法下設(shè)計(jì)波形在目標(biāo)方向上的模糊特性會(huì)隨著相似性度量權(quán)重λ的增大越來越好。這也在圖10中得以驗(yàn)證,可以看到在λ=0.1時(shí)FPP-SCA算法下的設(shè)計(jì)波形和參考波形在目標(biāo)方向的模糊特性已基本相同,而GP算法下設(shè)計(jì)波形在目標(biāo)方向的模糊特性在λ=0.5時(shí)才能達(dá)到同樣的效果。
5.2 天線數(shù)目的影響
最后,考慮天線數(shù)目對(duì)設(shè)計(jì)波形的影響,本文分別設(shè)置了Pm=Qn?{810}m=12;n=12,每次試驗(yàn)中只考慮天線數(shù)目單個(gè)變量的影響。從圖11中可以清楚地看到,不論是哪一個(gè)TX,設(shè)置的天線數(shù)目越多,所得到的SCNR越高。這是因?yàn)殡S著天線數(shù)目的增多,波形優(yōu)化的自由度和雜波抑制能力也隨之增加,能夠獲得更好的性能。
6 結(jié)束語
本文討論了在集中式MIMO平臺(tái)組網(wǎng)雷達(dá)系統(tǒng)下發(fā)射波形的設(shè)計(jì)問題,以提高該系統(tǒng)在雜波干擾下的探測(cè)能力。在各節(jié)點(diǎn)波形設(shè)計(jì)中,考慮到如何保持波形恒模特性以及波形模糊特性,以便于實(shí)際系統(tǒng)應(yīng)用。本文把波形設(shè)計(jì)問題表述為一個(gè)非凸的優(yōu)化問題,并引入了多項(xiàng)式復(fù)雜度的FPPSCA算法或GP算法求解發(fā)射波形。此外,本文設(shè)計(jì)了一種新的角度依賴的參考波形。仿真結(jié)果表明,通過所提算法設(shè)計(jì)的波形在目標(biāo)方向上確實(shí)擁有好的模糊特性和脈沖壓縮特性。未來潛在方向?yàn)樯婕岸嗄繕?biāo)情況的研究,以及在非均勻雜波干擾情況下的自適應(yīng)波形設(shè)計(jì)。
參考文獻(xiàn)
[1]曹蘭英,董曄,郭維娜. 機(jī)載火控雷達(dá)發(fā)展趨勢(shì)探究[J].航空科學(xué)技術(shù),2021,32(6): 1-8. Cao Lanying, Dong Ye, Guo Weina. Development trend analysis of airborne fire-control radars[J]. Aeronautical Science& Technology, 2021,32(6): 1-8.(in Chinese)
[2]宋婷,賀豐收,程宇峰. 深度學(xué)習(xí)技術(shù)在雷達(dá)目標(biāo)檢測(cè)中的研究進(jìn)展[J].航空科學(xué)技術(shù),2020,31(10): 12-20. Song Ting, He Fengshou, Cheng Yufeng. Research progress of deep learning technology in radar target detection[J]. Aeronautical Science & Technology, 2020, 31(10): 12-20. (in Chinese)
[3]Li Jian, Stoica P. MIMO radar signal processing[M]. U. S.: Wiley-IEEE Press, 2009.
[4]Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Maga‐zine, 2008, 25(1): 116-129.
[5]Li Jian, Stoica P. MIMO radar with colocated antennas[J].IEEE Signal Processing Magazine, 2007, 24(5): 106-114.
[6]Song Junxiao, Babu P P. Palomar D. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866-2879.
[7]Li Yongzhe, Vorobyov S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197-1212.
[8]Alaee-Kerahroodi M, Modarres-Hashemi M, Naghsh M M. Designing sets of binary sequences for MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3347-3360.
[9]Yang Yang, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330-343.
[10]Leshem A, Naparstek O, Nehorai A. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 42-55.
[11]Chen Yifan, Nijsure Y, Yuen C, et al. Adaptive distributed mi‐mo radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374-1385.
[12]Cheng Ziyang, He Zishu, Zhang Shengmiao, et al. Constant modulus waveform design for mimo radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912-4923.
[13]Cheng Ziyang, Han Chunlin, Liao Bin, et al. Communicationaware waveform design for mimo radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549-5562.
[14]Yu Xianxiang, Qiu Hui, Yang Jing, et al. Multispectrally constrained mimo radar beampattern design via sequential convex approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2935-2949.
[15]Cui Guolong, Li Hongbin, Rangaswamy M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343-353.
[16]Cui Guolong, Yu Xianxiang, Carotenuto V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116-1129.
[17]Cheng Ziyang, He Zishu, Fang Min, et al. Spectrally compati‐ble waveform design for mimo radar transmit beampattern with par and similarity constraints[C]. 2018 IEEE International Con‐ference on Acoustics, Speech and Signal Processing (ICASSP), 2018: 3286-3290.
[18]Cheng Ziyang, Liao Bin, He Zishu, et al. Spectrally compatible waveform design for mimo radar in the presence of multiple targets[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3543-3555.
[19]Yu Xianxiang, Alhujaili K, Cui Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practi‐cal constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974-1989.
[20]Liu Rang, Li Ming, Liu Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918-1931.
[21]Tsinos C G, Arora A, Chatzinotas S, et al. Joint transmit waveform and receive filter design for dual-function radarcommunication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378-1392.
[22]Wen Cai, Peng Jinye, Zhou Yan, et al. Enhanced ThreeDimensional joint domain localized STAP for airborne FDAMIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154-4166.
[23]Wen Cai, Huang Yan, Peng Jinye, et al. Slow-time FDAMIMO technique with application to STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 74-95.
[24]Wen Cai, Huang Yan, Davidson T. Efficient transceiver design for MIMO dual-function radar-communication systems [J]. IEEE Transactions on Signal Processing, 2023, 71: 1786-1801.
[25]Wen Cai, Huang Yan, Zheng Le, et al. Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding[J]. IEEE Transactions on Signal Processing, 2023, 71: 2130-2145.
[26]Qu Junliang, Jia Xu, Peng Yingning, et al. Optimal waveform design for MIMO radar detection with clutter and noise[C]. IEEE CIE International Conference on Radar, 2011: 559-563.
[27]He Hao, Stoica P, Li Jian. Designing Unimodular sequence sets with good correlations:including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391-4405.
[28]Chen Yifan, Nijsure Y, Yuen C, et al. Adaptive distributed MIMO radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374-1385.
[29]Zhou Shenghua, Liu Hongwei, Zang Huikai. Doppler sensitivity of MIMO radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2091-2110.
[30]Xu Leilei, Liu Hongwei, Li Qiang, et al. Distributed MIMO ra‐dar orthogonal waveforms and mismatched filters design with expanded mainlobe[C]. 2016 CIE International Conference on Radar (RADAR), 2016.
[31]徐磊磊,周生華,劉宏偉,等. 一種分布式MIMO雷達(dá)正交波形和失配濾波器組聯(lián)合設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào),2018,40(6): 1476-1483. Xu Leilei, Zhou Shenghua, Liu Hongwei, et al. Joint design of distributed Mimo radar orthogonal waveforms and mismatched filter bank[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1476-1483. (in Chinese)
[32]Dontamsetti S G, Kumar R V. A Distributed MIMO radar with joint optimal transmit and receive signal combining[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 623-635.
[33]Luo Xi, Guo Lixin, Song Dawei, et al. The research of orthogonal waveform design for ambiguity feature based on distributed MIMO radar[C]. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP), 2021: 425-429.
[34]Tang Bo, Zhang Ning, Zhang Shuo, et al. MMSE-based waveform design for the distributed MIMO radar in spectrally crowded environments[J]. The Journal of Engineering, 2019, 20: 6603-6607.
[35]Shi Chengguang, Wang Fei, Sellathurai M, et al. Low probability of intercept‐based distributed MIMO radar waveform design against barrage jamming in signal‐dependent clutter and coloured noise[J]. IET Signal Processing, 2019, 13(4): 415-423.
[36]Chen Peng, Zheng Le, Wang Xiaodong, et al. Moving target detection using colocated MIMO radar on multiple distributed moving platforms[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4670-4683.
[37]Wu Linlong, Babu P, Palomar D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 526-1540.
[38]Maio A D, Nicola S D, Huang Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610-621.
[39]Yu Xianxiang, Cui Guolong, Kong Lingjiang, et al. Con‐ strained waveform design for colocated MIMO radar with un‐certain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356-370.
[40]Yan Junkun, Liu Hongwei, Pu Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417-6427.
[41]Yi Wei, Yuan Ye, Hoseinnezhad R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602-1617.
[42]Sun Hao, Li Ming, Zuo Lei, et al. Optimal beampattern design for resource-aware multitarget tracking in netted colocated MIMO radar systems[C]. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), 2021: 199-204.
[43]Su Yang, Cheng Ting, He Zishu, et al. Joint waveform control and resource optimization for maneuvering targets tracking in netted colocated MIMO radar systems[J]. IEEE Systems Journal, 2022, 16(3): 3960-3971.
[44]Zhang Haowei, Liu Wejian, Xie Junwei, et al. Joint Subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569-2580.
[45]Mehanna O, Huang Kejun, Gopalakrishnan B, et al. Feasible point pursuit and successive approximation of non-convex QC‐QPs[J]. IEEE Signal Processing Letters, 2015, 22(7): 804-808.
[46]Lieven V, Stephen B. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
[47]Lobo M S, Vandenberghe L, Boyd S, et al. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193-228.
[48]Bertsekas D P. Nonlinear Programming[M]. Athena: Athena Scientific Press, 1999.
Waveform Design for Netted Colocated-MIMO Radar System
Zhang Xiang, Wen Cai, Xu Jinjin, Meng Yinuo Northwestern University, Xi’an 710127, China
Abstract: Waveform design is one of the key technologies in radar signal processing for the netted collocated Multiple Input Multiple Output (MIMO) radar system. To improve the target detection capability of the system under clutter interference while taking into account hardware compatibility, good ambiguity and pulse compression properties of the designed waveform, the paper considers constructing a model for the radar output Signal to Clutter and Noise Ratio(SCNR) under constant modulus constraints and waveform similarity metrics; then by equivalent transformation of the original non-convex problem, a polynomial-time iterative algorithm based on successive convex approximation is proposed and analyzed for convergence. To further reduce the computational complexity, the paper also proposes an algorithm based on Gradient Projection (GP). Finally, the proposed method is simulated and verified, and the results show that the method can provide a new feasible method for the waveform design of each transmitting site under the netted radar system.
Key Words: netted radar system; waveform similarity; feasible point pursuit-successive convex approximation; gradient projection