[專家介紹]劉羽,醫(yī)學(xué)博士,美國哈佛醫(yī)學(xué)院附屬麻省總醫(yī)院博士后,副主任醫(yī)師,副教授,暨南大學(xué)碩士研究生導(dǎo)師,珠海市英才計(jì)劃高層次人才,南粵青年好醫(yī)生,珠海市歐美同學(xué)會(huì)副會(huì)長。同時(shí)擔(dān)任珠海市人民醫(yī)院腦血管病診療中心副主任,兼任培訓(xùn)科主任,以及學(xué)科建設(shè)辦公室主任。學(xué)術(shù)兼職:中國卒中學(xué)會(huì)睡眠專業(yè)委員會(huì)委員,廣東省醫(yī)學(xué)會(huì)腦血管病學(xué)分會(huì)委員,廣東省卒中學(xué)會(huì)理事,廣東省醫(yī)學(xué)教育協(xié)會(huì)醫(yī)學(xué)模擬教育專業(yè)委員會(huì)常務(wù)委員,珠海市醫(yī)學(xué)會(huì)理事,珠海市醫(yī)師協(xié)會(huì)腦血管醫(yī)師分會(huì)常務(wù)委員,珠海市醫(yī)師協(xié)會(huì)介入醫(yī)師分會(huì)常務(wù)委員。主要研究領(lǐng)域是腦血管疾病的臨床及基礎(chǔ)研究,專注于腦梗死后神經(jīng)康復(fù)的病理生理學(xué)機(jī)制及治療方法。近五年在《Stroke》《Journal of Neurochemistry》等SCI期刊上發(fā)表了20余篇論文,參與編著了5部專著,主持國家級(jí)和省部級(jí)課題各一項(xiàng),還獲得了一項(xiàng)發(fā)明專利和一項(xiàng)省科學(xué)技術(shù)二等獎(jiǎng)。
【摘要】 出血轉(zhuǎn)化(HT)是缺血再灌注后導(dǎo)致的梗死區(qū)域自發(fā)性腦出血和采取相應(yīng)治療措施如使用組織型纖溶酶原激活劑(tPA)等后導(dǎo)致的繼發(fā)性出血。靜脈溶栓后HT的發(fā)生率與多種因素有關(guān),如急性缺血性卒中(AIS)患者的NIHSS評(píng)分、高血壓、高血糖、心房顫動(dòng)和使用抗凝藥物等。神經(jīng)炎癥反應(yīng)被認(rèn)為是介導(dǎo)缺血再灌注損傷的重要組成部分,與HT的發(fā)生和發(fā)展密切相關(guān)。tPA-APC通路在缺血再灌注損傷中起到關(guān)鍵作用,活化蛋白C (APC)主要作用于蛋白酶激活受體(PAR-1),通過抑制NF-κB介導(dǎo)的基質(zhì)金屬蛋白酶9(MMP-9)通路降低tPA溶栓后HT的發(fā)生。綜述AIS靜脈溶栓后出血轉(zhuǎn)化的發(fā)生機(jī)制和預(yù)防措施,將有助于明確治療靶點(diǎn),開發(fā)靶向特異性的神經(jīng)保護(hù)藥物,以及通過生物標(biāo)志物對(duì)HT進(jìn)行早期預(yù)測(cè),不斷提高缺血性卒中靜脈溶栓治療的臨床安全性,改善患者預(yù)后。
【關(guān)鍵詞】 急性缺血性卒中;出血轉(zhuǎn)化;組織型纖溶酶原激活劑;血腦屏障
中圖分類號(hào):R743.3"" 文獻(xiàn)標(biāo)志碼:A"" DOI:10.3969/j.issn.1003-1383.2024.04.001
Advances in the mechanism of hemorrhagic transformation after intravenous thrombolysis in ischemic stroke
DAI Yue, LIU Yu▲
(Department of Cerebrovascular Disease, Zhuhai Clinical Medical College of Jinan University—Zhuhai People's Hospital, Zhuhai 519050, Guangdong, China)
【Abstract】 ""Hemorrhagic transformation (HT) is spontaneous cerebral hemorrhage in the infarct area caused by ischemia-reperfusion and secondary hemorrhage caused by taking corresponding treatment measures such as tissue plasminogen activator (tPA), etc. The incidence of HT after intravenous thrombolysis is related to multiple factors such as NIHSS score, hypertension, hyperglycemia, atrial fibrillation and the use of anticoagulant drugs in patients with acute ischemic stroke (AIS). Neuroinflammatory response is considered to be an important component in mediating ischemia-reperfusion injury and is closely related to the occurrence and development of HT. tPA-APC pathway plays a key role in ischemia-reperfusion injury. Activated protein C (APC) mainly acts on protease-activated receptor (PAR-1) and reduces tPA dissolution by inhibiting the NF-κB-mediatedmatrix metalloproteinase 9 (MMP-9) pathway. Reviewing the mechanisms and preventive measures of hemorrhagic transformation after intravenous thrombolysis in AIS will help to clarify treatment targets, develop target-specific neuroprotective drugs, and early predict HT through biomarkers, and continuously improve ischemic risk, so as to continuously improve the clinical safety of intravenous thrombolysis for ischemic stroke and improve patient prognosis.
【Keywords】 acute ischemic stroke (AIS); hemorrhagic transformation; tissue plasminogen activator (tPA); blood-brain barrier
卒中是全球第二大致死原因,因其較高的發(fā)病率和致殘率,給患者及其家庭乃至整個(gè)社會(huì)都帶來了較為沉重的負(fù)擔(dān),并且隨著人口結(jié)構(gòu)的改變,這一現(xiàn)象將日趨嚴(yán)重。其中,缺血性卒中約占卒中總發(fā)病率的87%[1]。急性缺血性卒中(acute ischemic stroke, AIS)是由于大腦動(dòng)脈粥樣硬化導(dǎo)致血管狹窄甚至閉塞,以及遠(yuǎn)處栓子阻塞血流引起大腦血液供應(yīng)突然中斷,導(dǎo)致供血區(qū)域腦組織缺血缺氧壞死的一類疾病。靜脈溶栓療法是常見的早期恢復(fù)血管再通的主要措施之一,并且組織型纖溶酶原激活劑(tissue plasminogen activator, tPA)是唯一獲得美國食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于治療AIS的有效藥物[2]。但tPA靜脈溶栓面臨著治療時(shí)間窗狹窄的嚴(yán)格適應(yīng)證和出血轉(zhuǎn)化(hemorrhagic transformation,HT)——這一最常見且嚴(yán)重并發(fā)癥的風(fēng)險(xiǎn)。HT可加重AIS患者局灶性神經(jīng)功能缺損,甚至引起患者早期死亡。研究發(fā)現(xiàn),只有不到5%的腦卒中患者能夠從中受益[3]。因此,明確AIS靜脈溶栓后HT的發(fā)病機(jī)制,對(duì)于提高溶栓安全性和改善患者預(yù)后至關(guān)重要。
1 HT的定義及分類
HT是指缺血再灌注后導(dǎo)致的梗死區(qū)域自發(fā)性腦出血和采取相應(yīng)治療措施后如使用tPA溶栓藥物等導(dǎo)致的繼發(fā)性出血,出血部位既可以在梗死灶內(nèi),也可以在梗死灶遠(yuǎn)隔部位。靜脈溶栓后HT的發(fā)生率與多種因素有關(guān),如AIS患者的NIHSS評(píng)分、高血壓、高血糖、心房顫動(dòng)和使用抗凝藥物等[4]。
目前多采用ECASS標(biāo)準(zhǔn)對(duì)HT進(jìn)行影像學(xué)分型,即根據(jù)有無血腫占位效應(yīng)將HT分為出血性梗死(hemorrhagic infarction,HI)和腦實(shí)質(zhì)血腫 (parenchymal hematoma,PH)兩種。臨床上又基于有無神經(jīng)功能缺損加重(常用NIHSS評(píng)分增加≥4分定義)將HT分為癥狀性HT和無癥狀性HT。 流行病學(xué)調(diào)查結(jié)果顯示,溶栓治療后HT的發(fā)生率高達(dá)10%~48%,其中癥狀性HT發(fā)生率為2%~7%[5]。重要的是,癥狀性HT是缺血性卒中靜脈溶栓后3個(gè)月內(nèi)死亡的獨(dú)立危險(xiǎn)因素,給AIS患者生命健康構(gòu)成重大威脅[6]。
2 HT發(fā)生的病理生理機(jī)制
靜脈溶栓引起HT發(fā)生的病理生理機(jī)制是一個(gè)動(dòng)態(tài)且復(fù)雜的過程,至今仍尚未明確。目前的研究共識(shí)是再灌注使缺血受損的血腦屏障(blood-brain barrier,BBB)完整性進(jìn)一步被破壞。完整的BBB是由血管內(nèi)皮細(xì)胞、星形膠質(zhì)細(xì)胞末端足突、周細(xì)胞和完整的基膜等神經(jīng)血管單元緊密連接構(gòu)成,是調(diào)節(jié)神經(jīng)元穩(wěn)態(tài)和保護(hù)中樞神經(jīng)系統(tǒng)免受外來有害物質(zhì)攻擊的有力屏障。靜脈溶栓引起的缺血再灌注可通過一系列基質(zhì)蛋白水解、氧化應(yīng)激反應(yīng)、神經(jīng)炎癥及tPA自身神經(jīng)毒性所介導(dǎo)的相關(guān)信號(hào)通路等分子機(jī)制,導(dǎo)致BBB損傷和HT。
2.1 基質(zhì)蛋白降解
基質(zhì)蛋白降解被認(rèn)為是HT發(fā)生的中間環(huán)節(jié),其中基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)被研究得最為廣泛。MMPs是鋅和鈣依賴性肽內(nèi)切酶,可以降解內(nèi)皮細(xì)胞間緊密連接和幾乎所有的細(xì)胞外基質(zhì)。研究表明,MMP-2、MMP-3、MMP-9 等可在氧化應(yīng)激和炎癥因子等作用下在缺血腦組織中表達(dá)上調(diào),介導(dǎo)膠原蛋白、層黏連蛋白等結(jié)構(gòu)蛋白的降解,使BBB通透性增加,最終導(dǎo)致腦水腫和HT不良事件的發(fā)生[7]。其中MMP-9在誘導(dǎo)BBB的破壞中最為關(guān)鍵,使用MMP-9抑制劑可顯著降低tPA誘導(dǎo)的再灌注模型小鼠的腦水腫和腦出血體積,提高小鼠生存率和神經(jīng)行為改善能力[8]。實(shí)驗(yàn)研究發(fā)現(xiàn),亞低溫和tPA聯(lián)合治療可抑制腦組織中MMP-9產(chǎn)生,減輕再灌注損傷,并且亞低溫治療能在不提高溶栓并發(fā)癥的同時(shí)擴(kuò)大溶栓時(shí)間窗[9]。因此,抑制MMP-9活化可能是治療AIS靜脈溶栓患者發(fā)生HT的有效治療策略。然而,由于MMP-9抑制劑特異性較低,迄今為止臨床上尚未批準(zhǔn)針對(duì)MMP-9的功能性藥物應(yīng)用于HT治療中。在最近的一項(xiàng)研究中,JI等[10]開發(fā)了針對(duì)MMP-9的全人源單克隆抗體L13實(shí)現(xiàn)靶向抑制,結(jié)果顯示,L13抗體對(duì)野生型小鼠的神經(jīng)保護(hù)效應(yīng)與MMP-9基因缺失小鼠相當(dāng),顯著改善了卒中小鼠血腫體積和神經(jīng)行為能力,該研究也為早日實(shí)現(xiàn)臨床轉(zhuǎn)化提供了一種可行的方法。重要的是,AIS超急性期血漿中MMP-9 含量已被大量研究證明可作為溶栓后 HT 的獨(dú)立預(yù)測(cè)因子,其水平高低也與BBB損傷程度相關(guān)[11]。在另一項(xiàng)研究中,LIU等[12]發(fā)現(xiàn)再灌注過程中大量活化的MMP-2可以下調(diào)小窩蛋白(Caveolin-1,Cav-1)的表達(dá),繼而引起封閉蛋白-5(claudin-5)及緊密連接相關(guān)蛋白o(hù)ccludin在血管內(nèi)皮細(xì)胞中再分布,導(dǎo)致BBB早期開放。此外,有研究發(fā)現(xiàn)血清和梗死部位低水平的Cav-1可預(yù)測(cè)溶栓后HT的發(fā)生,并且與tPA給藥無關(guān)[13]。因此,以MMPs為核心介導(dǎo)的基質(zhì)蛋白降解是BBB損傷的關(guān)鍵環(huán)節(jié),而針對(duì)MMPs靶向特異性抑制劑藥物的開發(fā)和它們?cè)隗w內(nèi)的藥物代謝動(dòng)力學(xué)很可能成為下一步研究的熱點(diǎn)。
2.2 氧化應(yīng)激反應(yīng)
氧化應(yīng)激是指體內(nèi)微環(huán)境改變,引起氧化系統(tǒng)和抗氧化系統(tǒng)之間調(diào)節(jié)失衡,最終導(dǎo)致細(xì)胞或組織損傷的病理過程,被認(rèn)為是造成缺血再灌注后HT發(fā)生的關(guān)鍵環(huán)節(jié)。缺血再灌注可誘導(dǎo)氧化磷酸化蛋白的翻譯后修飾過度活躍,從而產(chǎn)生高線粒體膜電位,導(dǎo)致過量自由基產(chǎn)生[14]。自由基主要是指活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS),RNS 包括一氧化氮(NO)及過氧化硝酸鹽(ONOO-)等。高水平的自由基可引起蛋白質(zhì)變性、DNA及RNA損傷、酶失活和脂質(zhì)過氧化等,誘導(dǎo)細(xì)胞死亡和破壞BBB,進(jìn)而導(dǎo)致HT發(fā)生。靜脈溶栓后過量產(chǎn)生的RNS可以通過RNS/Cav-1/MMP信號(hào)級(jí)聯(lián)反應(yīng)加劇BBB破壞[15]。另外有研究發(fā)現(xiàn),高遷移率族蛋白B1(high mobility group box 1 protein,HMGB1)是MMP-9表達(dá)上調(diào)的激活劑,ONOO-可通過激活HMGB1/TLR2/MMP-9信號(hào)傳導(dǎo)促進(jìn)HT,而給予HMGB1抑制劑甘草酸可減弱ONOO-介導(dǎo)的缺血再灌注損傷[16]。在動(dòng)物實(shí)驗(yàn)中也已經(jīng)證明,對(duì)于晚期溶栓的MCAO小鼠,給予抗HMGB1抗體可以減少HT發(fā)生[17]。這也為超過溶栓治療時(shí)間窗的AIS患者提供了一種治療選擇。12/15-脂氧合酶(12/15-LOX)作為脂質(zhì)過氧化途徑的關(guān)鍵代謝酶,在再灌注后表達(dá)上調(diào),可以直接攻擊線粒體膜造成其功能障礙,并進(jìn)一步釋放 ROS介導(dǎo)神經(jīng)元氧化應(yīng)激損傷[18]。近年來還有研究發(fā)現(xiàn)12/15-LOX參與鐵死亡通路介導(dǎo)溶栓后再灌注損傷[19]。此外,在藥物干預(yù)方面,LIU等[20]開發(fā)了一種新型高選擇性的12/15-LOX抑制劑:ML351,結(jié)果提示它能夠在納摩爾濃度級(jí)別降低大腦中動(dòng)脈閉塞/再灌注(MCAO/R)小鼠模型溶栓后的梗死體積和HT發(fā)生率。然而,12/15-LOX介導(dǎo)溶栓后HT發(fā)生的潛在機(jī)制和具體途徑尚不明確,還有待進(jìn)一步研究。以上研究表明,氧化應(yīng)激與溶栓介導(dǎo)HT的發(fā)生發(fā)展有著密切聯(lián)系,然而,氧化應(yīng)激途徑涉及的分子較為廣泛,我們還需更加詳細(xì)了解和量化參與AIS靜脈溶栓處理后氧化還原信號(hào)傳遞的物種和其介導(dǎo)的信號(hào)傳遞,這對(duì)針對(duì)HT治療靶點(diǎn)的藥物開發(fā)至關(guān)重要。
2.3 神經(jīng)炎癥反應(yīng)
神經(jīng)炎癥反應(yīng)被認(rèn)為是介導(dǎo)缺血再灌注損傷的重要組成部分,與HT的發(fā)生和發(fā)展密切相關(guān)。卒中發(fā)生早期,小膠質(zhì)細(xì)胞等神經(jīng)炎癥細(xì)胞在缺血缺氧微環(huán)境下被強(qiáng)烈激活,釋放大量的趨化因子和促炎細(xì)胞因子如腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)等,造成神經(jīng)元壞死和凋亡[21]。此外,小膠質(zhì)細(xì)胞還可產(chǎn)生MMPs和眾多炎癥介質(zhì)一起介導(dǎo)BBB的破壞[22]。外周免疫細(xì)胞如中性粒細(xì)胞、單核細(xì)胞和淋巴細(xì)胞等在炎癥趨化作用下,黏附并穿過受損的BBB涌入發(fā)炎的腦實(shí)質(zhì)中,通過炎癥級(jí)聯(lián)反應(yīng)進(jìn)一步活化星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞,正反饋促進(jìn)神經(jīng)元損傷。重要的是,缺血再灌注過程可加劇這種神經(jīng)炎癥反應(yīng)。動(dòng)物實(shí)驗(yàn)表明,外源性tPA處理可促進(jìn)小膠質(zhì)細(xì)胞募集,由M2抗炎型向M1促炎型轉(zhuǎn)化,同時(shí)釋放MMP-3,促進(jìn)BBB損傷和HT發(fā)生[23]。早期研究表明,中性粒細(xì)胞在短暫性大腦中動(dòng)脈閉塞模型中的浸潤程度明顯高于永久性動(dòng)脈閉塞模型,且浸潤達(dá)峰時(shí)間提前[24]。最近的臨床研究也證實(shí)了這一觀點(diǎn),在接受靜脈溶栓治療后出現(xiàn)不良預(yù)后的AIS患者中,他們體內(nèi)的單核細(xì)胞計(jì)數(shù)明顯高于預(yù)后良好患者[25]。需要指出的是,中性粒細(xì)胞作為最早被招募到梗死區(qū)域的外周炎性細(xì)胞,是卒中發(fā)生后腦組織內(nèi)產(chǎn)生MMP-9的重要來源。此外,中性粒細(xì)胞還可產(chǎn)生過量的ROS介導(dǎo)細(xì)胞膜脂質(zhì)過氧化,破壞BBB[26]。有趣的是,研究發(fā)現(xiàn)tPA也與中性粒細(xì)胞向病灶處的募集和活化有關(guān)。在應(yīng)用tPA治療的AIS患者中,給藥后30分鐘即可觀察到中性粒細(xì)胞脫粒高峰[27]。系統(tǒng)評(píng)價(jià)分析了涉及17 232名AIS患者的52項(xiàng)臨床研究,提示中性粒細(xì)胞和淋巴細(xì)胞比值與3個(gè)月后預(yù)后不良和HT相關(guān)[28]。較高的嗜酸性粒細(xì)胞計(jì)數(shù)也可預(yù)測(cè)HT發(fā)生[29]。這些發(fā)現(xiàn)表明,炎癥細(xì)胞浸潤是溶栓再灌注誘導(dǎo)HT的重要因素,針對(duì)免疫細(xì)胞在AIS發(fā)生后的缺血和再灌注階段的病理生理途徑進(jìn)行靶向性的治療可能對(duì)預(yù)防HT發(fā)生有效。
2.4 tPA的作用
tPA是絲氨酸蛋白酶的一種,可將不溶性的纖維蛋白原轉(zhuǎn)變?yōu)榭扇苄缘睦w維蛋白,從而使阻塞的血管再通。然而,有研究證明tPA除了其血栓溶解作用外,還具有潛在的神經(jīng)毒性,應(yīng)用tPA可使AIS患者發(fā)生HT的風(fēng)險(xiǎn)增加10倍[30-31]。以下簡(jiǎn)要介紹tPA激活的幾種信號(hào)通路介導(dǎo)HT發(fā)生機(jī)制。
2.4.1 tPA-LRP通路
低密度脂蛋白受體相關(guān)蛋白(low-density lipoprotein receptor-related protein,LRP)是一種可介導(dǎo)內(nèi)吞作用的跨膜脂蛋白受體,廣泛表達(dá)于神經(jīng)元及血管周圍星形膠質(zhì)細(xì)胞表面,可與包括tPA在內(nèi)的多種配體相互作用,調(diào)節(jié)細(xì)胞信號(hào)傳導(dǎo)[32]。tPA通過BBB的方式有LRP依賴性和非依賴性兩種形式,而這主要取決于BBB的損傷程度[33]。然后,進(jìn)入腦實(shí)質(zhì)中的tPA可以進(jìn)一步剪切小膠質(zhì)細(xì)胞表面的LRP,通過激活轉(zhuǎn)錄因子NF-κB途徑促進(jìn)MMPs基因表達(dá),從而導(dǎo)致腦水腫和HT發(fā)生[34]。此外,tPA還可以通過LRP-1/Akt通路誘導(dǎo)中性粒細(xì)胞在缺血腦組織浸潤,介導(dǎo)再灌注損傷[35]。在另一項(xiàng)基礎(chǔ)研究中發(fā)現(xiàn),缺血條件下,tPA能夠通過LRP-1激活中性粒細(xì)胞胞外陷阱(NETs)形成的關(guān)鍵酶PAD4,隨后大量釋放入腦組織的NETs進(jìn)一步激活小膠質(zhì)細(xì)胞中的DNA感受器Cgas-STING,介導(dǎo)BBB破壞和HT發(fā)生[36]。該實(shí)驗(yàn)也為我們提高tPA溶栓治療的安全性提供了新的靶標(biāo)。并且,LRP還被證明與tPA介導(dǎo)的谷氨酸興奮性毒性有關(guān)[37]。以上研究表明LRP在參與tPA介導(dǎo)的腦損傷,尤其是神經(jīng)炎癥方面具有重要作用。
2.4.2 tPA-APC 通路
活化蛋白C (activated protein C,APC)是一種具有抑制血栓形成、抗炎和抗凋亡活性的內(nèi)源性蛋白,具有直接的血管和神經(jīng)保護(hù)作用[38]。LIU等[39]研究發(fā)現(xiàn),tPA可以激活介導(dǎo)細(xì)胞凋亡信號(hào)傳導(dǎo)路徑的關(guān)鍵啟動(dòng)因子caspase-8,從而促進(jìn)缺血缺氧狀態(tài)下的腦內(nèi)皮細(xì)胞和神經(jīng)元壞死凋亡,而APC可以抑制該信號(hào)途徑阻斷tPA的神經(jīng)血管毒性。CHENG等[40]在2006年首次發(fā)現(xiàn),在卒中體內(nèi)和體外模型中,APC主要作用于蛋白酶激活受體 (protease-activated receptor 1,PAR-1),通過抑制 NF-κB介導(dǎo)的MMP-9通路降低tPA 溶栓后HT的發(fā)生。WANG等[41]研究發(fā)現(xiàn),在大鼠腦缺血再灌注模型中,APC可以抑制NF-κB的活化和NF-κB下游炎癥因子的激活,從而降低梗死體積并改善BBB通透性。此外,在一項(xiàng)涉及110名AIS患者的多中心隨機(jī)、雙盲、安慰劑對(duì)照Ⅱ期試驗(yàn)中,結(jié)果顯示采用APC類似物3K3A-APC聯(lián)合治療的溶栓患者,其HT發(fā)生率大大降低,較單純tPA治療更加安全、有效[42]。需要指出的是,在體外實(shí)驗(yàn)中已經(jīng)證明治療濃度下的3K3A-APC對(duì)tPA的血栓溶解功能并無影響[43]。以上研究表明,APC有望成為tPA溶栓的常規(guī)輔助療法廣泛應(yīng)用于臨床實(shí)踐中。
2.4.3 tPA-PDGF 通路
血小板衍生生長因子受體 (platelet-derived growth factor receptor,PDGFR)在調(diào)控細(xì)胞分裂、增殖、趨化和血管收縮等生理功能方面具有重要作用。早期研究表明,tPA能夠與活化血管周圍星形膠質(zhì)細(xì)胞上的PDGFR-α相結(jié)合,促進(jìn)Rho激酶途徑的高表達(dá),進(jìn)而破壞BBB,而使用PDGFR-α拮抗劑伊馬替尼可降低BBB通透性和tPA引起的HT[44]。在另一項(xiàng)研究中,SHEN等[45]發(fā)現(xiàn)PDGFR-β高度特異性表達(dá)于周細(xì)胞和血管平滑肌細(xì)胞中,它在缺血缺氧微環(huán)境中表達(dá)上調(diào),通過促進(jìn)轉(zhuǎn)化生長因子-β1(TGF-β)的表達(dá)發(fā)揮神經(jīng)保護(hù)效應(yīng)。YANG等[46]通過實(shí)驗(yàn)研究發(fā)現(xiàn),外源性的tPA可通過抑制周細(xì)胞中PDGFR-β/TGF-β/p-Smad2/3信號(hào)傳導(dǎo),促進(jìn)周細(xì)胞中炎癥因子產(chǎn)生破壞BBB。此外,SU等[47]通過體外和體內(nèi)試驗(yàn)證明了LRP1和小膠質(zhì)細(xì)胞上表達(dá)的整合素Mac-1與促進(jìn)tPA誘導(dǎo)的PDGF-CC高效激活有關(guān)。HE等[48]發(fā)現(xiàn),在大鼠電凝血栓栓塞模型中,在給予tPA之前預(yù)先進(jìn)行短期缺血處理可以抑制PDGF-CC/PDGFRα通路活化,減輕tPA導(dǎo)致的BBB破壞,并作為AIS患者溶栓治療的一種輔助療法。
2.4.4 tPA-NMDAR通路
N-甲基-D-天冬氨酸受體 (N-methyl-D-aspartate receptor, NMDAR)是一種受谷氨酸激活的離子通道蛋白,參與調(diào)控突觸可塑性、神經(jīng)網(wǎng)絡(luò)活動(dòng)和認(rèn)知功能等。大量釋放的興奮性遞質(zhì)即谷氨酸過度激活NMDARs,促進(jìn)Ca2+內(nèi)流,致使神經(jīng)元內(nèi)鈣超載,觸發(fā)一系列如鈣蛋白酶激活、氧化應(yīng)激、線粒體損傷等興奮性毒性級(jí)聯(lián)反應(yīng),造成神經(jīng)元壞死凋亡和BBB破壞[49]。據(jù)報(bào)道,tPA可以以獨(dú)立于纖溶酶原激活發(fā)生的方式激活NMDAR 信號(hào)轉(zhuǎn)導(dǎo),同時(shí)剪切并結(jié)合NMDAR的NR1亞基,增強(qiáng)NMDAR介導(dǎo)的神經(jīng)興奮性毒性[50]。
由此可見,tPA可以激活多個(gè)信號(hào)分子造成神經(jīng)元和BBB損傷,極大增加HT的風(fēng)險(xiǎn)。而靶向阻止這些信號(hào)通路的激活有望為HT的治療提供新的思路和方向。
3 小結(jié)
HT是AIS患者靜脈溶栓后的常見并發(fā)癥,可加重患者神經(jīng)功能缺損癥狀,帶來更差的臨床預(yù)后,甚至造成患者死亡。HT的發(fā)生機(jī)制十分復(fù)雜,是多種分子機(jī)制協(xié)同交叉作用的結(jié)果,其病理生理學(xué)基礎(chǔ)是BBB的崩解。缺血缺氧發(fā)生后,血管壁內(nèi)皮細(xì)胞等功能細(xì)胞受到損傷,出現(xiàn)能量代謝紊亂、白細(xì)胞浸潤、炎癥激活等多項(xiàng)病理過程,造成細(xì)胞毒性水腫和BBB通透性異常增高;隨即進(jìn)行的溶栓再通過程使恢復(fù)的血流大量擠入受到損傷且異常通透的血管床內(nèi),在挽救缺血半暗帶的同時(shí)激活一系列復(fù)雜瀑布級(jí)聯(lián)反應(yīng),如基質(zhì)蛋白降解、過量自由基蓄積、離子失衡、炎癥反應(yīng)和tPA介導(dǎo)的神經(jīng)毒性效應(yīng)等,最終上述機(jī)制共同作用導(dǎo)致完整的BBB損傷,發(fā)生HT、腦水腫、梗死面積擴(kuò)大等預(yù)后不良事件。因此,不斷深入探索靜脈溶栓引起HT的分子機(jī)制,將有助于我們明確治療靶點(diǎn),從而開發(fā)靶向特異性的神經(jīng)保護(hù)藥物,還可以通過生物標(biāo)志物對(duì)HT進(jìn)行早期預(yù)測(cè),不斷提高缺血性卒中靜脈溶栓治療的臨床安全性,顯著改善患者預(yù)后,提高患者生存質(zhì)量并降低全社會(huì)經(jīng)濟(jì)負(fù)擔(dān)。
參 考 文 獻(xiàn)
[1] "KLEINDORFER D O, TOWFIGHI A, CHATURVEDI S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack:a guideline from the American heart association/american stroke association[J]. Stroke, 2021, 52(7): e364-e467.
[2] "TSIVGOULIS G, KATSANOS A H, SANDSET E C, et al. Thrombolysis for acute ischaemic stroke:current status and future perspectives[J]. Lancet Neurol, 2023, 22(5): 418-429.
[3] "HASAN T F, HASAN H, KELLEY R E. Overview of acute ischemic stroke evaluation and management[J]. Biomedicines, 2021, 9(10): 1486.
[4] "勞小平.影響阿替普酶靜脈溶栓治療急性缺血性腦卒中效果的相關(guān)因素研究進(jìn)展[J].右江醫(yī)學(xué),2021,49(7):553-557.
[5] "中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì),中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì)腦血管病學(xué)組.中國急性腦梗死后出血轉(zhuǎn)化診治共識(shí)2019[J].中華神經(jīng)科雜志,2019,52(4):252-265.
[6] YAGHI S, WILLEY J Z, CUCCHIARA B, et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke:a scientific statement for healthcare professionals from the American heart association/american stroke association[J]. Stroke, 2017, 48(12): e343-e361.
[7] "BABENKO V A, FEDULOVA K S, SILACHEV D N, et al. The role of matrix metalloproteinases in hemorrhagic transformation in the treatment of stroke with tissue plasminogen activator[J]. J Pers Med, 2023, 13(7): 1175.
[8] "SALEEM S, WANG D, ZHAO T Q, et al. Matrix metalloproteinase-9 expression is enhanced by ischemia and tissue plasminogen activator and induces hemorrhage, disability and mortality in experimental stroke[J]. Neuroscience, 2021, 460: 120-129.
[9] "HASSANIPOUR M, ZARISFI M, EHSANI V, et al. Whole body hypothermia extends tissue plasminogen activator treatment window in the rat model of embolic stroke[J]. Life Sci, 2020, 256: 117450.
[10] "JI Y B, GAO Q, MA Y Z, et al. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity[J]. Pharmacol Res, 2023, 190: 106720.
[11] "余小艷,叢光燕,呂鴻燕,等.基質(zhì)金屬蛋白酶9、脂蛋白相關(guān)磷脂酶A2與急性缺血性卒中靜脈溶栓預(yù)后及腦出血轉(zhuǎn)化的相關(guān)性[J].蚌埠醫(yī)學(xué)院學(xué)報(bào),2023,48(6):772-775.
[12] "LIU J, JIN X C, LIU K J, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage[J]. J Neurosci, 2012, 32(9): 3044-3057.
[13] "GUBERN-MRIDA C, COMAJOAN P, HUGUET G, et al. Cav-1 protein levels in serum and infarcted brain correlate with hemorrhagic volume in a mouse model of thromboembolic stroke,independently of rt-PA administration[J]. Mol Neurobiol, 2022, 59(2): 1320-1332.
[14] "WU M M, GU X P, MA Z L. Mitochondrial quality control in cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2021, 58(10): 5253-5271.
[15] "CHEN H S, CHEN X, LI W T, et al. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries:potential application for drug discovery[J]. Acta Pharmacol Sin, 2018, 39(5): 669-682.
[16] "CHEN H S, GUAN B H, WANG B, et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling[J]. Transl Stroke Res, 2020, 11(5): 967-982.
[17] "NAKANO T, TAGASHIRA Y, EGASHIRA S, et al. Therapeutic effect of anti-HMGB1 antibody in a mouse model of 4-h middle cerebral artery occlusion:comparison with tissue plasminogen activator[J]. Neuroreport, 2022, 33(7): 297-303.
[18] "GABEREL T, GAKUBA C, ZHENG Y, et al. Impact of 12/15-lipoxygenase on brain injury after subarachnoid hemorrhage[J]. Stroke, 2019, 50(2): 520-523.
[19] "WANG P N, CUI YM, REN Q Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis[J]. Cell Death Dis, 2021, 12(5): 447.
[20] "LIU Y, ZHENG Y, KARATAS H, et al. 12/15-lipoxygenase inhibition or knockout reduces warfarin-associated hemorrhagic transformation after experimental stroke[J]. Stroke, 2017, 48(2): 445-451.
[21] "ALSBROOK D L, DI NAPOLI M, BHATIA K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke[J]. Curr Neurol Neurosci Rep, 2023, 23(8): 407-431.
[22] "KUO P C, WENG W T, SCOFIELD B A, et al. Interferon-β alleviates delayed tPA-induced adverse effects via modulation of MMP3/9 production in ischemic stroke[J]. Blood Adv, 2020, 4(18): 4366-4381.
[23] "KUO P C, WENG W T, SCOFIELD B A, et al. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke[J]. Front Immunol, 2023, 14: 1148069.
[24] "ZHANG R L, CHOPP M, CHEN H, et al. Temporal profile of ischemic tissue damage, neutrophil response,and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat[J]. J Neurol Sci, 1994, 125(1): 3-10.
[25] "DONG X Y, NAO J F, GAO Y. Peripheral monocyte count predicts outcomes in patients with acute ischemic stroke treated with rtPA thrombolysis[J]. Neurotox Res, 2020, 37(2): 469-477.
[26] "CARBONE F, BONAVENTURA A, MONTECUCCO F. Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury[J]. Front Physiol, 2019, 10: 1587.
[27] "CARBONE F, VUILLEUMIER N, BERTOLOTTO M, et al. Treatment with recombinant tissue plasminogen activator (r-TPA) induces neutrophil degranulation in vitro via defined pathways[J]. Vascul Pharmacol, 2015, 64: 16-27.
[28] "WU B, LIU F, SUN G Y, et al. Prognostic role of dynamic neutrophil-to-lymphocyte ratio in acute ischemic stroke after reperfusion therapy:a meta-analysis[J]. Front Neurol, 2023, 14: 1118563.
[29] "JUCEVII" T N,MIKUIS P,BALNYT R. Absolute blood eosinophil count could be a potential biomarker for predicting haemorrhagic transformation after intravenous thrombolysis for acute ischaemic stroke[J]. BMC Neurol, 2019, 19(1): 127.
[30] "GONG P, LI M C, ZOU C L, et al. Tissue plasminogen activator causes brain microvascular endothelial cell injury after oxygen glucose deprivation by inhibiting sonic hedgehog signaling[J]. Neurochem Res, 2019, 44(2): 441-449.
[31] "SIFAT A E, VAIDYA B, ABBRUSCATO T J. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke[J]. AAPS J, 2017, 19(4): 957-972.
[32] "GONIAS S L. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation[J]. Am J Physiol Cell Physiol, 2021, 321(4): C721-C734.
[33] "BENCHENANE K, BEREZOWSKI V, FERNNDEZ-MONREAL M, et al. Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process[J]. Stroke, 2005, 36(5): 1065-1070.
[34] "WHITE S, LIN L, HU K B. NF-κB and tPA signaling in kidney and other diseases[J]. Cells, 2020, 9(6): 1348.
[35] "LIBERALE L, BERTOLOTTO M, MINETTI S, et al. Recombinant tissue plasminogen activator (r-tPA) induces in-vitro human neutrophil migration via low density lipoprotein receptor-related protein 1 (LRP-1)[J]. Int J Mol Sci, 2020, 21(19): 7014.
[36] "WANG R R, ZHU Y B, LIU Z W, et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke[J]. Blood, 2021, 138(1): 91-103.
[37] "GUNNER C B, AZMOON P, MANTUANO E, et al. An antibody that targets cell-surface glucose-regulated protein-78 inhibits expression of inflammatory cytokines and plasminogen activator inhibitors by macrophages[J]. J Cell Biochem, 2023, 124(5): 743-752.
[38] "OTO J, FERNNDEZ-PARDO , MIRALLES M, et al. Activated protein C assays: a review[J]. Clin Chim Acta, 2020, 502: 227-232.
[39] "LIU D, CHENG T, GUO H, et al. Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C[J]. Nat Med, 2004, 10(12): 1379-1383.
[40] "CHENG T, PETRAGLIA A L, LI Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage[J]. Nat Med, 2006, 12(11): 1278-1285.
[41] "WANG J Q, RAO G F, MA Y F, et al. Neuroprotective effect of activated protein C on blood-brain barrier injury during focal cerebral ischemia/reperfusion[J]. Dose-Response, 2020, 18(2): 155932582091728.
[42] "LYDEN P, PRYOR K E, COFFEY C S, et al. Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, A recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke[J]. Ann Neurol, 2019, 85(1): 125-136.
[43] "MUKHERJEE P, LYDEN P, FERNNDEZ J A, et al. 3K3A-activated protein C variant does not interfere with the plasma clot Lysis activity of tenecteplase[J]. Stroke, 2020, 51(7): 2236-2239.
[44] "SU E J, FREDRIKSSON L, GEYER M, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke[J]. Nat Med, 2008, 14(7): 731-737.
[45] "SHEN J,XU G H,ZHU R X, et al. PDGFR-β restores blood-brain barrier functions in a mouse model of focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2019, 39(8): 1501-1515.
[46] "YANG E Y, CAI Y, YAO X H, et al. Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia[J]. Aging, 2019, 11(22): 10167-10182.
[47] "SU E J, CAO C Z, FREDRIKSSON L, et al. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke[J]. Acta Neuropathol, 2017, 134(4): 585-604.
[48] "HE Q Y, MA Y Z, FANG C, et al. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC[J]. Pharmacol Res, 2023, 187: 106641.
[49] "LEBRUN F, LEVARD D, LEMARCHAND E, et al. Improving stroke outcomes in hyperglycemic mice by modulating tPA/NMDAR signaling to reduce inflammation and hemorrhages[J]. Blood Adv, 2024, 8(5): 1330-1344.
[50] "LOUET E R, GLAVAN M, ORSET C, et al. tPA-NMDAR signaling blockade reduces the incidence of intracerebral aneurysms[J]. Transl Stroke Res, 2022, 13(6): 1005-1016.
(收稿日期:2024-01-28 修回日期:2024-02-18)
(編輯:梁明佩)