【摘要】 目的 利用網(wǎng)絡(luò)藥理學(xué)和分子對接技術(shù)研究古代經(jīng)典名方辛夷散用于過敏性鼻炎防治的潛在作用機(jī)制。
方法 通過TCMSP數(shù)據(jù)庫檢索經(jīng)典名方辛夷散的活性成分并確定作用靶點(diǎn),通過GeneCards Database、Online Mendelian Inheritance in Man數(shù)據(jù)庫查詢與過敏性鼻炎有關(guān)的分子靶點(diǎn),獲取兩個(gè)數(shù)據(jù)庫交集靶點(diǎn)基因。通過Search tool for the retrival of interacting genes/proteins數(shù)據(jù)庫構(gòu)建上述交集靶點(diǎn)的蛋白質(zhì)相互作用網(wǎng)絡(luò),并導(dǎo)入Cytoscape 3.7.1軟件中將分析結(jié)果可視化,進(jìn)一步根據(jù)拓?fù)鋵W(xué)數(shù)據(jù)篩選關(guān)鍵靶點(diǎn)。利用Metascape數(shù)據(jù)庫對交集靶點(diǎn)進(jìn)行GO和KEGG富集分析。運(yùn)用AutoDockTools1.5.6軟件將活性化合物與核心靶點(diǎn)蛋白進(jìn)行分子對接。
結(jié)果 篩選得到辛夷散活性化合物184個(gè),相關(guān)靶點(diǎn)224個(gè),辛夷散與過敏性鼻炎共同的靶點(diǎn)104個(gè)。利用拓?fù)鋵W(xué)篩選得到17個(gè)關(guān)鍵靶點(diǎn),主要包括IL-6、TNF、AKT1、IL1B、VEGFA等。GO功能富集分析表明辛夷散治療過敏性鼻炎可能涉及脂多糖的反應(yīng)、細(xì)胞對有機(jī)環(huán)狀化合物反應(yīng)、氧化應(yīng)激反應(yīng)等1780條生物過程。KEGG通路結(jié)果顯示主要參與IL-17信號(hào)通路、HIF-1信號(hào)通路、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、癌癥通路等。分子對接結(jié)果顯示方中主要活性成分山奈酚、維斯體素、柚皮素、β-谷甾醇、芒柄花黃素等與IL-6、TNF、AKT1、IL1B、VEGFA等均能實(shí)現(xiàn)自發(fā)結(jié)合。
結(jié)論 經(jīng)典名方辛夷散可能通過多成分、多靶點(diǎn)及多種通路治療過敏性鼻炎,為深入研究辛夷散的作用機(jī)制提供了理論參考。
【關(guān)鍵詞】 辛夷散;經(jīng)典名方;網(wǎng)絡(luò)藥理學(xué);分子對接;過敏性鼻炎
中圖分類號(hào):R285"" 文獻(xiàn)標(biāo)志碼:A" "DOI:10.3969/j.issn.1003-1383.2024.04.003
Mechanism of classic prescription Xinyi Powder in the treatment of allergic rhinitis based on network pharmacology and molecular docking technology
GONG Yuanxun1, 2, ZHAO Jingjie3, LUO Miao1, JIANG Caiying3, WEI Jieying1, LI Yuli4▲
(1. Discipline Construction and Science and Technology Innovation Management Office, Affiliated Hospital of
Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; 2. College of Integrated Traditional
Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China;
3. Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for
Nationalities, Baise 533000, Guangxi, China; 4. Literature and Information Institute of Traditional Chinese
Medicine, Hunan Academy of Traditional Chinese Medicine, Changsha 410013, Hunan, China)
【Abstract】 Objective To explore the potential mechanism of the classic prescription Xinyi Powder in treating allergic rhinitis via network pharmacology and molecular docking technology.
Methods TCMSP database was used to search the active ingredients of the classic prescription Xinyi Powder and obtain the action targets. GeneCards and OMIM databases were used to query the disease targets related to allergic rhinitis, and then intersection target genes were obtained. The protein interaction network with common targets was constructed by using STRING database, and the results were visualized by importing Cytoscape 3.7.1, and key targets were screened according to topological data. GO and KEGG enrichment analysis of intersection targets was carried out by using Metascape database. AutoDockTools1.5.6 software was used to dock active compounds and core target proteins.
Results 184 active compounds, 224 related targets of Xinyi Powder and 104 common targets of Xinyi Powder and allergic rhinitis were screened. 17 key targets were screened by topology, mainly including IL-6, TNF, AKT1, IL1B and VEGFA, etc. GO functional enrichment analysis indicated that the treatment of allergic rhinitis with Xinyi Powder might involve 1780 biological processes, including lipopolysaccharide response, cellular response to organic cyclic compounds, and oxidative stress response, etc. KEGG pathway showed that it was mainly involved in IL-17 signal pathway, HIF-1 signal pathway, AGE-RAGE signal pathway in diabetic complications and cancer pathway, etc. Molecular docking results showed that the main active ingredients in the recipe were kaempferol, viscidin, naringenin, β-glutinosterol, mangiferin could spontaneously bind with IL-6, TNF, AKT1, IL1B, VEGFA, etc.
Conclusion Classic prescription Xinyi Powder may treat allergic rhinitis via multi-components, multi-targets and multi-pathways, which provides a theoretical reference for further studying the mechanism of Xinyi Powder.
【Keywords】 Xinyi Powder; classic prescription; network pharmacology; molecular docking; allergic rhinitis
過敏性鼻炎(allergic rhinitis,AR)是機(jī)體暴露于變應(yīng)原后發(fā)生的、主要由免疫球蛋白E(Ig E)介導(dǎo)的Ⅰ型變態(tài)反應(yīng),是鼻黏膜非感染性炎性疾病。AR的主要病理機(jī)制為外界抗原進(jìn)入機(jī)體內(nèi),引起體內(nèi)一種或多種炎癥介質(zhì)/細(xì)胞釋放/聚集[1],進(jìn)而引發(fā)臨床癥狀或體征,是臨床上常見的過敏性疾病之一。AR觸發(fā)因素有空氣傳播的花粉、霉菌、塵螨和動(dòng)物等。我國兒童過敏性鼻炎的患病率高達(dá)15.79%,且呈逐年增高的趨勢[2]。在美國和歐洲,過敏性鼻炎影響20%~30%的成年人,可能還有更高比例的兒童[3]。除了與過敏過程直接相關(guān)的鼻部和眼部癥狀外,這些癥狀對睡眠的干擾會(huì)導(dǎo)致白天嗜睡和生活質(zhì)量下降。目前過敏性鼻炎的藥物治療依賴于抗組胺藥的對癥治療以及免疫治療[4-5]。中醫(yī)學(xué)多將過敏性鼻炎歸屬于“鼻鼽”的范疇,記載首見于《素問·脈解篇》。本病病因大多為感受風(fēng)寒,內(nèi)因則為臟腑功能失司[6]。中醫(yī)藥治療過敏性鼻炎整體療效顯著,且能在一定程度上避免現(xiàn)代醫(yī)學(xué)療法給患者帶來的副作用,具有較高的安全性、長遠(yuǎn)性和可靠性。
辛夷散是我國2018年公布的百首經(jīng)典名方目錄中第36首方藥,源自宋代嚴(yán)用和的《嚴(yán)氏濟(jì)生方》 “治肺虛,風(fēng)寒濕熱之氣加之,鼻內(nèi)壅塞,涕出不已,或氣息不通,或不聞香臭”,其方藥組成包括辛夷、細(xì)辛、藁本、升麻、川芎、木通、防風(fēng)、羌活、甘草、白芷[7]等十來味中草藥成分。臨床研究發(fā)現(xiàn)辛夷散可明顯提高變異性鼻炎的有效率,減少不良癥狀發(fā)生率和復(fù)發(fā)率[8-10],辛夷散在治療過敏性鼻炎上具有很大的潛力,但其潛在作用機(jī)制尚不甚明確。
網(wǎng)絡(luò)藥理學(xué)分析方法是通過結(jié)合計(jì)算機(jī)運(yùn)算、生物信息學(xué)等學(xué)科,構(gòu)建網(wǎng)絡(luò),分析各種成分與上述網(wǎng)絡(luò)中關(guān)鍵節(jié)點(diǎn)之間的關(guān)系的一種技術(shù)。通過利用其系統(tǒng)的整體屬性,相對明確不同中藥的物質(zhì)基礎(chǔ),進(jìn)一步歸納其作用機(jī)制,這與中藥內(nèi)含的多種成分作用不同靶點(diǎn)的特點(diǎn)基本吻合[11-12]。本研究擬通過運(yùn)用網(wǎng)絡(luò)藥理學(xué)分析技術(shù),篩選辛夷散中對過敏性鼻炎發(fā)揮作用的潛在成分或作用靶點(diǎn),分析上述靶點(diǎn)具體參與的生物學(xué)過程或信號(hào)通路,以期能在一定程度上解釋經(jīng)典名方辛夷散防治過敏性鼻炎的機(jī)理,為該方的進(jìn)一步研究開發(fā)和臨床應(yīng)用提供理論支撐。
1 材料與方法
1.1 辛夷散的活性成分和作用靶點(diǎn)
檢索Traditional Chinese Medicine Integrated Database數(shù)據(jù)庫(TCMSP)[13](http://tcmspw.com/tcmsp.php)獲取辛夷散中各組成的主要化學(xué)成分并進(jìn)行篩選,篩選標(biāo)準(zhǔn)為口服利用度(OB)≥30%,類藥性(DL)≥0.18[14]。然后基于上述數(shù)據(jù)庫中相關(guān)數(shù)據(jù)靶點(diǎn)預(yù)測功能,查找辛夷散主要成分所對應(yīng)的靶點(diǎn)信息,登錄UniversalProtein數(shù)據(jù)庫系統(tǒng)(https://www.uniprot.org/)[15],篩選物種信息為“Homo sapiens”的數(shù)據(jù),校正獲取的靶點(diǎn)蛋白,并將其轉(zhuǎn)換為標(biāo)準(zhǔn)基因名(official gene symbol),創(chuàng)建基礎(chǔ)中藥復(fù)方靶點(diǎn)數(shù)據(jù)庫。
1.2 疾病靶點(diǎn)來源
本研究以“allergic rhinitis”為檢索詞在Genecard數(shù)據(jù)庫網(wǎng)站(http://www.genecards.org)[16]、Online Mendelian Inheritance in Man數(shù)據(jù)庫網(wǎng)站(https://omim.org)[17]中檢索疾病靶點(diǎn),將結(jié)果合并后刪除重復(fù)值,并利用UniversalProtein數(shù)據(jù)庫系統(tǒng)(網(wǎng)址如前所示)[15]將所得靶點(diǎn)進(jìn)行收集,并歸一化處理。
1.3 蛋白質(zhì)相互作用網(wǎng)絡(luò)
蛋白質(zhì)相互作用網(wǎng)絡(luò)是指通過生化分析、信號(hào)轉(zhuǎn)導(dǎo)和遺傳網(wǎng)絡(luò)的角度研究化合物和疾病相關(guān)蛋白質(zhì)分子之間的相關(guān)性。將“1.2”步驟中獲取并經(jīng)過歸一化處理過的藥物-疾病共有靶點(diǎn)導(dǎo)入STRING Database(http://string-db.org/),獲得共有靶點(diǎn)蛋白質(zhì)相互作用網(wǎng)絡(luò),并導(dǎo)入Cytoscape 3.7.1[18]軟件中將結(jié)果進(jìn)行可視化處理,根據(jù)網(wǎng)絡(luò)節(jié)點(diǎn)中的特性分析(如:連接度、中介中心性、接近中心性等)篩選蛋白質(zhì)相互作用網(wǎng)絡(luò)中的關(guān)鍵靶點(diǎn)。
1.4 GO和KEGG功能富集分析
基因功能分析網(wǎng)站Metascape[19](https://metascape.org/gp/index.html)平臺(tái)可以及時(shí)、高效地對批量基因或蛋白質(zhì)進(jìn)行注釋、功能富集分析及蛋白質(zhì)相互作用網(wǎng)絡(luò)構(gòu)建。通過將辛夷散與鼻炎等相關(guān)的共有靶點(diǎn)導(dǎo)入網(wǎng)站平臺(tái),設(shè)置參數(shù),進(jìn)行基因本體(gene ontology,GO)功能富集分析及京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析,通過微生信在線網(wǎng)站Bioinformatics(http://www.bioinformatics.com.cn/)對結(jié)果進(jìn)行可視化展示。
1.5 分子對接
從Protein Data Bank數(shù)據(jù)庫網(wǎng)站(http://www.rcsb.org/)下載辛夷散相關(guān)關(guān)鍵靶點(diǎn)蛋白的3D結(jié)構(gòu),從TCMSP平臺(tái)下載辛夷散主要活性成分相關(guān)文件,然后采用AutoDockTools1.5.6軟件對其進(jìn)行去水、加氫、計(jì)算電荷并進(jìn)行分子對接解析,最后選擇親和力佳的結(jié)果通過Open Babel GUI 2.3.1(http://openbabel.org/docs/2.3.1/GUI/GUI.html)轉(zhuǎn)換格式后導(dǎo)入PyMOL進(jìn)行結(jié)果分析及可視化。通過R語言中pheatmap包pheatmap函數(shù)構(gòu)建配體與受體結(jié)合能的熱圖[20]。
2 結(jié)" 果
2.1 辛夷散主要活性成分及分子作用靶點(diǎn)
按照上述方法篩選出辛夷散的有效活性成分184個(gè),其中辛夷相關(guān)有效活性成分15個(gè)、細(xì)辛8個(gè)、藁本1個(gè)、升麻8個(gè)、川芎6個(gè)、木通8個(gè)、防風(fēng)18個(gè)、羌活13個(gè)、白芷20個(gè)、甘草87個(gè)。根據(jù)OB值大小在表1列出各藥排名前20的主要活性化合物。將活性化合物與靶點(diǎn)預(yù)測結(jié)果合并,通過排除重復(fù)值,最終得到224個(gè)靶點(diǎn)。通過Cytoscape 3.7.1軟件對辛夷散中的活性成分及其作用靶點(diǎn)進(jìn)行相關(guān)性分析,獲得418個(gè)節(jié)點(diǎn)(包含10個(gè)中藥相關(guān)成分、224個(gè)作用靶點(diǎn)和184個(gè)活性成分)與2250條關(guān)系(圖1)。
2.2 辛夷散治療過敏性鼻炎的潛在靶點(diǎn)
通過Genecards、OMIM數(shù)據(jù)庫檢索到“過敏性鼻炎”疾病靶點(diǎn)分別為2115個(gè)和3個(gè),篩選并去除重復(fù)值后得到靶點(diǎn)2116個(gè)。將過敏性鼻炎疾病相關(guān)基因與辛夷散的成分靶點(diǎn)對應(yīng),取其交集即為辛夷散治療過敏性鼻炎的作用靶點(diǎn)。在EVenn在線軟件作圖工具平臺(tái)(http://www.ehbio.com/test/venn/)上輸入篩選的辛夷散藥物靶點(diǎn)及疾病靶點(diǎn),繪制韋恩圖,兩者取交集后獲得藥物-疾病共同靶點(diǎn)104個(gè)(圖2)。
2.3 辛夷散治療過敏性鼻炎潛在靶點(diǎn)PPI網(wǎng)絡(luò)及關(guān)鍵靶點(diǎn)篩選
將獲取的104個(gè)藥物-疾病共有靶點(diǎn)導(dǎo)入STRING Database系統(tǒng),蛋白種屬設(shè)為“homo sapiens”,最低相互作用閾值設(shè)為中等“medium confidence”(gt;0.4),其余參數(shù)保持默認(rèn)設(shè)置,獲得共有靶點(diǎn)蛋白互作網(wǎng)絡(luò)關(guān)系,除去1個(gè)游離靶點(diǎn),共103個(gè)節(jié)點(diǎn),1877條邊,將下載的蛋白相互作用tsv文件導(dǎo)入Cytoscape 3.7.1,進(jìn)行拓?fù)浞治霾⒗L制PPI網(wǎng)絡(luò)圖(見圖3),其中節(jié)點(diǎn)的面積越大、顏色越靠近紅色,表示節(jié)點(diǎn)Degree值越高,在網(wǎng)絡(luò)圖中越重要,面積越小、顏色越靠近黃色,表示節(jié)點(diǎn)Degree值越低。根據(jù)靶點(diǎn)的Degree值、中介中心性(betweenness centrality,BC)、接近中心性(closeness centrality,CC)中位數(shù)篩選出39個(gè)靶點(diǎn)(見圖4a);再進(jìn)一步根據(jù)圖4a中靶點(diǎn)的Degree值、BC、CC中位數(shù)篩選出17個(gè)關(guān)鍵靶點(diǎn)[20](圖4、表2)。
2.4 辛夷散治療過敏性鼻炎潛在靶點(diǎn)的GO/KEGG富集分析
通過Metascape對潛在作用靶點(diǎn)進(jìn)行生物功能分析,以P<0.01為條件,共篩選得到1963條GO條目,其中生物過程(BP)相關(guān)信息1780條,細(xì)胞組分(CC)相關(guān)信息57條,分子功能(MF)相關(guān)信息126條,通過對生物過程、分子功能和細(xì)胞組分中P值排名前10的信息進(jìn)行微生信在線網(wǎng)站(http://www.bioinformatics.com.cn/)可視化呈現(xiàn)(圖5),結(jié)果顯示,BP方面,辛夷散活性成分主要參與脂多糖、有機(jī)環(huán)狀化合物相關(guān)生理活動(dòng),并與氧化應(yīng)激、凋亡信號(hào)通路相關(guān),同時(shí)參與創(chuàng)傷后反應(yīng)調(diào)節(jié)過程;CC方面,辛夷散活性成分與膜筏、囊泡腔、早期內(nèi)涵體、網(wǎng)格蛋白包被的內(nèi)吞囊泡膜均有密切聯(lián)系;MF方面,辛夷散活性成分主要與細(xì)胞因子、核受體、蛋白質(zhì)同二聚體活性、DNA與轉(zhuǎn)錄因子、血紅素結(jié)合等功能相關(guān)。以上結(jié)果證實(shí)辛夷散活性成分可通過調(diào)控多種生物學(xué)途徑發(fā)揮對過敏性鼻炎的治療作用。
通過Metascape將潛在作用靶點(diǎn)與KEGG信號(hào)通路進(jìn)行匹配,以P<0.01為篩選條件,共富集得到303條信號(hào)通路。再對排名靠前的20條信號(hào)通路進(jìn)行KEGG通路富集分析可視化處理(圖5),氣泡顏色由綠色代表P值較大,紅色代表P值較小,P值越大代表顯著性越弱,氣泡體積越大代表該相關(guān)信號(hào)通路的基因計(jì)數(shù)越大。本研究篩選的辛夷散治療過敏性鼻炎的關(guān)鍵信號(hào)通路主要與IL-17信號(hào)通路、缺氧誘導(dǎo)因子-1(HIF-1)信號(hào)通路、NF-κB信號(hào)通路、PPAR信號(hào)通路、Wnt信號(hào)通路等相關(guān)。此外,一些特定疾病通路和癌癥通路如糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、癌癥通路等也被顯著富集,這表明辛夷散活性成分能夠通過多個(gè)信號(hào)通路發(fā)揮抗過敏性鼻炎的作用。
2.5 分子對接驗(yàn)證
為了進(jìn)一步驗(yàn)證網(wǎng)絡(luò)藥理學(xué)所產(chǎn)生的結(jié)果,選取辛夷散活性成分-靶點(diǎn)網(wǎng)絡(luò)圖Degree值前五的活性成分山奈酚(kaempferol)、維斯體素(Vestitol)、柚皮素(naringenin)、β-谷甾醇(beta-sitosterol)、芒柄花黃素(formononetin)與表2中Degree值排名前5的核心蛋白靶點(diǎn)IL-6、TNF、AKT1、IL1B、血管內(nèi)皮生長因子(VEGFA)進(jìn)行分子對接驗(yàn)證。使用半柔性對接軟件AutoDock進(jìn)行結(jié)合能力預(yù)測,構(gòu)象越穩(wěn)定,結(jié)合能越低,通常結(jié)合能小于0 kcal/mol提示相互作用的分子之間有一定的結(jié)合活性;結(jié)合能小于-5.0 kcal/mol提示相互作用的分子之間結(jié)合活性比較強(qiáng);結(jié)合能小于-7.0 kcal/mol時(shí)提示相互作用的分子之間有強(qiáng)烈的結(jié)合活性(表3、圖6)。以上結(jié)果說明辛夷散中有5種關(guān)鍵成分與核心靶點(diǎn)的結(jié)合活性較好,這可能是辛夷散發(fā)揮防治過敏性鼻炎效應(yīng)的關(guān)鍵所在。
3 討" 論
辛夷散由辛夷、細(xì)辛等十余味中草藥組成,方中的辛夷、細(xì)辛、白芷具有發(fā)散風(fēng)寒,通利鼻竅的作用;輔以羌活、防風(fēng)、藁本、升麻散在表之風(fēng)寒;加上川芎祛風(fēng)止痛、木通利濕化濁、甘草甘平以緩前藥辛散之性并調(diào)和諸藥,全方具有疏散在表之風(fēng)寒、通利鼻竅之功?,F(xiàn)代臨床用于過敏性鼻炎效果明顯[21-22]。過敏性鼻炎是鼻黏膜炎癥最常見的原因,是由浸潤性炎癥細(xì)胞釋放的多種介質(zhì)誘發(fā)的過敏性炎癥性疾病,與免疫球蛋白E(Ig E)介導(dǎo)的針對過敏原的免疫反應(yīng)有關(guān)。目前尚未有研究對經(jīng)典名方辛夷散治療過敏性鼻炎的潛在作用機(jī)制進(jìn)行探究。
本研究共檢索出經(jīng)典名方辛夷散治療過敏性鼻炎的主要化學(xué)成分包括山奈酚、維斯體素、β-谷甾醇等成分,在現(xiàn)代醫(yī)學(xué)已對上述成分有較為深入的研究。山奈酚對Ig E介導(dǎo)的肥大細(xì)胞活化引發(fā)的多種變態(tài)反應(yīng)性疾病存在明顯的抑制作用[23]。研究發(fā)現(xiàn)山奈酚通過調(diào)節(jié)包括過敏性鼻炎在內(nèi)的過敏性疾病中IL-32和胸腺基質(zhì)淋巴細(xì)胞生成素以及caspase-1活性的產(chǎn)生而具有抗過敏作用[24]。柚皮素可顯著降低變異性鼻炎大鼠的血清總Ig E、IL-4和IL-5水平[25]。β-谷甾醇通過抑制肥大細(xì)胞中組胺的釋放而減少過敏性鼻炎大鼠打噴嚏和揉搓鼻子的頻率[26]。芒柄花黃素已被證明具有抗炎作用,能夠緩解某些過敏性疾病的癥狀,其潛在作用機(jī)制可能為激活SIRT1/Nrf2信號(hào)通路,從而抑制JME/CF15細(xì)胞中IL-13誘導(dǎo)的炎癥和黏液形成[27]。
辛夷散治療過敏性鼻炎的核心蛋白靶點(diǎn)為IL-6、TNF、AKT1、IL1B、VEGFA,治療機(jī)制主要與調(diào)節(jié)IL-17信號(hào)通路、HIF-1信號(hào)通路、NF-κB信號(hào)通路以及糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、癌癥通路相關(guān)。IL-6可在組織損傷過程中產(chǎn)生趨化炎癥因子,是炎癥反應(yīng)劇烈程度的反映指標(biāo)[28],其可以正向調(diào)節(jié)Ig E的生成與活性[29]。IL-6在炎癥反應(yīng)過程中由TNF-α或IL-2等誘導(dǎo),能增強(qiáng)腫瘤壞死因子-α的炎癥催化作用,進(jìn)一步引起炎癥反應(yīng)的擴(kuò)大[30]。IL-6 控制著輔助性T細(xì)胞17(Th17)和調(diào)節(jié)性T(Treg)細(xì)胞之間的平衡。Treg和Th17細(xì)胞之間的不平衡被認(rèn)為在各種免疫介導(dǎo)的疾病中發(fā)揮病理作用[31]。TNF是由單核-巨噬細(xì)胞(TNF-α)和T細(xì)胞(TNF-β)分泌產(chǎn)生的細(xì)胞因子[32],由于對TNF-α所參與的生物學(xué)活動(dòng)相關(guān)研究較深入,因此目前研究中提到的TNF多指TNF-α[33]。TNF-α在過敏性鼻炎等變態(tài)反應(yīng)性疾病進(jìn)程中,通過趨化嗜酸/中性粒細(xì)胞向血管內(nèi)皮細(xì)胞遷移,誘導(dǎo)血管內(nèi)皮細(xì)胞和成纖維細(xì)胞的形成[34]。多項(xiàng)研究已經(jīng)證實(shí)TNF在過敏性哮喘、食物過敏、接觸性皮炎等過敏性疾病中呈上升趨勢[35-37]。AKT1能夠介導(dǎo)NF-κB炎癥信號(hào)通路的活化[38],研究證實(shí)變應(yīng)性鼻炎患者的AKT1水平低于健康對照組,而TNF-α、IL-6水平卻高于對照組[39],故有學(xué)者提出激活A(yù)KT1可以緩解變應(yīng)性鼻炎[40]。過敏性鼻炎患者的線粒體活性氧水平升高,其可能上調(diào)IL1B的表達(dá)以及IL-17的產(chǎn)生[41],局部阻斷IL1B和TNF-α可減少過敏性鼻炎的鼻黏膜病理性過敏性炎癥[42]。VEGFA是炎癥和血管生成的重要介質(zhì),是調(diào)節(jié)過敏性鼻炎炎癥反應(yīng)的重要分子,其與IL-17水平存在聯(lián)系[43]。VEGFA可調(diào)控血管的生成,促進(jìn)內(nèi)皮細(xì)胞的增殖和遷移,增加血管通透性,并能誘導(dǎo)肥大細(xì)胞、嗜酸性粒細(xì)胞和中性粒細(xì)胞向炎癥部位遷徙[44]。Th17/Tregs平衡在維持腸道免疫平衡中起重要作用。研究發(fā)現(xiàn)其主要的效應(yīng)分子IL-17缺乏會(huì)引起腸道通透性增加、細(xì)菌移位而使共生細(xì)菌的外周播散增加,觸發(fā)炎癥反應(yīng),加重腸道組織損傷[45]。HIF-1為缺氧誘導(dǎo)因子,與PI3K、MAPK、NF-κB信號(hào)傳導(dǎo)通路之間聯(lián)系緊密,多種促炎因子的轉(zhuǎn)錄和表達(dá)受HIF-1的調(diào)控[46]??梢?,辛夷散治療過敏性鼻炎的作用途徑可能與抑制炎癥反應(yīng)激活、腫瘤及脂多糖代謝等相關(guān)分子蛋白及信號(hào)通路密切相關(guān)。過敏和癌癥機(jī)體的免疫穩(wěn)態(tài)被打破。過敏患者不能充分耐受外來但無害的物質(zhì),而癌癥患者的免疫系統(tǒng)可耐受有害的腫瘤細(xì)胞,因此,過敏和癌癥在免疫耐受方面表現(xiàn)出相反的模式[47]。一項(xiàng)總結(jié)了32項(xiàng)流行病學(xué)研究的調(diào)查得出結(jié)論:過敏過程中的炎癥反應(yīng)可以支持致癌作用,但僅限于特定區(qū)域,而另一方面,增強(qiáng)免疫監(jiān)測的全身效應(yīng)可以預(yù)防癌癥[48]。調(diào)節(jié)性T細(xì)胞在癌癥和過敏的發(fā)病機(jī)制中起重要作用,故其是兩者共同的治療靶點(diǎn)。甚至有證據(jù)表明,過敏性免疫反應(yīng)可以預(yù)防某些類型的癌癥[49]。研究發(fā)現(xiàn)糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路的激活會(huì)增加氧化應(yīng)激[50]。過敏性疾病和1型糖尿病都是免疫介導(dǎo)的疾病,盡管在病因上不同,但它們在致病過程中均具有不適當(dāng)?shù)目乖禺愋訲細(xì)胞激活和效應(yīng)子功能[51]。2型糖尿病和哮喘有一個(gè)共同的病理生理學(xué)——“慢性炎癥”。本研究分子對接結(jié)果顯示辛夷散中山奈酚、維斯體素、β-谷甾醇等成分與以上核心靶點(diǎn)的結(jié)合活性較好,這可能是辛夷散發(fā)揮防治過敏性鼻炎效應(yīng)的關(guān)鍵所在,這為進(jìn)一步開展實(shí)驗(yàn)研究提供研究方向。
綜上所述,本研究基于網(wǎng)絡(luò)藥理學(xué)和分子對接技術(shù)預(yù)測了辛夷散通過多成分、多靶點(diǎn)和多通路方式治療過敏性鼻炎的潛在機(jī)制,課題組后續(xù)擬通過細(xì)胞和動(dòng)物實(shí)驗(yàn)進(jìn)一步驗(yàn)證探索辛夷散在抗炎及調(diào)節(jié)免疫方面的作用機(jī)制,促進(jìn)經(jīng)典名方辛夷散的進(jìn)一步研發(fā)應(yīng)用。
參 考 文 獻(xiàn)
[1] "BACHERT C, MASPERO J. Efficacy of second-generation antihistamines in patients with allergic rhinitis and comorbid asthma[J]. J Asthma,2011,48(9):965-973.
[2] "中國醫(yī)師協(xié)會(huì)兒科醫(yī)師分會(huì)兒童耳鼻咽喉專業(yè)委員會(huì).兒童過敏性鼻炎診療——臨床實(shí)踐指南[J].中國實(shí)用兒科雜志,2019,34(3):169-175.
[3] "HOYTE F C L, NELSON H S. Recent advances in allergic rhinitis[J].F1000Research,2018,7:1333.
[4] "SCHULER IV C F, MONTEJO J M. Allergic rhinitis in children and adolescents[J]. Pediatr Clin North Am,2019,66(5):981-993.
[5] "BERNSTEIN D I, SCHWARTZ G, BERNSTEIN J A. Allergic rhinitis:mechanisms and treatment[J]. Immunol Allergy Clin North Am,2016,36(2):261-278.
[6] "王馨,李林,李小薇,等.過敏性鼻炎的中醫(yī)治療綜述[J].中醫(yī)藥學(xué)報(bào),2019,47(2):122-125.
[7] "王領(lǐng)弟,林映雪,王瑩,等.經(jīng)典名方辛夷散的古今文獻(xiàn)分析與考證[J].中國藥房,2021,32(18):2300-2304.
[8] "袁孟賢,呂虎軍,潘鳳軍.觀察辛夷散霧化聯(lián)合過敏煎內(nèi)服治療變應(yīng)性鼻炎的應(yīng)用效果[J].世界最新醫(yī)學(xué)信息文摘(連續(xù)型電子期刊),2020,20(35):163.
[9] "陸榮錦,薛珊珊,邱歆瑩,等.辛夷散加減治療肺虛感寒型過敏性鼻炎臨床療效觀察[J].中華中醫(yī)藥雜志,2023,38(8):3993-3996.
[10] "李永磊,施丹丹.辛夷散湯劑經(jīng)鼻霧化吸入聯(lián)合孟魯司特鈉治療肺經(jīng)伏熱型小兒過敏性鼻炎的效果[J].河南醫(yī)學(xué)研究,2022,31(20):3802-3805.
[11] "LUO T T, LU Y, YAN S K, et al. Network pharmacology in research of Chinese medicine formula:methodology,application and prospective[J]. Chin J Integr Med,2020,26(1):72-80.
[12] "DAN W C, LIU J L, GUO X Y, et al. Study on medication rules of traditional Chinese medicine against antineoplastic drug-induced cardiotoxicity based on network pharmacology and data mining[J]. Evid Based Complement Alternat Med,2020,2020:7498525.
[13] "RU J, LI P, WANG J, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13.
[14] "ZENG L T, YANG K L, GE J W. Uncovering the pharmacological mechanism of Astragalus Salvia compound on pregnancy-induced hypertension syndrome by a network pharmacology approach[J]. Sci Rep,2017,7(1):16849.
[15] "The UniProt "Consortium. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Res,2017,45(D1):D158-D169.
[16] "SAFRAN M, DALAH I, ALEXANDER J, et al." GeneCards Version 3:the human gene integrator[J]. Database,2010,2010:baq020.
[17] "AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM.org:online Mendelian Inheritance in Man (OMIM ), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43(Database issue): D789-D798.
[18] "OTASEK D, MORRIS J H, BOU?AS J, et al. Cytoscape Automation:empowering workflow-based network analysis[J]. Genome Biol,2019,20(1):185.
[19] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523.
[20] "徐楚楚,羅夢雪,方霜霜,等.基于網(wǎng)絡(luò)藥理學(xué)探討半夏瀉心湯 “異病同治” 慢性萎縮性胃炎和失眠共同作用機(jī)制[J].遼寧中醫(yī)藥大學(xué)學(xué)報(bào),2021,23(9):118-124.
[21] "蘭亞娟,張可訓(xùn),相里小萌.三伏貼配合辛夷散治療小兒過敏性鼻炎30例療效觀察[J].臨床醫(yī)學(xué)研究與實(shí)踐,2016,1(15):109.
[22] "秦雪峰,吳亮,唐銳.辛夷散治療小兒過敏性鼻炎20例報(bào)道[J].甘肅中醫(yī),2004,17(12):16.
[23] "CAO J, LI C, MA P, et al. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells[J]. Phytomedicine,2020,79:153346.
[24] "OH H A, HAN N R, KIM M J, et al. Evaluation of the effect of kaempferol in a murine allergic rhinitis model[J]. Eur J Pharmacol,2013,718(1/2/3):48-56.
[25]AHIN A, SAKAT M S, KILI? K, et al. The protective effect of Naringenin against ovalbumin-induced allergic rhinitis in rats[J]. Eur Arch Otorhinolaryngol,2021,278(12):4839-4846.
[26] "ONOGAWA M, SUN G C, TAKUMA D, et al. Animal studies supporting the inhibition of mast cell activation by Eriobotrya japonica seed extract[J]. J Pharm Pharmacol,2009,61(2):237-241.
[27] "HUANG J J, CHEN X F, XIE A H. Formononetin ameliorates IL-13-induced inflammation and mucus formation in human nasal epithelial cells by activating the SIRT1/Nrf2 signaling pathway[J]. Mol Med Rep, 2021,24(6):832.
[28] "TANAKA T, NARAZAKI M,KISHIMOTO T. Interleukin (IL-6) immunotherapy[J].Cold Spring Harb Perspect Biol, 2018,10(8):a028456.
[29] "唐夢.腫瘤相關(guān)巨噬細(xì)胞(TAM)數(shù)量及IL-6、IL-8表達(dá)在彌漫大B細(xì)胞淋巴瘤(DLBCL)及濾泡性淋巴瘤(FL)中的臨床意義[D].合肥:安徽醫(yī)科大學(xué),2011.
[30] "KALENKA A, FELDMANN R E J R, OTERO K, et al. Changes in the serum proteome of patients with sepsis and septic shock[J]. Anesth Analg, 2006,103(6):1522-1526.
[31] "ZHANG C, ZHANG X, CHEN X H. Inhibition of the interleukin-6 signaling pathway:a strategy to induce immune tolerance[J]. Clin Rev Allergy Immunol,2014,47(2):163-173.
[32] "李鐵民,王潤田,韓志鵬,等.抑瘤飲增加小鼠S180移植瘤巨噬細(xì)胞浸潤及TNF-α和iNOS表達(dá)[J].免疫學(xué)雜志,2008,24(5):559-562.
[33] "高世勇,李丹.腫瘤壞死因子與癌癥相關(guān)研究進(jìn)展[J].中國藥理學(xué)通報(bào),2020,36(9):1209-1213.
[34] "張仲林,鐘玲,凌保東,等.玉屏風(fēng)散調(diào)控變應(yīng)性鼻炎大鼠IL-6、TNF-α活性的實(shí)驗(yàn)研究[J].中成藥,2014,36(9):1804-1808.
[35] BERRY M A, HARGADON B, SHELLEY M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma[J]. N Engl J Med,2006,354(7):697-708.
[36] SEMENIUK J, WASILEWSKA J, KACZMARSKI M. Serum interleukin:4 and tumor necrosis factor alpha concentrations in children with primary acid gastroesophageal reflux and acid gastroesophageal reflux secondary to cow's milk allergy[J]. Adv Med Sci, 2012,57(2):273-281.
[37] "DITTMAR D, SCHUTTELAAR M L. Immunology and genetics of tumour necrosis factor in allergic contact dermatitis[J]. Contact Dermatitis,2017,76(5):257-271.
[38] "LI Y, ZOU LY, LI T, et al. Mogroside V inhibits LPS-induced COX-2 expression/ROS production and overexpression of HO-1 by blocking phosphorylation of AKT1 in RAW264.7 cells[J]." Acta Biochim Biophys Sin,2019,51(4):365-374.
[39] "許戈,謝槍,周紅宇.血清miR-375及血液中靶基因在過敏性鼻炎患者治療前后的表達(dá)變化及意義[J].中南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2019,44(7):767-774.
[40] "WEI X, ZHANG B, LIANG X, et al. Higenamine alleviates allergic rhinitis by activating AKT1 and suppressing the EGFR/JAK2/c-JUN signaling[J]. Phytomedicine,2021,86:153565.
[41] "SHI Q" P, LEI Z W, CHENG G, et al. Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis[J]. Oncol Lett,2018,16(3):3193-3200.
[42] "HU W X, ZHOU W Y, ZHU X L, et al. Anti-interleukin-1 beta/tumor necrosis factor-alpha IgY antibodies reduce pathological allergic responses in guinea pigs with allergic rhinitis[J]. Mediators Inflamm,2016,2016:3128182.
[43] "BAE J S, KIM J H, KIM E H, et al. The role of IL-17 in a lipopolysaccharide-induced rhinitis model[J]. Allergy Asthma Immunol Res,2017,9(2):169-176.
[44] "KIM H Y, NAM S Y, HONG S W, et al. Protective effects of rutin through regulation of vascular endothelial growth factor in allergic rhinitis[J]. Am J Rhinol Allergy,2015,29(3):e87-e94.
[45] "MARTNEZ-LPEZ M, IBORRA S, CONDE-GARROSA R, et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and-22 production and promotes intestinal barrier integrity[J]. Immunity, 2019, 50(2): 446-461.e9.
[46] RATHNASAMY G, LING E A, KAUR C. Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway[J]. Neuropharmacology,2014,77:428-440.
[47] BERGMANN C. Allergo-oncology:what allergologists and oncologists can learn from each other:regulatory Tcells in allergy and cancer[J]. HNO,2020,68(2):115-122.
[48] RITTMEYER D, LORENTZ A. Relationship between allergy and cancer:an overview[J]. Int Arch Allergy Immunol, 2012, 159(3): 216-225.
[49] HOSTE E, CIPOLAT S, WATT F M. Understanding allergy and cancer risk:what are the barriers?[J]. Nat Rev Cancer,2015,15:131-132.
[50] "KAY A M, SIMPSON C L, STEWART J A Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification[J].J" Diabetes Res,2016,2016:6809703.
[51] "ODEGARD J M, NEPOM G T, WAMBRE E. Biomarkers for antigen immunotherapy in allergy and type 1 diabetes[J]. Clin Immunol,2015,161(1):44-50.
(收稿日期:2023-08-06 修回日期:2023-12-26)
(編輯:潘明志)