摘要: 為提高離心泵在設(shè)計(jì)工況下的運(yùn)行效率和揚(yáng)程,提出一種基于高維混合模型的離心泵葉輪優(yōu)化設(shè)計(jì)方法.選取一臺(tái)比轉(zhuǎn)數(shù)為157的單級(jí)離心泵作為研究對(duì)象,通過(guò)CFturbo軟件對(duì)優(yōu)化變量進(jìn)行參數(shù)化,然后結(jié)合數(shù)值模擬獲得高維混合模型的訓(xùn)練集.在此基礎(chǔ)上采用獲取的訓(xùn)練集通過(guò)MATLAB機(jī)器學(xué)習(xí)得出效率、揚(yáng)程與優(yōu)化參數(shù)之間關(guān)于支持向量回歸的高維模型,并采用遺傳算法尋優(yōu).在設(shè)計(jì)工況下,所擬合的高維混合模型預(yù)測(cè)的效率和揚(yáng)程值比原模型分別高1.5%和3.2 m,數(shù)值模擬驗(yàn)證優(yōu)化方案的效率和揚(yáng)程分別比原模型高0.9%和2.1 m.算例研究表明,將高維混合模型應(yīng)用于離心泵葉輪的優(yōu)化設(shè)計(jì)中可以實(shí)現(xiàn)快速尋優(yōu)并提高離心泵水力性能.
關(guān)鍵詞: 離心泵;遺傳算法;優(yōu)化設(shè)計(jì);支持向量機(jī);混合模型;數(shù)值模擬
中圖分類號(hào): S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)04-0325-08
DOI:10.3969/j.issn.1674-8530.22.0142
張金鳳,俞鑫厚,高淑瑜,等. 基于高維混合模型的離心泵葉輪子午面優(yōu)化設(shè)計(jì)[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(4):325-332.
ZHANG Jinfeng, YU Xinhou, GAO Shuyu, et al. Optimization design of meridional surface of centrifugal pump impeller based on high-dimensional hybrid model[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(4): 325-332.
Optimization design of meridional surface of centrifugal pump
impeller based on high-dimensional hybrid model
ZHANG Jinfeng1,2, YU Xinhou1*, GAO Shuyu3, CAO Puyu1,2, ZHANG Wenjia1
(1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Wenling Institute of Fluid Machinery Jiangsu University, Wenling, Zhejiang 317599, China; 3. Quality Inspection Center for Pump Products in Zhejiang Province, Wenling, Zhejiang 317599, China)
Abstract: In order to improve the operation efficiency and head of centrifugal pumps under the design conditions, a centrifugal pump impeller optimization design method based on high-dimensional hybrid model was proposed. A single-stage centrifugal pump with specific speed of 157 was selected as the research object for this study. The optimization variables were parameterized in CFturbo software, and then combined with numerical simulation to obtain the training set of the high-dimensional hybrid model. By using MATLAB machine learning on the obtained training set, a high-dimensional support vector regression model between efficiency, head and optimization parameters was obtained, and a genetic algorithm was used for the optimization. Under the design working conditions, the predicted efficiency and head values of the fitted high-dimensional hybrid model are 1.5% and 3.2 m higher than the original model, respectively. The efficiency and head values of the optimized scheme verified by numerical simulation are 0.9% and 2.1 m higher than the original model, respectively. This case study shows that the application of a high-dimensional hybrid model in the optimal design of a centrifugal pump impeller can achieve rapid optimization and improve the hydraulic performance of the centrifugal pump.
Key words: centrifugal pump;genetic algorithm;optimal design;support vector machine;hybrid model;numerical simulation
葉輪是離心泵所有組成部件中作為能量轉(zhuǎn)換的重要部件,其性能好壞直接決定了離心泵的整體性能[1-3].目前,在實(shí)際工程應(yīng)用中,離心泵葉輪設(shè)計(jì)主要還是使用半理論半經(jīng)驗(yàn)的設(shè)計(jì)方法[4-5],這種方法設(shè)計(jì)出來(lái)的葉輪性能優(yōu)劣主要取決于工程師的經(jīng)驗(yàn).因此,對(duì)現(xiàn)有離心泵開展優(yōu)化設(shè)計(jì)非常有必要.
現(xiàn)有的優(yōu)化設(shè)計(jì)方法有試驗(yàn)法、試驗(yàn)設(shè)計(jì)法等,存在成本高、優(yōu)化周期長(zhǎng)、優(yōu)化精度較低以及難以得到全局最優(yōu)解等問(wèn)題.針對(duì)這些問(wèn)題,黃志遠(yuǎn)[6]、熊華地[7]提出一種基于支持向量回歸的高維表達(dá)模型的優(yōu)化設(shè)計(jì)方法.支持向量回歸(support vector regression, SVR)源于支持向量機(jī)(support vector machine,SVM).SVM最早被Vapnik提出,很快SVM被廣泛應(yīng)用于科學(xué)和工程等各個(gè)領(lǐng)域.SVM是基于統(tǒng)計(jì)學(xué)習(xí)理論的結(jié)構(gòu)學(xué)習(xí)過(guò)程,SVR是SVM用于回歸的擴(kuò)展[8-9],將工程問(wèn)題的設(shè)計(jì)空間通過(guò)非線性轉(zhuǎn)換映射到更高維度的特征空間,以結(jié)構(gòu)風(fēng)險(xiǎn)最小化求解凸二次規(guī)劃問(wèn)題.對(duì)于高維、非線性問(wèn)題,支持向量回歸能夠很好地應(yīng)對(duì)并給出一個(gè)較好的最優(yōu)解,故它是一種具有較好推廣能力的近似模型方法.高維模型表達(dá)(high-dimensional model representation, HDMR)為近似模型提供函數(shù)分解的框架,將輸入變量對(duì)輸出變量的作用分開表示,與此同時(shí)也給出了輸入變量中耦合因素對(duì)輸出影響的表達(dá)式.高維模型表達(dá)提供函數(shù)框架,利用SVR來(lái)構(gòu)建輸入變量單獨(dú)或者共同作用的函數(shù)表達(dá)式,二者結(jié)合成為一種高維混合模型,簡(jiǎn)稱為SVR-HDMR,即支持向量回歸的高維表達(dá)模型.在高維模型的應(yīng)用上,姜丙孝等[10-11]將高維混合模型應(yīng)用到離心泵和透平機(jī)械的葉片優(yōu)化上,并通過(guò)試驗(yàn)的方法對(duì)優(yōu)化結(jié)果進(jìn)行驗(yàn)證,優(yōu)化結(jié)果表明離心泵和透平機(jī)械的效率均有提升.QIN等[12]將SVR-HDMR模型應(yīng)用到離心式壓縮機(jī)的優(yōu)化設(shè)計(jì)中,對(duì)該離心壓縮機(jī)進(jìn)行多目標(biāo)優(yōu)化,在構(gòu)建出相應(yīng)的SVR-HDMR模型后,使用多目標(biāo)遺傳算法對(duì)所構(gòu)建的高維模型求解,并通過(guò)數(shù)值模擬的方式對(duì)優(yōu)化結(jié)果驗(yàn)證分析.
文中選擇一臺(tái)比轉(zhuǎn)數(shù)為157的離心泵作為優(yōu)化對(duì)象,以設(shè)計(jì)工況點(diǎn)的效率和揚(yáng)程為優(yōu)化目標(biāo),選取表達(dá)葉輪子午面的6個(gè)參數(shù)作為優(yōu)化變量,通過(guò)高維混合模型SVR-HDMR建立離心泵效率、揚(yáng)程和葉輪參數(shù)之間的適應(yīng)函數(shù),使用遺傳算法尋優(yōu)求解,并且通過(guò)數(shù)值模擬的方法對(duì)高維混合模型預(yù)測(cè)的結(jié)果進(jìn)行驗(yàn)證.
2 幾何模型及計(jì)算設(shè)置
2.1 幾何模型
優(yōu)化對(duì)象為一臺(tái)比轉(zhuǎn)數(shù)為157的單級(jí)立式離心泵,采用CFturbo 10.1旋轉(zhuǎn)機(jī)械設(shè)計(jì)軟件對(duì)所選擇的離心泵進(jìn)行三維造型,如圖2所示,其主要的設(shè)計(jì)參數(shù)中,設(shè)計(jì)流量為240 L/s;設(shè)計(jì)揚(yáng)程為43.3 m;轉(zhuǎn)速為1 485 r/min;葉片進(jìn)口直徑、出口直徑及出口寬度分別為209.0,383.0和58.7 mm;葉輪葉片數(shù)為6;空間導(dǎo)葉葉片數(shù)為5.
2.2 計(jì)算設(shè)置
立式離心泵的計(jì)算域包括進(jìn)出口延伸段、葉輪和空間導(dǎo)葉,采用軟件TurboGrid對(duì)葉輪進(jìn)行網(wǎng)格劃分,其余部件采用ICEM劃分.考慮到生成訓(xùn)練樣本需要計(jì)算大量模型,經(jīng)網(wǎng)格無(wú)關(guān)性檢查后,該模型的網(wǎng)格單元總數(shù)為878.2萬(wàn),部分網(wǎng)格圖片如圖3所示.使用商用仿真軟件CFX 2021 R1對(duì)該泵水體模型進(jìn)行定常計(jì)算,以常溫的水作為介質(zhì),選擇k-ε湍流模型,動(dòng)靜交界面設(shè)置為Frozen-Rotor,邊界條件設(shè)置為壓強(qiáng)進(jìn)口、質(zhì)量流量出口,參考?jí)毫?.013×105 Pa,求解離散設(shè)置為二階迎風(fēng)格式,收斂殘差設(shè)置為10-5.
3 試驗(yàn)驗(yàn)證
為得到泵正常工作時(shí)的性能曲線,對(duì)數(shù)值模擬結(jié)果的可靠性進(jìn)行對(duì)比驗(yàn)證,也為后續(xù)立式離心泵的優(yōu)化結(jié)果提供試驗(yàn)依據(jù),因此文中對(duì)立式離心泵進(jìn)行了試驗(yàn)研究,圖4為試驗(yàn)裝置圖.
立式離心泵的外特性試驗(yàn)在江蘇省蘇州市的昆山普東流體裝備有限公司的開式試驗(yàn)臺(tái)進(jìn)行,泵揚(yáng)程和效率測(cè)量精度誤差均小于2%.試驗(yàn)中使用WIKA壓力傳感器來(lái)測(cè)量泵的進(jìn)出口壓力,用電磁流量計(jì)來(lái)測(cè)量泵的工作流量.
試驗(yàn)與模擬的外特性曲線如圖5所示,試驗(yàn)值與數(shù)值計(jì)算值表現(xiàn)出了較好的擬合效果,趨勢(shì)基本一致.在額定工況Qd下,軸功率P誤差為2.00%,效率η誤差為4.98%,揚(yáng)程H誤差為3.81%.考慮到進(jìn)口管道管壁的粗糙度、沖擊損失以及泄漏等因素,模擬結(jié)果與試驗(yàn)結(jié)果之間的誤差在合理范圍內(nèi),所以,文中所建立的數(shù)值模擬方法能正確模擬出泵的工作特性.
4 優(yōu)化設(shè)計(jì)
4.1 優(yōu)化方案
基于SVR-HDMR模型的立式離心泵優(yōu)化設(shè)計(jì)流程如圖1所示.首先通過(guò)軟件CFturbo將需要優(yōu)化的葉輪參數(shù)進(jìn)行參數(shù)化;根據(jù)優(yōu)化參數(shù)的取值范圍以及Cut-HDMR理論得到SVR-HDMR的樣本空間;然后通過(guò)CFturbo聯(lián)合Workbench計(jì)算出樣本空間中不同模型對(duì)應(yīng)的效率值以及揚(yáng)程值,按照SVR-HDMR構(gòu)建流程,建立以效率和揚(yáng)程為目標(biāo)的適應(yīng)函數(shù),并使用遺傳算法對(duì)適應(yīng)函數(shù)進(jìn)行尋優(yōu);最后根據(jù)遺傳算法對(duì)適應(yīng)函數(shù)求解所反饋的優(yōu)化參數(shù)值,以數(shù)值模擬的方式驗(yàn)證分析尋優(yōu)結(jié)果.
4.2 優(yōu)化算例及結(jié)果
選取一臺(tái)比轉(zhuǎn)數(shù)為157的立式離心泵的葉輪作為優(yōu)化對(duì)象.如圖6所示,在該離心泵葉輪的軸面投影圖中,前后蓋板以及進(jìn)口邊可通過(guò)貝塞爾曲線來(lái)擬合,并對(duì)它們參數(shù)化.在圖6中,z和r分別為軸向和徑向.
選擇P1,P2,P3,P4和P5作為控制點(diǎn),具體參數(shù)范圍見表1.其中,P3,P4和P5均為量綱一的量,取值為[0,1].控制點(diǎn)P4的范圍表示在軸面投影圖中前蓋板線上移動(dòng)范圍,當(dāng)P4等于0時(shí),則P4與P6重合;P4等于1時(shí),則P4與P7重合;類似的意義,控制點(diǎn)P5的范圍表示在軸面投影圖中后蓋板線上移動(dòng)的范圍.對(duì)于控制點(diǎn)P3,其橫、縱坐標(biāo)均為1,則控制點(diǎn)P3與P4重合,P3橫、縱坐標(biāo)為0時(shí),則控制點(diǎn)P3與P5重合.綜上所述,優(yōu)化過(guò)程一共選取了6個(gè)優(yōu)化參數(shù),其決策空間如表2所示.
根據(jù)葉輪設(shè)計(jì)變量控制點(diǎn)的決策邊界生成SVR-HDMR訓(xùn)練樣本,構(gòu)建SVR-HDMR模型.構(gòu)建SVR-HDMR模型所需的樣本點(diǎn)和由CFX計(jì)算的效率值和揚(yáng)程值如表3所示,訓(xùn)練樣本一共54組.另外,為避免訓(xùn)練樣本出現(xiàn)奇異數(shù)據(jù),在構(gòu)建SVR-HDMR模型時(shí)將x1和x2的單位轉(zhuǎn)化為m,其余變量均為量綱一.以構(gòu)建變量x1的一階SVR-HDMR函數(shù)項(xiàng)為例,根據(jù)表3中的訓(xùn)練樣本可以構(gòu)建出變量x1的效率和揚(yáng)程的一階SVR-HDMR函數(shù),分別如式(10),(11)所示,其中‖ ‖表示2范數(shù).
f^(x1)=7.151 6e(-8‖x1-0.15‖22)+0.844 8e(-8‖x1-0.12‖22)-8e(-8‖x1-0.18‖22)-0.061 3,(10)
f^(x1)=-19.129 7e(-29.912‖x1-0.12‖22)+19.129 7e(-29.912‖x1-0.15‖22)-0.665 2.(11)
同理,可根據(jù)訓(xùn)練樣本構(gòu)建出其余變量對(duì)應(yīng)的一階SVR-HDMR函數(shù),再根據(jù)訓(xùn)練樣本以及已構(gòu)建的一階SVR-HDMR構(gòu)建具有耦合性的2個(gè)變量之間的二階SVR-HDMR,最后依照式(9)將中心點(diǎn)輸出值、各一階和各二階SVR-HDMR組合得到最終的SVR-HDMR模型.
二階SVR-HDMR函數(shù)項(xiàng)的構(gòu)建方法與一階函數(shù)項(xiàng)的類似,故不再列出二階SVR-HDMR函數(shù)的構(gòu)建過(guò)程,但是在構(gòu)建二階函數(shù)項(xiàng)之前需要判斷2個(gè)設(shè)計(jì)變量之間是否存在耦合項(xiàng).如果不存在耦合項(xiàng),則無(wú)需構(gòu)建這2個(gè)變量之間的二階SVR-HDMR函數(shù).以f^(x1,x2)為例,當(dāng)x1發(fā)生變化時(shí),x1和x2的距離足夠遠(yuǎn)且當(dāng)x1變化時(shí),x2不會(huì)受到影響,因此這2個(gè)變量之間也就不存在耦合項(xiàng),即不存在二階函數(shù)項(xiàng).因此經(jīng)耦合判定,只構(gòu)建了f^(x1,x3),f^(x1,x4)等9個(gè)二階函數(shù)項(xiàng),并沒有構(gòu)建f^(x1,x2),f^(x1,x5)等6個(gè)二階函數(shù)項(xiàng).
在經(jīng)過(guò)54個(gè)訓(xùn)練樣本的機(jī)器學(xué)習(xí)之后,根據(jù)構(gòu)造出來(lái)的效率和揚(yáng)程的一階、二階SVR-HDMR函數(shù)項(xiàng),依照式(9)的函數(shù)結(jié)構(gòu)形式可得到揚(yáng)程和效率2個(gè)適應(yīng)函數(shù),分別為h1(x),h2(x),然后對(duì)這2個(gè)適應(yīng)函數(shù)依照式(12)做權(quán)重分配,組成一個(gè)適應(yīng)函數(shù).
T=0.1h1(x)+0.9h2(x),(12)
然后使用遺傳算法對(duì)適應(yīng)函數(shù)進(jìn)行尋優(yōu).最終結(jié)果表明:經(jīng)遺傳算法求解適應(yīng)函數(shù),當(dāng)?shù)綌?shù)達(dá)到108步時(shí),可以求出適應(yīng)函數(shù)的最大值為81.692 1.
4.3 優(yōu)化前后葉輪內(nèi)流場(chǎng)分析
圖7為優(yōu)化前后的葉輪子午面,P2未發(fā)生明顯變化,故未在圖7中標(biāo)注,從圖7中可以看出:經(jīng)混合模型SVR-HDMR配合遺傳算法求解優(yōu)化后,后蓋板曲率略微變小,使得流道變寬;前蓋板線基本沒有變化;進(jìn)口邊線整體沿著進(jìn)口方向略有偏移,并且進(jìn)口邊較優(yōu)化前曲率增大.
對(duì)優(yōu)化后的葉輪模型在設(shè)計(jì)工況下進(jìn)行數(shù)值模擬,并與原葉輪模型在設(shè)計(jì)工況下模擬得出的壓力場(chǎng)p、流速圖、湍動(dòng)能k圖和葉片工作面和背面的載荷曲線作對(duì)比,如圖8所示.
從圖8a中可以看出,優(yōu)化方案的葉輪與原始方案在壓力場(chǎng)中整體表現(xiàn)為工作面壓力要高于背面壓力,壓力沿著葉片進(jìn)口增大一直到葉片的出口處,在葉片進(jìn)口處背面均出現(xiàn)低壓區(qū),但是優(yōu)化方案在葉輪進(jìn)口處的低壓區(qū)較原始方案小,且優(yōu)化方案中從葉輪進(jìn)口到出口壓力均勻,因此優(yōu)化方案改變了葉輪工作時(shí)內(nèi)部壓力分布,從而使得揚(yáng)程有所提升.
圖8b所示為優(yōu)化前后葉輪葉片流速圖,由圖可知,優(yōu)化前后葉輪葉片工作面速度均大于背面,從葉輪背面進(jìn)口到出口,速度v變化的趨勢(shì)為先變小再增大.優(yōu)化方案的低速區(qū)范圍較原方案大.圖8c為優(yōu)化前后葉輪葉片湍動(dòng)能圖,2個(gè)方案的高湍動(dòng)能區(qū)域集中在葉片出口處和背面.在優(yōu)化前后葉輪葉片湍動(dòng)能中可以看出,優(yōu)化方案減小了湍動(dòng)能,即優(yōu)化方案降低了原方案的水力損失,因此優(yōu)化方案的效率有所提升.
葉輪葉片表面載荷曲線一方面可以說(shuō)明葉輪葉片在旋轉(zhuǎn)過(guò)程中的受力情況,另一方面也可以表示出葉片能量的轉(zhuǎn)換能力[21].由圖8d可看出,優(yōu)化方案和原始方案在葉展系數(shù)LY=0.5處葉片工作面和背面的載荷.其中,縱坐標(biāo)表示葉片表面壓力值;橫坐標(biāo)為葉片的相對(duì)長(zhǎng)度L,L=0表示葉輪葉片的進(jìn)口,L=1.0表示葉輪葉片的出口.從圖8d中可以看出,兩者葉片載荷變化趨勢(shì)雖然大致相似且葉片進(jìn)口到出口工作面的載荷均高于背面載荷,但是優(yōu)化方案較原始方案載荷變化要均勻.葉片前緣處均出現(xiàn)壓力下降現(xiàn)象,這是由于葉片在旋轉(zhuǎn)過(guò)程中,使流體流入方向沿軸向迅速變?yōu)閺较?,流體流速逐漸提高,葉片進(jìn)口背面產(chǎn)生脫流,形成較為穩(wěn)定的二次流[22-23].優(yōu)化方案減小了葉片進(jìn)口處工作面與背面的壓力差,而且與原方案相比,葉片進(jìn)口處的工作面的壓力有降低的現(xiàn)象,提高了葉片進(jìn)口處背面的壓力,而工作面背面壓力在葉片出口處變化很小,故優(yōu)化方案使得水力性能有所提升.
4.4 優(yōu)化前后外特性對(duì)比分析
為分析優(yōu)化后泵在不同工況下的性能,以數(shù)值模擬的方式對(duì)優(yōu)化方案在小流量、設(shè)計(jì)工況以及大流量工況下分別計(jì)算得出優(yōu)化方案的性能曲線并與原始方案的揚(yáng)程和效率對(duì)比,優(yōu)化前后的性能曲線如圖9所示.
從圖9中可以看出,在設(shè)計(jì)工況點(diǎn),優(yōu)化方案效率和揚(yáng)程分別提升0.9%和2.1 m.優(yōu)化方案的揚(yáng)程除了在0.5Qd和1.5Qd這2個(gè)工況點(diǎn)有下降以外,在其余工況下的揚(yáng)程均具有不同程度的提高.僅從揚(yáng)程來(lái)看,此次優(yōu)化結(jié)果可以滿足優(yōu)化要求.但是,在效率方面,除了0.5Qd和1.5Qd這2個(gè)工況下有小幅提高以外,其余工況點(diǎn)均表現(xiàn)出略微下降的情況,效率的降低在1.5Qd工況表現(xiàn)得較為明顯.從整體上來(lái)看,揚(yáng)程提升幅度較大,除個(gè)別工況點(diǎn)外,大多工況點(diǎn)的效率降低幅值在可接受范圍內(nèi).
5 結(jié) 論
1) 將SVR-HDMR高維混合模型應(yīng)用于離心泵葉輪的優(yōu)化中,選擇影響葉輪前后蓋板以及進(jìn)口邊形狀的5個(gè)控制點(diǎn)并分離出6個(gè)參數(shù)作為優(yōu)化變量,以離心泵效率和揚(yáng)程為目標(biāo)函數(shù),構(gòu)建出離心泵優(yōu)化的近似模型,經(jīng)遺傳算法求解得出SVR-HDMR預(yù)測(cè)目標(biāo)函數(shù)值為81.692 1.
2) 使用數(shù)值模擬的方法驗(yàn)證了SVR-HDMR的預(yù)測(cè)結(jié)果,并從壓力場(chǎng)和葉片載荷等4個(gè)方面分析解釋效率提高的原因,優(yōu)化方案改善了流體的流動(dòng)狀態(tài),葉片進(jìn)口到出口壓力變化均勻使得泵性能提升,從數(shù)值模擬的結(jié)果中可知:優(yōu)化方案效率和揚(yáng)程分別較原方案提高0.9%和2.1 m.
3) 將SVR-HDMR高維混合模型應(yīng)用到離心泵優(yōu)化中,并使用遺傳算法對(duì)適應(yīng)函數(shù)進(jìn)行求解,這個(gè)過(guò)程對(duì)目前基于數(shù)值模擬來(lái)研究泵類優(yōu)化設(shè)計(jì)具有一定的借鑒意義.
參考文獻(xiàn)(References)
[1] 趙偉國(guó), 盛建萍, 楊軍虎, 等. 基于CFD的離心泵優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(21): 125-131.
ZHAO Weiguo, SHENG Jianping, YANG Junhu, et al. Optimization design and experiment of centrifugal pump based on CFD[J].Transactions of the CSAE, 2015, 31(21): 125-131. (in Chinese)
[2] 高雄發(fā),郜聰,張德勝, 等. 基于CFD-DEM的旋流泵混合顆粒固液兩相流研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2023,54(8):163-170.
GAO Xiongfa, GAO Cong, ZHANG Desheng, et al. Solid-liquid two-phase flow of mixed particles in vortex pump based on CFD-DEM[J]. Transactions of the CSAM, 2023,54(8):163-170.(in Chinese)
[3] 馬曉堂,宋文武,舒乙宸,等.離心泵啟動(dòng)過(guò)程內(nèi)部流動(dòng)瞬態(tài)特性分析[J].機(jī)電工程,2021,38(12):1546-1551.
MA Xiaotang, SONG Wenwu, SHU Yichen, et al. Transient characteristics of internal flow during the starting process of centrifugal pump[J].Journal of mechanical amp; electrical engineering, 2021,38(12):1546-1551.(in Chinese)
[4] 伍杰,邱寧,朱涵,等. 基于非定??栈鲃?dòng)的離心泵渦旋結(jié)構(gòu)數(shù)值分析[J]. 西華大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,42(1):90-99.
WU Jie, QIU Ning, ZHU Han, et al. Numerical analy-sis of vortex structure in centrifugal pump based on unsteady cavitation flow[J].Journal of Xihua University(natural science edition),2023,42(1):90-99.(in Chinese)
[5] 楊春野,陳先培,陳永良,等. CFD分析在多級(jí)離心泵變工況設(shè)計(jì)上的應(yīng)用[J]. 化工設(shè)備與管道,2023,60(5):59-62.
YANG Chunye, CHEN Xianpei, CHEN Yongliang,et al. Application of CFD analysis in variable condition design of multistage[J]. Process equipment amp; piping, 2023,60(5):59-62. (in Chinese)
[6] 黃志遠(yuǎn). 基于高維模型表示的近似建模及其采樣策略研究[D].武漢:華中科技大學(xué), 2014.
[7] 熊華地. 基于高維模型表達(dá)和支持向量回歸的近似模型研究與應(yīng)用[D]. 武漢:華中科技大學(xué), 2013.
[8] 李志國(guó),林彬,高鵬濤,等. 基于SVD-ITD和支持向量機(jī)的潛水磨碎泵故障診斷[J]. 流體機(jī)械,2021,49(10):97-104.
LI Zhiguo,LIN Bin,GAO Pengtao,et al. Fault diagnosis of submersible grinding pump based on SVD-ITD and support vector machine[J]. Fluid machinery,2021,49(10):97-104. (in Chinese)
[9] 肖幸鑫,宋禮威,張翊勛,等. 基于CEEMD與SVM的離心泵轉(zhuǎn)子不對(duì)中故障診斷方法研究[J]. 流體機(jī)械,2022,50(7):85-92.
XIAO Xingxin,SONG Liwei,ZHANG Yixun,et al. Research on fault diagnosis method of centrifugal pump rotor misalignment based on CEEMD and SVM[J]. Fluid machinery,2022,50(7):85-92. (in Chinese)
[10] 姜丙孝,楊軍虎,王曉暉,等.基于RBF-HDMR模型與PSO算法的液力透平葉片優(yōu)化[J].機(jī)械工程學(xué)報(bào),2022,58(12):283-292.
JIANG Bingxiao, YANG Junhu, WANG Xiaohui, et al. Blades optimization of pumps as turbines based on RBF-HDMR model and PSO algorithm[J]. Journal of mechanical engineering,2022,58(12):283-292. (in Chinese)
[11] 姜丙孝,楊軍虎,白小榜,等. 基于高維混合模型與遺傳算法的離心泵葉片優(yōu)化[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 48(7): 128-132.
JIANG Bingxiao, YANG Junhu, BAI Xiaobang, et al. Optimization of centrifugal pump blade based on high-dimensional hybrid model and genetic algorithm[J]." Journal of Huazhong University of Science and Technology(natural science edition), 2020,48(7):128-132.(in Chinese)
[12] QIN R H, JU Y P, GALLOWAY L, et al. High dimensional matching optimization of impeller-vaned diffuser interaction for a centrifugal compressor stage[J]. Journal of turbomachinery, 2020, 142(12):121004.
[13] 唐江凌, 黃健. 支持向量回歸預(yù)測(cè)模型在材料性能預(yù)測(cè)中的應(yīng)用[J]. 科技視界, 2015(17): 42-43.
TANG Jiangling, HUANG Jian. Application of support vector regression model in material properties prediction[J]. Science amp; technology vision, 2015(17): 42-43. (in Chinese)
[14] 李亮, 孫秦. SVM-HDMR高維非線性近似模型構(gòu)造法[J].計(jì)算機(jī)工程與應(yīng)用, 2013, 49(15) :6-9.
LI Liang, SUN Qin. SVM-HDMR approximation model construction method for high dimensional nonlinear problems[J]. Computer engineering and applications, 2013, 49(15):6-9. (in Chinese)
[15] JU Y P, PARKS G, ZHANG C H. A bisection-sampling-based support vector regression-high-dimensio-nal model representation metamodeling techni-que for high-dimensional problems[J]. Journal of mechanical engineering science, 2017, 231(12): 2173-2186.
[16] SHAN S Q, WANG G G. Metamodeling for high dimensional simulation-based design problems[J]. Journal of mechanical design, 2010, 132:051009.
[17] RABITZ H,ALIS ? F. General foundations of high dimensional model representations[J]. Journal of mathematical chemistry,1999,25(2/3):197-233.
[18] ALIS ? F,RABITZ H. Efficient implementation of high dimensional model representations[J]. Journal of mathematical chemistry, 2001,29(2):127-142.
[19] TUNGA M A, DEMIRALP M. A factorized high dimensional model representation on the partitioned random discrete data[J]. Applied numerical analysis amp; computational mathematics, 2004, 1(1):231-241.
[20] LI G, WANG S W, ROSENTHAL C, et al.High dimensional model representations generated from low dimensional data samples. I. mp-cut-HDMR[J]. Journal of mathematical chemistry, 2001, 30(1):1-30.
[21] 張金鳳,宋海勤,張帆,等.帶分流葉片水泵水輪機(jī)轉(zhuǎn)子強(qiáng)度及模態(tài)分析[J].排灌機(jī)械工程學(xué)報(bào),2021,39(10) : 981-986.
ZHANG Jinfeng, SONG Haiqin, ZHANG Fan, et al. Analysis on rotor strength and mode of pumpturbine with splitter blades[J]. Journal of drainage and irrigation machinery engineering, 2021, 39(10): 981-986. (in Chinese)
[22] 張金鳳,宋海勤,張帆,等.海上平臺(tái)立式長(zhǎng)軸消防泵轉(zhuǎn)子靜力學(xué)特性分析[J].排灌機(jī)械工程學(xué)報(bào),2021,39(6):541-547.
ZHANG Jinfeng, SONG Haiqin, ZHANG Fan, et al. Static analysis on rotor of vertical turbine used for offshore platforms[J]. Journal of drainage and irrigation machinery engineering,2021,39(6):541-547. (in Chinese)
[23] 申正精, 楚武利. 壓水室布置凹槽對(duì)離心泵內(nèi)部流動(dòng)特性的影響[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 47 (12): 37-42.
SHEN Zhengjing, CHU Wuli. Influence of grooves arrangement in volute casing on internal flow characteri-stics of centrifugal pump[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2019, 47(12): 37-42.(in Chinese)
(責(zé)任編輯 盛杰)
收稿日期: 2022-05-09; 修回日期: 2022-08-30; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-11
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.th.20240408.1528.022
基金項(xiàng)目: 江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2019009)
第一作者簡(jiǎn)介: 張金鳳(1981—),女,內(nèi)蒙古赤峰人,研究員(zhangjinfeng@ujs.edu.cn),主要從事流體機(jī)械產(chǎn)品設(shè)計(jì)與研發(fā)工作.
通信作者簡(jiǎn)介: 俞鑫厚(1998—),男,湖南岳陽(yáng)人,碩士研究生(1349426575@qq.com),主要從事流體機(jī)械產(chǎn)品的優(yōu)化設(shè)計(jì)研究.