• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可抑制直流偏移的軟啟動式單相鎖頻環(huán)

    2024-08-21 00:00:00羅樺王琛琛
    太陽能學報 2024年1期
    關鍵詞:同步光伏發(fā)電

    摘要:針對傳統(tǒng)的鎖頻環(huán)無法抑制電網(wǎng)電壓直流偏移問題,提出一種基于直流偏移抑制環(huán)路的鎖頻環(huán)結構;為提高鎖頻環(huán)在啟動期間和相位跳變下的動態(tài)性能,對傳統(tǒng)鎖頻環(huán)結構進行改進以降低鎖頻環(huán)的頻率估計器環(huán)路增益,實現(xiàn)快速平滑的相角跳變跟蹤;最終提出一種可抑制電網(wǎng)電壓直流偏移的軟啟動式單相鎖頻環(huán)。仿真分析和實驗結果表明,所提結構具有良好的穩(wěn)態(tài)特性和動態(tài)特性。

    關鍵詞:光伏發(fā)電;頻率估計;同步;抑制直流分量;軟啟動

    中圖分類號:TM46 文獻標志碼:A

    0引言

    光伏發(fā)電系統(tǒng)將太陽能轉化為電能,既增加了電能儲備量,也實現(xiàn)了能源的可再生利用,是新能源發(fā)電系統(tǒng)的重要組成1。光伏發(fā)電系統(tǒng)并網(wǎng)運行要求準確獲取電網(wǎng)電壓的同步信息以保證設備的穩(wěn)定并網(wǎng)和安全運行2]。目前,應用最為廣泛的電網(wǎng)電壓信息同步方法有鎖相環(huán)(phase-locked loop,PLL)技術和鎖頻環(huán)(frequency-locked loop,F(xiàn)LL)技術。鎖頻環(huán)可有效跟蹤電網(wǎng)電壓的頻率信息,進而實現(xiàn)電網(wǎng)電壓相位及幅值信息的準確跟蹤,其研究和應用得到越來越多關注[3。

    基于二階廣義積分器(second order generalized integrator,SOGI)的鎖頻環(huán)是一種常用的鎖頻環(huán)結構[4,輸入信號通過SOGI輸出兩路正交信號,其中一路作為反饋得到電壓誤差信號,將電壓誤差信號送入FLL輸出估計頻率;同時檢測電網(wǎng)頻率與估計頻率之間的誤差作為反饋,通過對頻率進行跟蹤調(diào)節(jié)實現(xiàn)電網(wǎng)電壓頻率的同步。電網(wǎng)處于非理想工況下時,SOGI-FLL的跟蹤性能會受到嚴重影響:如短路、電流互感器飽和、半波整流和分布式發(fā)電系統(tǒng)的直流偏移注入會導致電網(wǎng)電壓中產(chǎn)生直流偏移[5]。傳統(tǒng)SOGI-FLL無法抑制直流偏移,導致輸出電壓無法準確提取基波電壓;當電網(wǎng)發(fā)生相角跳變時,傳統(tǒng)SOGI-FLL跟蹤速度變慢,動態(tài)過程會影響頻率信息的穩(wěn)定性。

    針對非理想電網(wǎng)工況,許多文獻對鎖頻環(huán)結構進行了改進。針對直流分量抑制問題,文獻[6]從信號處理的角度濾除直流分量,但這種方法在并網(wǎng)系統(tǒng)的適用性需進一步研究;文獻[7]提出一種同步信號檢測方法,但其主要依賴于正弦幅值積分器正負頻率的選頻特性,應用范圍有待擴展;文獻[8]提出使用梳狀濾波器,將輸入信號延遲一個周期,減去原始信號的梳狀濾波器,這樣的濾波器可去除直流分量和諧波,但其計算量較大,數(shù)字實現(xiàn)較復雜;文獻[9]分析了針對鎖相環(huán)直流偏移問題的5種方法,并分析了這些方法的優(yōu)缺點,將其應用到鎖頻環(huán)時的適用性和有效性有待研究;文獻[10]提出一種可用于鎖相環(huán)和陷波濾波器的抑制直流分量結構,結構簡單魯棒性較好,但其動態(tài)性能有待驗證;文獻[11]基于一階系統(tǒng)視角研究了基于廣義積分器的濾波器結構,并提供了改進廣義積分濾波器結構的路徑。同時,相角跳變時電網(wǎng)電壓頻率將發(fā)生瞬變,并會在頻率估計和同步信息獲取時造成延遲,文獻[12]提出一種電網(wǎng)不平衡和畸變條件下的多諧振鎖頻環(huán)技術,但相角跳變工況下鎖頻環(huán)的性能有待驗證;文獻[13]提出一種啟動階段可抑制頻率振蕩的鎖相環(huán)技術,將其應用到鎖頻環(huán)時的有效性有待研究;文獻[14]綜述提單相鎖頻環(huán)技術發(fā)展現(xiàn)狀,鎖頻環(huán)在啟動階段/相角跳變時的動態(tài)性能提升問題有待研究。

    本文以抑制電網(wǎng)中的直流偏移,提高鎖頻環(huán)在啟動期間和相位跳變時的動態(tài)性能為目的,對鎖頻環(huán)結構進行改進:本文首先介紹SOGI-FLL數(shù)學模型;然后提出可抑制直流偏移的鎖頻環(huán)結構,以及在啟動期間和相角跳變時提高其動態(tài)性能的鎖頻環(huán)結構,并將抑制直流偏移與軟啟動結合以實現(xiàn)單相鎖頻環(huán)更優(yōu)的穩(wěn)態(tài)與動態(tài)性能。最后,基于Matlab/Simulink進行仿真分析,并搭建實驗樣機驗證本文設計鎖頻環(huán)結構的正確性與有效性。

    1 SOGI-FLL數(shù)學模型

    1.1基于二階廣義積分器的正交信號發(fā)生器

    由于廣義積分器(generalized integrator,GI)不能進行自適應濾波,為了實現(xiàn)頻率自適應跟蹤,一種基于二階廣義積分器的正交信號發(fā)生結構(SOGI quadrature signal generator,SOGI-QSG)被提出11,其結構如圖1所示。SOGI的傳遞函數(shù)可定義為:

    式中:v——SOGI的α軸估計電壓,V;k——比例環(huán)節(jié)的增益;e——?。與輸入電壓v的誤差,V;wn——SOGI的諧振頻率,rad/s。

    圖1結構就是在SOGI前加入一個比例環(huán)節(jié)k后閉環(huán)構成的,它的閉環(huán)傳遞函數(shù)可定義為:

    式中:0g——SOGI的β軸估計電壓。

    根據(jù)式(2)可看出Ga(s)是一個帶通濾波器,對頻率為w的信號幅值響應為1,相位響應為0,能準確跟蹤頻率為w。的信號。根據(jù)式(3)可看出Gg(S)是一個低通濾波器,截止頻率為w,對應的相位為-90°,可獲得滯后輸入信號90°的信息。兩個輸出信號之比更易反映正交性,其傳遞函數(shù)為:

    當輸入信號的頻率固定或十分接近標準頻率時,SOGI-QSG可精準構造輸入信號的基波分量及其正交信號。

    1.2二階廣義積分器的鎖頻環(huán)(SOGI-FLL)

    SOGI-FLL的控制原理如圖2所示。SOGI-FLL可使SOGI的中心頻率適應頻率變化,并在標準和非標準頻率下均可準確提取輸入信號的基波分量及其正交信號。

    輸入信號可定義為:

    SOGI的兩個輸出信號可表示為:

    式中:v——輸入信號的幅值,V;0=?。odr+φ——輸入信號的相角,(°);w——角頻率,rad/s;φ——初相角,(°);^——估計值。

    此時估算電壓幅值和相位分別為:

    采用梯度下降法[5將輸出信號的頻率導向輸入信號,定義誤差函數(shù)為:

    頻率估計量的微分函數(shù)為:

    式中:λ——決定收斂速度的控制參數(shù)。

    在式(11)中變量t影響頻率估計值的穩(wěn)定性,忽略t ,有:

    把式(5)~式(7)代入式(12),得:

    忽略雙頻部分可得:

    從式(14)可看出頻率估計量的動態(tài)變化依賴于輸入信號的幅值,一旦V變化,頻率估計量也會隨之變化,為了避免這個參數(shù)對結果產(chǎn)生影響,把幅值歸一化部分加入到SOGI-FLL中,其結構如圖3所示。

    頻率估計值的微分方程可表示為:

    1.3模型建立及參數(shù)整定

    由于一階線性時不變模型(first-order linear time-invariant model,first-order LTI model)精度相當差,不能準確預測SOGI-FLL平均動態(tài)變化,所以選取二階線性時不變模型(second-order LTI model),其結構如圖4所示。

    通過假設準鎖定狀態(tài),V≈V、ω≈w、θ≈0、定義V=Va+△?、V=V+△V、ω=wa+△o、w=w。+△w、θ=0。+△θ,0=0。+△θ、下標n表示標準值,△代表小擾動。

    1.4整定控制參數(shù)

    從圖4可得到SOGI-FLL主要傳遞函數(shù)為:

    利用式(16)~式(18)和SOGI-QSG的傳遞函數(shù)可以很好地完成SOGI-FLL的參數(shù)整定過程。經(jīng)研究發(fā)現(xiàn),k值越小濾波效果越好,但會使系統(tǒng)的動態(tài)響應速度變慢。選取k=√2時,能夠最好地權衡設定時間和提取基波分量與其正交版本的過沖151。

    式(17)和式(18)的特征多項式均為:

    式中:ζ——阻尼因子;w′——固有頻率;ζ=1/√2通常被推薦作為文獻中最佳阻尼系數(shù),選取此系數(shù),λ可表示為:

    標準電網(wǎng)頻率為50 Hz,w。為100π,k=√2時可得λ=49348。

    2可抑制直流分量的軟啟動式SOGI-FLL

    2.1可抑制直流分量的SOGI-FLL

    直流增益即系統(tǒng)處于穩(wěn)態(tài)下輸出信號對固定直流輸入信號的增益。從式(2)中可看出,Ga(0)=0,SOGI-QSG的α軸傳遞函數(shù)G?(0)的直流增益為零,說明在SOGI-QSG輸入中存在直流分量時,α軸輸出不存在任何直流分量。然而G?(0)=k,即SOGI-QSG的β軸的直流增益等于k。因此,假設SOGI-QSG輸入中的直流偏移量為V。,那么在穩(wěn)態(tài)下,β軸輸出中就會出現(xiàn)一個等于kV?的直流分量。這個直流分量會導致在相位、頻率和振幅上的估計值出現(xiàn)基頻振蕩誤差。為了抑制直流分量擾動對鎖頻環(huán)性能的影響,同時為了對該分量進行估計,基于梯度下降法修改SOGI-FLL結構。

    假設SOGI-FLL輸入信號為:

    定義代價函數(shù)為:

    把梯度下降法應用到式(22)可得:

    k。是一個常數(shù),它可以調(diào)整直流偏移估計的速度。基于式(23),可在標準SOGI-FLL中添加一個直流偏移量估計/抑制環(huán)路,如圖5所示。

    直流偏移抑制環(huán)路由兩部分組成,一個比例環(huán)節(jié)和一個積分器;以誤差e作為輸入,經(jīng)過比例積分環(huán)節(jié)同V相加后再反饋回去與輸入電壓做差,每次反饋都會對直流部分進行估計調(diào)節(jié)直至完全去除直流分量。

    k。取值不同時鎖頻環(huán)抑制直流效果也不同,為了研究ko的較優(yōu)取值,對圖5結構進行仿真,分析不同ko對直流去除效果的影響。

    取輸入信號為v=100 cos(100πt)+20的平衡信號。分別對k。選取30、40、50、60、70、80、90,比較可抑制直流分量的鎖頻環(huán)(SOGI-FLL with DC component vejectioncapability,SOGI-FLL-WDCRC)的V2波形,分析k。值不同時改進后的鎖頻環(huán)抑制直流分量的性能,V2波形如圖6所示。鎖頻環(huán)抑制直流分量至穩(wěn)態(tài)的調(diào)節(jié)時間見表1。

    通過圖6和表1可發(fā)現(xiàn),k。取值越大,V2峰值越小,抑制直流分量的動態(tài)過程對電網(wǎng)電壓的沖擊越??;V2越快恢復,F(xiàn)LL調(diào)頻時的幅值歸一化部分結果越準確。k。取50、60時調(diào)節(jié)時間最短,電壓在0.044 s左右即可完全抑制直流分量且達到穩(wěn)態(tài);且ko=60時,?2峰值約在120000 V2,比ko=50時小;綜上,k。取值為60時鎖頻環(huán)抑制直流分量性能最佳。

    2.2可軟啟動的SOGI-FLL

    在SOGI-FLL中,頻率和相位之間存在一個耦合變量,所以在啟動或相位跳變期間,估計的頻率會經(jīng)歷一個較大的虛假變化。式(15)是SOGI-FLL頻率估計器的微分方程,也證實了這一事實。當相位誤差很小時,驅動頻率估計器積分器的信號@與相位誤差信號近似成正比。

    為了提高SOGI-FLL在啟動期間和相角跳變時的動態(tài)性能,實現(xiàn)快速平滑的相角跳變跟蹤,修改其頻率更新規(guī)律,如式(24)所示。

    在幅值歸一化前√2與ye2相加,在啟動和相位跳躍過程中,可使鎖頻環(huán)的頻率估計器環(huán)路增益降低,減輕頻率的突變,防止估計頻率產(chǎn)生較大的虛假變化;減少了相角和頻率變量的耦合,與傳統(tǒng)鎖頻環(huán)相比,可以更快且更平滑地估計頻率和相角這兩個變量,產(chǎn)生更快、更平滑的瞬態(tài)響應,而ye2即為軟啟動部分。修改后的結構如圖7所示。

    修改后的鎖頻環(huán)為可軟啟動的鎖頻環(huán)(SOGI-FLL withsoftstartup,SOGI-FLL-WSS)。其原理在于減少相角與頻率變量的耦合和降低FLL的環(huán)路增益。取輸入信號為v=311 cos(100πt)的平衡信號,在t=0.1s時相角階躍+30°,SOGI-FLL-WSS與SOGI-FLL對比的ω波形如圖8所示。

    從圖8可看出,SOGI-FLL-WSS在啟動階段時ω變化緩慢且平穩(wěn),而SOGI-FLL的ω經(jīng)歷了一個較大的虛假變換,偏差達到標準值的42%;0.1s時發(fā)生30°的相角跳變,SOGI-FLL的ω最大偏差約為SOGI-FLL-WSS的1.8倍,SOGI-FLL-WSS不僅實現(xiàn)了軟啟動而且在發(fā)生相角跳變時動態(tài)性能更佳。

    2.3可抑制直流分量的軟啟動式鎖頻環(huán)

    SOGI-FLL-WDCRC實現(xiàn)了抑制直流的功能,但加上直流抑制回路后,在相角跳變時誤差e波動會變大、恢復穩(wěn)態(tài)不夠快速,可對SOGI-FLL-WDCRC進一步優(yōu)化結構;而SOGI-FLL-WSS則可優(yōu)化鎖頻環(huán)相角跳變時的動態(tài)性能,但不能實現(xiàn)直流分量的抑制;二者互相取長補短,結合后能實現(xiàn)更佳的鎖頻性能,既可抑制直流分量又可實現(xiàn)更好的動態(tài)性能,結構如圖9所示。

    圖9所示結構即為可抑制直流偏移的軟啟動式鎖頻環(huán)(soft-startup SOGI-FLL with DC component rejection capability,SS-SOGI-FLL-WDCRC),其估計頻率微分方程與式(24)相同。

    SS-SOGI-FLL-WDCRC由4部分構成:SOGI、FLL、抑制直流部分、軟啟動部分(ye2);輸入信號v流經(jīng)SOGI產(chǎn)生兩路正交信號,o。作為反饋;e流經(jīng)直流估計部分,經(jīng)過一個比例積分環(huán)節(jié)與v。相加后再與v做差得到電壓誤差信號e,由此構成閉環(huán);將e輸入FLL,F(xiàn)LL輸出估計頻率,檢測電網(wǎng)頻率與估計頻率之間的誤差作為反饋;在幅值歸一化前V2加ye2以減少頻率與相角耦合,降低頻率突變;通過對頻率進行跟蹤調(diào)節(jié)實現(xiàn)了電網(wǎng)電壓頻率的同步。

    3仿真與實驗結果

    3.1仿真分析

    為驗證本文所提的可抑制直流分量的軟啟動式單相鎖頻環(huán)(SS-SOGI-FLL-WDCRC)的可行性和有效性,基于Matlab/Simulink進行仿真分析。選取電網(wǎng)電壓幅值為311 V,頻率為50 Hz,鎖頻環(huán)具體參數(shù)見表2。設置4個測試工況來測試4種不同鎖頻環(huán)的動態(tài)性能和穩(wěn)態(tài)性能,為充分考查鎖頻環(huán)抑制直流分量和軟啟動/平緩快速相角跳變的能力,4種工況均直接啟動。

    當鎖頻環(huán)啟動且達到穩(wěn)態(tài),在50 ms時向電網(wǎng)電壓注入直流分量0.1 pu(電網(wǎng)電壓額定幅值的10%)。在150 ms時,分別發(fā)生:電網(wǎng)電壓相角階躍+30°;電網(wǎng)電壓頻率階躍+5 Hz;電網(wǎng)電壓幅值跌落10%;綜合故障(電網(wǎng)電壓相角階躍+30°,頻率階躍+5 Hz,電壓幅值跌落10%);運行至300 ms。

    4種工況的仿真測試均可分為3個階段:階段1是啟動階段至穩(wěn)態(tài)(0~50 ms);階段2,注入直流偏移分量至4種鎖頻環(huán)均達到穩(wěn)態(tài)(50~150 ms);階段3,維持帶有直流偏移的電網(wǎng)電壓經(jīng)歷(疊加)其他擾動至4種鎖頻環(huán)均達到穩(wěn)態(tài)(150~300 ms)。4種鎖頻環(huán)從啟動到直流偏移分量注入電網(wǎng)電壓達到穩(wěn)態(tài)(0~150 ms)的@波形如圖10所示,V波形如圖11所示。抑制直流偏移過程的誤差e波形見圖12。詳細測試結果見表3。

    SS-SOGI-FLL-WDCRC與SOGI-FLL-WSS在啟動階段ω誤差峰峰值均遠小于另外兩種鎖頻環(huán),均實現(xiàn)了軟啟動。SOGI-FLL-WDCRC與SS-SOGI-FLL-WDCRC均可抑制直流分量,且SS-SOGI-FLL-WDCRC的の誤差峰峰值較低,約為SOGI-FLL-WDCRC的1/2。所以,SS-SOGI-FLL-WDCRC既可軟啟動又可抑制直流分量,在抑制直流分量的同時還降低了對ω的影響。下文研究被直流分量持續(xù)污染的電網(wǎng)電壓在不同工況下鎖頻環(huán)的性能。

    3.1.1工況1:電網(wǎng)電壓相角階躍+30°

    ω全程和動態(tài)調(diào)節(jié)過程的波形如圖13所示,V全程和動態(tài)波形如圖14所示,誤差e的動態(tài)波形如圖15所示。詳細測試結果見表4。

    SOGI-FLL與SOGI-FLL-WSS雖然很快可以恢復穩(wěn)態(tài),但均因無法抑制直流分量導致V一直在上下波動,V最大偏差也約為其余鎖頻環(huán)的2或3倍。SOGI-FLL-WDCRC與SS-SOGI-FLL-WDCRC在抑制直流分量的同時輕松應對相角跳變30°,SS-SOGI-FLL-WDCRC的V最大偏差略高于SOGI-FLL-WDCRC,但其調(diào)節(jié)時間約為SOGI-FLL-WDCRC的1/2,且ω最大偏差值約為SOGI-FLL-WDCRC的1/3,說明相角與頻率的耦合度降低,SS-SOGI-FLL-WDCRC相角跳變過程更為快速平滑,動態(tài)性能更佳。

    3.1.2工況2:電網(wǎng)電壓頻率階躍+5 Hz

    ①全程和動態(tài)調(diào)節(jié)過程的波形如圖16所示,V全程和動態(tài)波形如圖17所示,誤差e的動態(tài)波形如圖18所示。詳細測試結果見表5。SOGI-FLL與SOGI-FLL-WSS均因無法抑制直流分量導致V一直在上下波動,的最大偏差也遠高于其余鎖頻環(huán);SOGI-FLL-WSS還因直流分量的注入導致在頻率跳變后無法達到該頻率值。

    SOGI-FLL-WDCRC與SS-SOGI-FLL-WDCRC在抑制直流分量的同時應對頻率跳變+5 Hz,SS-SOGI-FLL-WDCRC的V最大偏差約為SOGI-FLL-WDCRC的3/5,且?超調(diào)量約為SOGI-FLL-WDCRC的1/5,SS-SOGI-FLL-WDCRC在頻率跳變時動態(tài)性能更佳。

    3.1.3工況3:電網(wǎng)電壓幅值跌落10%

    ?全程和動態(tài)調(diào)節(jié)過程的波形如圖19所示,「全程和動態(tài)波形如圖20所示,詳細測試結果見表6。從圖20和表6中可看出,在電網(wǎng)電壓幅值跌落時,4種鎖頻環(huán)恢復穩(wěn)態(tài)都十分迅速,均小于一個周期。SOGI-FLL與SOGI-FLL-WSS均因無法抑制直流分量導致「一直在上下波動,但可看出「總體還是下降了約10%;且?最大偏差值是另外兩個鎖頻環(huán)的數(shù)倍。

    SOGI-FLL-WDCRC與SS-SOGI-FLL-WDCRC在抑制直流分量時應對電壓幅值跌落10%,二者皆響應迅速,""" 調(diào)量均為0.7%,?最大偏差值均為1.45 Hz,二者在應對幅值落時性能同樣優(yōu)越。

    ?全程和動態(tài)波形如圖21所示,全程和動態(tài)波形如圖22所示,詳細測試結果見表7。當各種工況疊加到一起(包括直流分量)產(chǎn)生的綜合故障發(fā)生時,從圖21b、圖22b和表7可看出,SOGI-FLL和SOGI-FLL-WDCRC的?、直流分量等各種因素的影響一直在大范圍波動;SOGI-FLL-WSS由于直流分量的影響,「也一直在大范圍波動,?未到設定55 Hz;SS-SOGI-FLL-WDCRC的o先下降了一點然后攀升到55 Hz,其の誤差峰峰值與SOGI-FLL-WSS均遠小于另外兩種鎖頻環(huán),V誤差峰峰值也相對較小。

    SS-SOGI-FLL-WDCRC達到穩(wěn)態(tài)的時間比SOGI-FLL-WDCRC提前了1個周期,更快到達穩(wěn)態(tài)階段。

    綜合4種工況的測試結果,可得出本文所提的可抑制直流分量的軟啟動式單相鎖頻環(huán)不僅可以軟啟動、抑制直流分量,在相角跳變時ω可不經(jīng)歷大的虛假變化較為平穩(wěn),而且相較于傳統(tǒng)SOGI-FLL、SOGI-FLL-WDCRC和SOGI-FLL-WSS在不同工況下具有更好的穩(wěn)態(tài)特性和動態(tài)特性。

    3.2實驗驗證

    為驗證本文所提鎖頻環(huán)的可行性和有效性,基于dSPACE半實物仿真平臺進行實驗驗證。采用可編程交流電源生成單相電網(wǎng)電壓信號,通過MicroLabBox1202的AD接口進行采樣,作為鎖頻環(huán)輸入信號,4種鎖頻環(huán)控制方案通過Matlab和ControlDesk平臺實現(xiàn),內(nèi)部變量通過DA接口輸出至示波器。系統(tǒng)采樣頻率為10kHz,鎖頻環(huán)的控制參數(shù)、4種測試工況與仿真一致。時間段的波形圖,在0.1s時輸入電壓已達到穩(wěn)定,0.2s時注入直流分量,0.6 s時發(fā)生對應工況;從圖23中可看出,4種工況下的鎖頻環(huán)的實驗波形與仿真結果一致。

    在注入直流分量的試驗條件下,SS-SOGI-FLL-WDCRC在抑制直流分量時,估計頻率的波動范圍遠小于SOGI-FLL-WDCRC,且電壓恢復穩(wěn)定時間約為SOGI-FLL-WDCRC的0.6倍,而SOGI-FLL和SOGI-FLL-WSS無法抑制直流分量,所以SS-SOGI-FLL-WDCRC抑制直流分量更加穩(wěn)定和快速。

    在工況1即相角跳變30°發(fā)生時,SS-SOGI-FLL-WDCRC動態(tài)響應較快,恢復穩(wěn)定時間比SOGI-FLL-WDCRC少了1/3;并且ω波動峰峰值也遠小于SOGI-FLL-WDCRC;在頻率跳變和幅值跌落時,SS-SOGI-FLL-WDCRC的動態(tài)響應也非常快,不輸于SOGI-FLL-WDCRC;在綜合故障發(fā)生時,SS-SOGI-FLL-WDCRC同樣可以快速應對,其の波動仍很小且40 ms即恢復穩(wěn)定。

    綜上,實驗結果驗證了所提SOGI-FLL-WDCRC的抑制直流和軟啟動的可行性和有效性,實驗結果與仿真基本一致。

    4結論

    為解決傳統(tǒng)鎖頻環(huán)無法抑制直流偏移問題和提高鎖頻環(huán)在啟動及相位跳變時的動態(tài)性能,本文提出一種結合抑制直流偏移的軟啟動式單相鎖頻環(huán),可以實現(xiàn)抑制直流偏移和快速平滑的相角跳變跟蹤。仿真和實驗結果表明,與SOGI-FLL、SOGI-FLL-WSS、SOGI-FLL-WDCRC相比,SS-SOGI-FLL-WDCRC在抑制直流分量和相角跳變時具有良好的鎖頻能力和動態(tài)響應能力,能夠滿足非理想電網(wǎng)條件下的鎖頻要求。

    [參考文獻]

    [1]于曉旭.太陽能光伏發(fā)電并網(wǎng)技術的應用探究[J].裝備維修技術,2020(2):183.

    YU X X.Research on the application of grid-connectedtechnology of solar photovoltaic power generation [J].Equipment technology,2020(2):183.

    [2]余永奎,李華,劉俊峰.基于固定頻率二階廣義積分器的單相鎖頻環(huán)[J].電力系統(tǒng)及其自動化學報,2020,32(9):86-93.

    YU YK,LI H,LIU JF.Single-phase frequency-lockedloop based on fixed-frequency second-order generalizedintegrator [J].Proceedings of the CSU-EPSA,2020,32(9):86-93.

    [3]全相軍,黃仁志,吳在軍,等.鎖頻環(huán)的同步坐標系設計與小信號建模[J].中國電機工程學報,2020,40(14):4559-4568,4735.

    QUAN X J,HUANG R Z,WU Z J,etal.Synchronousreference frame design and small-signal model offrequency-locked loop[J].Proceedings of the CSEE,2020,40(14):4559-4568,4735.

    [4]楊才偉,王劍,游小杰,等.二階廣義積分器鎖頻環(huán)數(shù)字實現(xiàn)準確性對比[J].電工技術學報,2019,34(12):2584-2596.

    YANG C w,WANG J,YOU X J,etal.Accuracycomparison of digital implementation on the second-ordergeneralized integrator frequency-locked loop [J].Transactions of China Electrotechnical Society,2019,34(12):2584-2596.

    [5]RODRIGIUFZ P." IUNA A." RAUI,S M A.et al Astationary reference frame grid synchronization system forthree-phase grid-connected power converters underadverse grid conditions [J].IEEE transactions on powerelectronics,2011,27(1):99-112.

    [6]FEDELE G,F(xiàn)ERRISE A.A Frequency-locked-loop filterfor biased multi-sinusoidal estimation [J].IEEEtransactions on signal processing,2014,62(5):1125-1134

    [7]杜雄,王國寧,孫鵬菊,等.直流分量對正弦幅值積分器同步信號檢測方法的影響及其抑制方法[J].中國電機工程學報,2014,34(24):4084-4091.

    DU X,WANG G N,SUN P J,etal.Effect analysis andeliminating scheme for DC components to sinusoidalamplitude integrators based synchronization signaldetection method[J].Proceedings of the CSEE,2014,34(24):4084-4091.

    [8]LIUHW,XING Y,HUH B.Enhanced frequency-lockedloop with a comb filter under adverse grid conditions[J].IEEE transactions on power electronics,2016,31(12):8046-8051.

    [9]GOLESTAN S,GUERRERO JM,GHAREHPETIAN GB.Five approaches to deal with problem of DC offset inphase-locked loop algorithms:design considerations andperformance evaluations [J].IEEE transactions on powerelectronics,2016,31(1):648-661.

    [10]KARIMI-GHARTEMANI M,ALI KHAJEHODDIN S,JAIN P K,etal.Addressing DC component in PLL and Notch filter algorithms [J].IEEE transactions on powerelectronics,2012,27(1):78-86.

    [11]XIN Z,ZHAO R D,MATTAVELLI P,etal.Re-investigation of generalized integrator based filters from afirst-order-system perspective[J].IEEE access,2016,4:7131-7144.

    [12]RODRíGUEZ P,LUNA A,CANDELA I,etal.Multiresonant frequency-locked loop for gridsynchronization of power converters under distorted gridconditions[J].IEEE transactions on industrial electronics,2011,58(1):127-138.

    [13]KARIMI GHARTEMANI M,ALI KHAJEHODDIN S,JAIN PK,etal.Problems of startup and phase jumps inPLL systems[J].IEEE transactions on power electronics,2012,27(4):1830-1838.

    [14]GOLESTAN S,GUERRERO J M,MUSAVI F,etal.Single-phase frequency-locked loops:acomprehensivereview[J].IEEE transactions on power electronics,2019,34(12):11791-11812.

    [15]RODRIGUEZ P,LUNA A,CANDELA I,etal.Gridsynchronization of power converters using multiple secondorder generalized integrators [C]/1200834th AnnualConference of IEEE Industrial Electronics.Orlando,F(xiàn)L,USA,2009:755-760.

    SOFT-START SINGLE-PHASE FREQUENCY-LOCKED LOOPWITHDC COMPONENT REJECTION CAPABILITY

    Luo Wei,WangChenchen

    (Department of Electrical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

    Abstract:Aiming at the problem that the traditional frequency-locked loop canot reject the DC component of grid voltage,a frequency-locked loop structure based on DC component rejection loop is proposed.In order to improve the dynamic performance of the frequency-locked loop during startup stage and phase angle jump condition,the traditional frequency-locked loop structure is improved to reducethe gain of the frequency estimatorloop,achieving fast and smooth phase angle tracking.Finally,a soft-start up single-phase frequency-locked loop which can reject DC component of grid voltage is proposed.Simulation analysis and experimental results show that theproposed structure has good steady-state and dynamic characteristics.

    Keywords:PV power generation;frequencyestimation;synchronization;DC component rejection;soft-startup

    猜你喜歡
    同步光伏發(fā)電
    素質教育理念下藝術教育改革的思路
    政府職能的轉變與中國經(jīng)濟結構調(diào)整的同步
    商情(2016年42期)2016-12-23 14:26:58
    基于單片機的太陽能路燈控制器
    光伏發(fā)電電氣系統(tǒng)設計優(yōu)化管理分析
    基于ARIMA模型的光伏客戶需求服務預測研究
    商情(2016年40期)2016-11-28 11:20:51
    大型并網(wǎng)光伏發(fā)電站選址分析
    中國市場(2016年41期)2016-11-28 05:37:35
    中國西北地區(qū)光伏發(fā)電的環(huán)境影響評估
    時代金融(2016年27期)2016-11-25 16:14:21
    公共藝術與城市設計的協(xié)調(diào)與同步
    應用于教學的太陽能電源裝置的設計
    有源應答器DBPL解碼算法研究及FPGA實現(xiàn)
    亚洲av成人精品一区久久| 国产成人a区在线观看| 亚洲最大成人手机在线| 波多野结衣高清无吗| 99热精品在线国产| 欧美成人a在线观看| avwww免费| 在线a可以看的网站| 淫妇啪啪啪对白视频| 色播亚洲综合网| 神马国产精品三级电影在线观看| 久久久久久久久中文| 一级黄片播放器| 国产高清有码在线观看视频| 啦啦啦免费观看视频1| 免费看光身美女| 国产亚洲欧美98| 夜夜爽天天搞| avwww免费| 三级国产精品欧美在线观看| 亚洲av五月六月丁香网| 中文资源天堂在线| 国产高清videossex| 国模一区二区三区四区视频| 久久中文看片网| 色吧在线观看| 日韩精品青青久久久久久| 国产精品亚洲美女久久久| 高清在线国产一区| 亚洲五月婷婷丁香| 制服丝袜大香蕉在线| 在线视频色国产色| 人妻夜夜爽99麻豆av| 亚洲av五月六月丁香网| 又黄又粗又硬又大视频| 久久久久久久亚洲中文字幕 | av在线蜜桃| 99精品在免费线老司机午夜| 亚洲欧美激情综合另类| 亚洲精品久久国产高清桃花| 床上黄色一级片| 少妇人妻一区二区三区视频| 亚洲av中文字字幕乱码综合| 国产精品久久电影中文字幕| 黄色片一级片一级黄色片| 嫩草影院入口| 老鸭窝网址在线观看| 搡女人真爽免费视频火全软件 | 女人被狂操c到高潮| 高清毛片免费观看视频网站| 欧美日韩福利视频一区二区| 国产精品久久电影中文字幕| 日日摸夜夜添夜夜添小说| 国产精品一区二区三区四区免费观看 | 美女被艹到高潮喷水动态| 午夜免费男女啪啪视频观看 | 久久久成人免费电影| 亚洲成人中文字幕在线播放| 国产精品日韩av在线免费观看| 一区二区三区免费毛片| 给我免费播放毛片高清在线观看| 国产精华一区二区三区| 淫秽高清视频在线观看| 国产av不卡久久| 亚洲18禁久久av| 一a级毛片在线观看| 日韩欧美 国产精品| 麻豆成人av在线观看| 九九在线视频观看精品| 成人国产一区最新在线观看| 国产高潮美女av| 在线a可以看的网站| 国产毛片a区久久久久| 欧美高清成人免费视频www| 99精品在免费线老司机午夜| 国产色爽女视频免费观看| 精品一区二区三区av网在线观看| 欧美一级毛片孕妇| 精品99又大又爽又粗少妇毛片 | 亚洲美女视频黄频| 日韩人妻高清精品专区| 国产极品精品免费视频能看的| 亚洲成人久久性| 亚洲 国产 在线| 亚洲精品亚洲一区二区| 国产乱人视频| 午夜福利欧美成人| 久久99热这里只有精品18| 女生性感内裤真人,穿戴方法视频| 国产午夜精品久久久久久一区二区三区 | 香蕉av资源在线| 在线观看一区二区三区| av天堂在线播放| 日本免费一区二区三区高清不卡| 精品国产超薄肉色丝袜足j| 国语自产精品视频在线第100页| 在线观看舔阴道视频| 国产精品99久久久久久久久| 亚洲av电影不卡..在线观看| 国产成人欧美在线观看| 中出人妻视频一区二区| 欧美中文综合在线视频| 亚洲一区高清亚洲精品| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 日本撒尿小便嘘嘘汇集6| 1024手机看黄色片| 桃红色精品国产亚洲av| 高清毛片免费观看视频网站| 久久性视频一级片| 午夜福利视频1000在线观看| 国产美女午夜福利| 免费观看人在逋| 我要搜黄色片| 亚洲最大成人手机在线| 日本a在线网址| 日韩欧美免费精品| 欧美日韩乱码在线| 亚洲五月天丁香| 一区二区三区免费毛片| 亚洲狠狠婷婷综合久久图片| 国产一区二区三区在线臀色熟女| 国产精品精品国产色婷婷| 琪琪午夜伦伦电影理论片6080| 亚洲av美国av| 国产欧美日韩一区二区三| 久久这里只有精品中国| 少妇丰满av| 午夜福利欧美成人| 五月伊人婷婷丁香| 国产蜜桃级精品一区二区三区| 国产不卡一卡二| 久久精品国产自在天天线| 国产真人三级小视频在线观看| 2021天堂中文幕一二区在线观| 午夜福利在线在线| 日韩精品青青久久久久久| 精品电影一区二区在线| 99久久久亚洲精品蜜臀av| 精品一区二区三区人妻视频| 亚洲电影在线观看av| 精品一区二区三区视频在线观看免费| 国产一级毛片七仙女欲春2| 老汉色∧v一级毛片| 我的老师免费观看完整版| 精品电影一区二区在线| 国产99白浆流出| 91字幕亚洲| 亚洲成人久久性| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影| 欧美性感艳星| 日日干狠狠操夜夜爽| 免费看十八禁软件| 51国产日韩欧美| 国产精品 欧美亚洲| 日日夜夜操网爽| 国产伦一二天堂av在线观看| 日本黄色视频三级网站网址| 精品人妻偷拍中文字幕| 亚洲国产精品sss在线观看| 日韩 欧美 亚洲 中文字幕| 精品国产三级普通话版| 久久精品夜夜夜夜夜久久蜜豆| av国产免费在线观看| 色综合亚洲欧美另类图片| 美女大奶头视频| 色噜噜av男人的天堂激情| 国产私拍福利视频在线观看| 国产高清视频在线观看网站| 成人特级av手机在线观看| 亚洲欧美日韩无卡精品| www日本黄色视频网| 香蕉av资源在线| 舔av片在线| 99久久无色码亚洲精品果冻| 日韩av在线大香蕉| 亚洲欧美日韩卡通动漫| 国产精品美女特级片免费视频播放器| 欧美一级毛片孕妇| 天堂√8在线中文| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 国产精品爽爽va在线观看网站| 淫秽高清视频在线观看| 国产伦人伦偷精品视频| 日本 欧美在线| 国产欧美日韩一区二区精品| 欧美成人a在线观看| 日韩欧美 国产精品| 身体一侧抽搐| 日韩欧美国产一区二区入口| 亚洲国产精品999在线| 日韩欧美一区二区三区在线观看| 女生性感内裤真人,穿戴方法视频| 90打野战视频偷拍视频| 在线观看美女被高潮喷水网站 | 婷婷亚洲欧美| 午夜两性在线视频| 国内精品美女久久久久久| 大型黄色视频在线免费观看| 岛国视频午夜一区免费看| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| 中文字幕高清在线视频| 婷婷亚洲欧美| 91久久精品电影网| 亚洲精品日韩av片在线观看 | 床上黄色一级片| 丝袜美腿在线中文| 精品熟女少妇八av免费久了| 欧美一级毛片孕妇| 国产色婷婷99| 日本熟妇午夜| 午夜福利高清视频| 中文字幕人成人乱码亚洲影| 97人妻精品一区二区三区麻豆| www.999成人在线观看| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 成人鲁丝片一二三区免费| 特级一级黄色大片| 五月伊人婷婷丁香| 精品久久久久久久末码| 亚洲人成网站在线播| 国语自产精品视频在线第100页| h日本视频在线播放| 久久婷婷人人爽人人干人人爱| 亚洲七黄色美女视频| 精品久久久久久久末码| 亚洲不卡免费看| 一本综合久久免费| 亚洲 国产 在线| 91麻豆精品激情在线观看国产| 夜夜爽天天搞| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 国产熟女xx| 国产一级毛片七仙女欲春2| 色吧在线观看| 欧美激情在线99| 亚洲精品456在线播放app | 国产一区二区在线观看日韩 | 久久精品91无色码中文字幕| 一本一本综合久久| 免费看日本二区| 国产欧美日韩精品一区二区| 又黄又爽又免费观看的视频| av中文乱码字幕在线| 午夜免费观看网址| 久久香蕉国产精品| 久久亚洲真实| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 国内精品一区二区在线观看| 久久性视频一级片| 久99久视频精品免费| 亚洲男人的天堂狠狠| 看片在线看免费视频| av天堂中文字幕网| 亚洲真实伦在线观看| 欧美黑人欧美精品刺激| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频| 狂野欧美激情性xxxx| 啦啦啦观看免费观看视频高清| 99国产精品一区二区三区| 免费在线观看影片大全网站| 村上凉子中文字幕在线| 国产成年人精品一区二区| 偷拍熟女少妇极品色| 青草久久国产| 蜜桃亚洲精品一区二区三区| 免费观看精品视频网站| 亚洲色图av天堂| 亚洲真实伦在线观看| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 别揉我奶头~嗯~啊~动态视频| 欧美中文综合在线视频| 亚洲午夜理论影院| 一区二区三区激情视频| 97人妻精品一区二区三区麻豆| 国产av不卡久久| 国产精品 国内视频| 一级黄片播放器| 男女那种视频在线观看| 成人高潮视频无遮挡免费网站| 国产乱人视频| 色吧在线观看| 色播亚洲综合网| 国内精品久久久久久久电影| 国产探花在线观看一区二区| 国产乱人伦免费视频| 美女免费视频网站| 有码 亚洲区| 午夜免费激情av| 国产精品久久电影中文字幕| 国产熟女xx| 久久久久久九九精品二区国产| 国产私拍福利视频在线观看| 色播亚洲综合网| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看| 国产黄片美女视频| 亚洲成人精品中文字幕电影| АⅤ资源中文在线天堂| 色精品久久人妻99蜜桃| 欧美3d第一页| 在线观看66精品国产| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 国产69精品久久久久777片| 午夜视频国产福利| 人妻夜夜爽99麻豆av| www.色视频.com| 亚洲黑人精品在线| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 国产成人aa在线观看| 在线观看舔阴道视频| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 久久草成人影院| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 亚洲在线观看片| 日本黄色视频三级网站网址| 美女黄网站色视频| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 一个人观看的视频www高清免费观看| 精品午夜福利视频在线观看一区| 91九色精品人成在线观看| 亚洲真实伦在线观看| 一个人免费在线观看电影| 两人在一起打扑克的视频| 香蕉久久夜色| 国产野战对白在线观看| 99国产综合亚洲精品| xxxwww97欧美| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 久99久视频精品免费| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 少妇的逼好多水| 99在线视频只有这里精品首页| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 岛国在线免费视频观看| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| 午夜福利18| 69人妻影院| 精品久久久久久成人av| 麻豆成人av在线观看| 深夜精品福利| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| 成年版毛片免费区| 欧美在线黄色| 久久精品91无色码中文字幕| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 精品国产美女av久久久久小说| 禁无遮挡网站| 怎么达到女性高潮| 一进一出抽搐gif免费好疼| 露出奶头的视频| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲国产精品sss在线观看| 色播亚洲综合网| 99久久成人亚洲精品观看| 亚洲中文字幕日韩| 哪里可以看免费的av片| www国产在线视频色| 又紧又爽又黄一区二区| 午夜免费观看网址| 禁无遮挡网站| 99热这里只有是精品50| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 可以在线观看的亚洲视频| 看黄色毛片网站| 美女免费视频网站| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片 | 男女做爰动态图高潮gif福利片| www.www免费av| 免费一级毛片在线播放高清视频| 日本五十路高清| 岛国在线免费视频观看| 欧美大码av| 日本免费一区二区三区高清不卡| 香蕉丝袜av| 国内久久婷婷六月综合欲色啪| 国产一区二区三区视频了| 91久久精品国产一区二区成人 | 国产视频一区二区在线看| 制服丝袜大香蕉在线| 国产日本99.免费观看| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| а√天堂www在线а√下载| 国产69精品久久久久777片| 一个人看视频在线观看www免费 | 女警被强在线播放| 亚洲国产欧美网| 美女免费视频网站| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 免费电影在线观看免费观看| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 天堂√8在线中文| 成熟少妇高潮喷水视频| 在线观看66精品国产| 麻豆国产97在线/欧美| 国产成人欧美在线观看| 99视频精品全部免费 在线| 亚洲无线在线观看| 成人亚洲精品av一区二区| 欧美区成人在线视频| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 在线天堂最新版资源| 色综合站精品国产| 亚洲第一欧美日韩一区二区三区| 一级黄色大片毛片| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 欧美日韩精品网址| 免费高清视频大片| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 男女那种视频在线观看| 日本熟妇午夜| 中文字幕人妻丝袜一区二区| 国产单亲对白刺激| av在线蜜桃| 欧美zozozo另类| 精品国内亚洲2022精品成人| eeuss影院久久| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 少妇的逼好多水| 丰满人妻熟妇乱又伦精品不卡| 国产三级中文精品| 久久久久久久精品吃奶| 国产探花在线观看一区二区| 中文字幕人成人乱码亚洲影| 久9热在线精品视频| 亚洲av五月六月丁香网| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| 精品电影一区二区在线| 国产精品久久久久久人妻精品电影| xxx96com| 色在线成人网| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 亚洲av成人av| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 男女之事视频高清在线观看| 免费在线观看日本一区| 一a级毛片在线观看| av女优亚洲男人天堂| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 日韩欧美国产一区二区入口| 免费看十八禁软件| 91九色精品人成在线观看| 男女床上黄色一级片免费看| 亚洲天堂国产精品一区在线| 亚洲五月天丁香| 好看av亚洲va欧美ⅴa在| 高清日韩中文字幕在线| 亚洲男人的天堂狠狠| 美女大奶头视频| 色视频www国产| 日韩人妻高清精品专区| 久久久色成人| 在线观看66精品国产| 男女之事视频高清在线观看| 在线播放无遮挡| 欧美黑人欧美精品刺激| 国产精品久久电影中文字幕| 日本五十路高清| av女优亚洲男人天堂| 国产极品精品免费视频能看的| av视频在线观看入口| netflix在线观看网站| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产一区二区入口| 1024手机看黄色片| 九九在线视频观看精品| 亚洲黑人精品在线| 天天一区二区日本电影三级| or卡值多少钱| 一级毛片女人18水好多| 宅男免费午夜| 内地一区二区视频在线| 国产野战对白在线观看| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区久久| 欧美中文综合在线视频| 日本与韩国留学比较| 国产美女午夜福利| 动漫黄色视频在线观看| 嫩草影院入口| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 天堂网av新在线| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 久久久久久九九精品二区国产| 99riav亚洲国产免费| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 国产激情欧美一区二区| 99热只有精品国产| 亚洲精品乱码久久久v下载方式 | 夜夜爽天天搞| 天天一区二区日本电影三级| 深爱激情五月婷婷| 中文字幕高清在线视频| 亚洲精品色激情综合| 日本在线视频免费播放| 热99在线观看视频| 老司机福利观看| 精品久久久久久,| 亚洲成a人片在线一区二区| 91字幕亚洲| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 高清毛片免费观看视频网站| 国产老妇女一区| 日韩av在线大香蕉| 内射极品少妇av片p| 日本免费a在线| 午夜视频国产福利| 亚洲无线在线观看| 成人欧美大片| 久久精品综合一区二区三区| 国产精品电影一区二区三区| 少妇的逼好多水| 成人欧美大片| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 在线国产一区二区在线| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 国内精品久久久久精免费| 变态另类丝袜制服| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 九色国产91popny在线| 色吧在线观看| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 亚洲国产精品久久男人天堂| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| avwww免费| 尤物成人国产欧美一区二区三区| 久久婷婷人人爽人人干人人爱| 午夜久久久久精精品| 88av欧美| 精品国内亚洲2022精品成人| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 国产成人福利小说| 成人欧美大片| 丰满乱子伦码专区| 99久久99久久久精品蜜桃| 久久久精品欧美日韩精品| 搞女人的毛片| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 国产69精品久久久久777片| 精华霜和精华液先用哪个| 久久久国产成人精品二区| 成人三级黄色视频| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 精品久久久久久久久久久久久| 岛国视频午夜一区免费看| 国产欧美日韩精品一区二区| 嫩草影院精品99| 91九色精品人成在线观看| 日韩欧美免费精品|