劉欣然 陳勇 李彩蓉 王威
[摘要]?細(xì)胞焦亡是一種新發(fā)現(xiàn)的與細(xì)胞凋亡和細(xì)胞壞死不同的程序性細(xì)胞死亡方式,其參與糖尿病腎病的發(fā)展過程。細(xì)胞焦亡通過焦孔素D和胱天蛋白酶(cysteinyl?aspartate?specific?proteinase,caspase)-1依賴的經(jīng)典信號通路、焦孔素D和caspase-11/4/5依賴的非經(jīng)典信號通路、焦孔素E和caspase-3依賴的信號通路發(fā)生。在糖尿病腎病中,焦孔素E和caspase-3依賴的信號通路作為一種新發(fā)現(xiàn)的調(diào)控機(jī)制引起人們的廣泛關(guān)注。本文主要綜述焦孔素E介導(dǎo)的細(xì)胞焦亡在糖尿病腎病中的研究進(jìn)展。
[關(guān)鍵詞]?細(xì)胞焦亡;焦孔素E;胱天蛋白酶-3;糖尿病腎病
[中圖分類號]?R587.2??????[文獻(xiàn)標(biāo)識碼]?A????[DOI]?10.3969/j.issn.1673-9701.2024.13.024
糖尿病腎?。╠iabetic?nephropathy,DN)是糖尿病中最常見、最嚴(yán)重的并發(fā)癥之一,其主要臨床表現(xiàn)為血糖水平升高并伴有進(jìn)行性腎衰竭,可導(dǎo)致終末期腎病[1]。全球范圍內(nèi),DN患病率隨著糖尿病患病率的增長而迅速上升[2-3]。DN的發(fā)病機(jī)制涉及遺傳因素、腎臟血流動(dòng)力學(xué)異常、高血糖所致糖代謝紊亂、氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞自噬等[4-7]。研究證實(shí),這些危險(xiǎn)因素與細(xì)胞焦亡的發(fā)生密切相關(guān),細(xì)胞焦亡與DN之間的相關(guān)性越來越受到學(xué)者關(guān)注。
細(xì)胞死亡包括細(xì)胞凋亡和細(xì)胞壞死兩種方式,此過程中的死亡程序、生化機(jī)制和信號傳導(dǎo)通路均有所不同[8-12]。細(xì)胞焦亡在機(jī)制上不同于其他類型的程序性細(xì)胞死亡形式。Cookson等[13]最早以“pyroptosis”描述細(xì)胞焦亡,“pyro”源自希臘語,意為著火或發(fā)熱,而“ptosis”意為下降,以描述這種細(xì)胞死亡過程及其促炎性質(zhì)。Rogers等[14]研究發(fā)現(xiàn),胱天蛋白酶(cysteinyl?aspartate?specific?proteinase,caspase)-3可誘導(dǎo)細(xì)胞凋亡,裂解焦孔素E(gasdermin?E,GSDME)。本文對GSDME介導(dǎo)的細(xì)胞焦亡在DN中的研究進(jìn)展進(jìn)行綜述。
1??細(xì)胞焦亡的主要分子機(jī)制
細(xì)胞焦亡主要有兩種不同的激活通路。一種是焦孔素D(gasdermin?D,GSDMD)通過激活caspase-1而被裂解,誘導(dǎo)產(chǎn)生質(zhì)膜氣孔,促進(jìn)白細(xì)胞介素(interleukin,IL)-1β、IL-18等炎癥因子的分泌,導(dǎo)致炎癥介導(dǎo)的細(xì)胞焦亡[15]。銜接蛋白ASC或NLRC4與前體(pro)-caspase-1單體結(jié)合并發(fā)生二聚化,激活pro-caspase-1轉(zhuǎn)化為成熟的caspase-1。同時(shí),caspase-1可裂解GSDMD并激活失活pro-IL-1β轉(zhuǎn)化為成熟的IL-1β。GSDMD被切割后,N端和C端結(jié)構(gòu)域被分離,GSDMD的N端片段(gasdermin?D?N-terminal,GSDMD-NT)被釋放。釋放的GSDMD-?NT通過識別并結(jié)合細(xì)胞膜上的磷脂分子在細(xì)胞膜上形成氣孔,破壞細(xì)胞勢能的穿透力,導(dǎo)致細(xì)胞腫脹、細(xì)胞膜孔形成、細(xì)胞膜破裂、細(xì)胞滲透性溶解、DNA裂解、炎癥小體激活、細(xì)胞內(nèi)容物和炎癥因子被釋放,引起嚴(yán)重的炎癥反應(yīng),最終導(dǎo)致細(xì)胞焦亡[16-17]。IL-1β也可通過孔道從細(xì)胞中釋放,引起嚴(yán)重的炎癥反應(yīng),即經(jīng)典細(xì)胞焦亡通路[18-20]。
另一種則是由Bergsbaken等[20]發(fā)現(xiàn)的非經(jīng)典細(xì)胞焦亡通路,由革蘭陰性菌脂多糖(lipopolysaccharide,LPS)繞過Toll樣受體(toll-like?receptor,TLR)4,直接誘導(dǎo)小鼠caspase-11或人caspase-4/5的激活,激活的caspase-4/5/11切割GSDMD,促進(jìn)pro-IL-1β和pro-IL-18活化為成熟的IL-1β和IL-18。同樣,GSDMD-NT在細(xì)胞膜上形成一個(gè)氣孔,釋放細(xì)胞內(nèi)的IL-1β和IL-18,誘導(dǎo)細(xì)胞焦亡[21-23]。
2??GSDME與細(xì)胞焦亡的關(guān)系
GSDME屬于焦孔素家族,具有質(zhì)膜成孔活性,可誘導(dǎo)細(xì)胞焦亡[24]。GSDME于1998年首次發(fā)現(xiàn)于染色體7p15.3[25]。野生型GSDME有10個(gè)外顯子,編碼含496個(gè)氨基酸的蛋白質(zhì),分子量約55kDa[26]。GSDME在不同細(xì)胞和組織中的表達(dá)不同。人類GSDME通常在胎盤、心臟、大腦和腎臟中表達(dá);而小鼠GSDME則在耳蝸、胸腺、結(jié)腸、肺臟、大腦、脾臟和小腸中表達(dá)[25,27]。
caspase-3是細(xì)胞凋亡的重要效應(yīng)因子[28]。既往研究表明,caspase-3與細(xì)胞焦亡無關(guān)[29]。最新研究發(fā)現(xiàn),化療藥物作為caspase-3的激活劑可將GSDME特異性裂解,切割成GSDME的N端片段(gasdermin?E?N-terminal,GSDME-NT)和GSDME的C端片段(gasdermin?E?C-terminal,GSDME-CT)。GSDME-NT在細(xì)胞膜上形成膜孔,可在caspase-3激活劑的作用下引發(fā)細(xì)胞死亡[24,30]。只有特異性細(xì)胞才能表達(dá)GSDME,caspase-3的激活驅(qū)動(dòng)細(xì)胞凋亡程序轉(zhuǎn)變?yōu)榧?xì)胞焦亡[24]。GSDME的裂解可使細(xì)胞焦亡的促炎過程和凋亡的抗炎過程得以交叉[31]。GSDME可視為一個(gè)“分子開關(guān)”,其裂解狀態(tài)決定細(xì)胞是發(fā)生焦亡還是凋亡。當(dāng)GSDME高表達(dá)時(shí),caspase-3可裂解GSDME引發(fā)細(xì)胞焦亡,反之則引發(fā)細(xì)胞凋亡。也有證據(jù)表明GSDME作用于caspase-3的下游和上游,連接內(nèi)源性和外源性凋亡途徑,并增加caspase-3的激活,從而在正反饋回路中發(fā)揮作用[32]。因此,GSDME的表達(dá)控制著細(xì)胞是通過凋亡還是焦亡發(fā)生死亡。在GSDME存在情況下,一些化療藥物可誘導(dǎo)caspase-3活化并通過細(xì)胞焦亡導(dǎo)致細(xì)胞死亡,因?yàn)榧?xì)胞焦亡比凋亡發(fā)生得更快,并伴隨大量促炎因子的釋放[14]。
3??焦亡介導(dǎo)DN不同類型的腎細(xì)胞損傷
DN是一種發(fā)病機(jī)制復(fù)雜的慢性代謝性疾病,也是導(dǎo)致終末期腎病的主要因素之一[33]。根據(jù)流行病學(xué)調(diào)查數(shù)據(jù)預(yù)估,未來幾十年內(nèi)DN患者數(shù)量將進(jìn)一步增加[34]。DN可引起腎小球肥大、足細(xì)胞丟失、系膜基質(zhì)擴(kuò)張等一系列異常變化[35]。炎癥、纖維化、血流動(dòng)力學(xué)改變、氧化應(yīng)激和細(xì)胞凋亡是DN的主要特征。DN導(dǎo)致患者生活質(zhì)量下降,生存時(shí)間縮短。研究表明細(xì)胞焦亡參與DN的發(fā)病過程,GSDME在腎臟組織中高表達(dá)。
3.1??內(nèi)皮細(xì)胞損傷
GSDMD是DN中誘導(dǎo)細(xì)胞焦亡的關(guān)鍵蛋白。Gu等[36]在腎小球內(nèi)皮細(xì)胞的研究中發(fā)現(xiàn),高糖環(huán)境下GSDMD可導(dǎo)致內(nèi)皮細(xì)胞焦亡,沉默GSDMD可抑制細(xì)胞焦亡,表明細(xì)胞焦亡可介導(dǎo)內(nèi)皮細(xì)胞損傷。
3.2??足細(xì)胞損傷
足細(xì)胞對腎小球?yàn)V過屏障的正常功能至關(guān)重要,足細(xì)胞的損傷或丟失可導(dǎo)致蛋白尿。Cheng等[37]在DN小鼠的研究中發(fā)現(xiàn),足細(xì)胞中caspase-11表達(dá)和GSDMD切割的增加與兩種足細(xì)胞標(biāo)志物nephrin、podocin的表達(dá)減少及足細(xì)胞足突的丟失和融合有關(guān);在DN小鼠模型中,敲除caspase-11或GSDMD可減輕上述變化。與高糖處理的人足細(xì)胞的研究結(jié)果類似,用沉默RNA敲低caspase-4或GSDMD可顯著降低caspase-4或GSDMD-NT的水平,同時(shí)可降低炎癥因子和足細(xì)胞標(biāo)志物的水平。上述研究表明,細(xì)胞焦亡可導(dǎo)致足細(xì)胞損傷,與DN的發(fā)展密切相關(guān)。
3.3??腎小球系膜細(xì)胞損傷
Zhan等[38]通過建立的DN大鼠模型研究DN腎小球系膜細(xì)胞損傷機(jī)制,發(fā)現(xiàn)DN發(fā)病過程中發(fā)生系膜細(xì)胞焦亡,上調(diào)長鏈非編碼RNA(long?noncoding?RNA,lncRNA)NEAT1可促進(jìn)焦亡相關(guān)蛋白的表達(dá)。
3.4??腎小管上皮細(xì)胞損傷
GSDMD通過多條通路造成腎小管上皮細(xì)胞損傷。TLR-4/核因子κB(nuclear?factor-κB,NF-κB)是炎癥的常見信號通路。Wang等[39]研究發(fā)現(xiàn),抑制NF-κB可降低caspase-1、GSDMD-NT的表達(dá)水平,抑制IL-18和IL-1β的分泌。lncRNA通過調(diào)控人腎小管上皮細(xì)胞HK-2細(xì)胞中的微RNA表達(dá),緩解DN的嚴(yán)重程度。Xie等[40]研究發(fā)現(xiàn)高糖處理的HK-2細(xì)胞中l(wèi)ncRNA?GAS5表達(dá)降低,GAS5過表達(dá)可上調(diào)焦亡相關(guān)蛋白(GSDMD-NT、caspase-1、NLRP3和IL-1β)的表達(dá)。miR-452-5p干擾可產(chǎn)生與GAS5過表達(dá)相似的結(jié)果,GAS5抑制可逆轉(zhuǎn)miR-452-5p的干擾作用。綜上,lncRNA?GAS5/miR-452-5p軸可調(diào)控高糖誘導(dǎo)的腎小管細(xì)胞焦亡。
4??GSDME介導(dǎo)的細(xì)胞焦亡具有靶向DN的潛力
2017年,Rogers等[14]首次報(bào)道化療藥物可特異性裂解GSDME,從而產(chǎn)生GSDME-NT,在質(zhì)膜上形成孔,并產(chǎn)生細(xì)胞焦亡。caspase-3是一種促凋亡caspase,也負(fù)責(zé)GSDME的切割,而GSDME的狀態(tài)決定細(xì)胞是發(fā)生細(xì)胞焦亡還是細(xì)胞凋亡。多項(xiàng)研究表明GSDME表達(dá)正常的人原代細(xì)胞(表皮角質(zhì)形成細(xì)胞、胎盤上皮細(xì)胞和臍動(dòng)脈平滑肌細(xì)胞)和腫瘤細(xì)胞(神經(jīng)母細(xì)胞瘤、皮膚黑色素瘤和胃癌細(xì)胞)亦可發(fā)生細(xì)胞焦亡[24,41-42]。據(jù)報(bào)道,1/3的腫瘤患者在使用化療藥物時(shí)可產(chǎn)生腎毒性,這限制了化療藥物的臨床應(yīng)用[43-44]。Shen等[45]研究證明化療藥物(順鉑或多柔比星)誘導(dǎo)的腎小管上皮細(xì)胞焦亡是由ROS/JNK/caspase-3/GSDME信號通路介導(dǎo)的。抑制caspase-3可阻斷GSDME裂解為GSDME-NT,改善順鉑誘導(dǎo)的細(xì)胞焦亡和腎功能障礙[46]。除炎癥疾病外,細(xì)胞焦亡也在纖維化疾病中發(fā)揮作用。Li等[47]對梗阻性腎病的研究表明,caspase-3/GSDME介導(dǎo)的細(xì)胞焦亡發(fā)生在腎實(shí)質(zhì)中。細(xì)胞焦亡與輸尿管梗阻引起的腎小管損傷有關(guān),可加重腎積水、炎癥和纖維化。caspase-3或GSDME的缺失可減輕腎小管損傷、炎癥、腎積水和腎纖維化。此外,有報(bào)道稱GSDME介導(dǎo)的細(xì)胞焦亡可促進(jìn)LPS誘導(dǎo)的斑馬魚急性腎損傷和斑馬魚幼魚腎小管細(xì)胞損傷;敲除GSDME基因可阻斷LPS誘導(dǎo)的上述損傷[31]。近期的一項(xiàng)研究揭示GSDME在人腎小管細(xì)胞中提供腎保護(hù)的潛在機(jī)制。Wen等[48]研究表明caspase-3抑制劑Z-DEVD-FMK可減少糖尿病小鼠的蛋白尿,改善腎功能,阻斷腎小管間質(zhì)纖維化,推測其原因可能通過抑制GSDME保護(hù)腎功能。腎臟炎癥和纖維化在誘導(dǎo)DN的過程中起至關(guān)重要的作用[49]。最新研究表明,在Ⅰ型DN的SD大鼠模型中,caspase-3裂解GSDME誘發(fā)細(xì)胞焦亡、增加IL-1β是DN的發(fā)病機(jī)制之一[50]。上述研究表明caspase-3/GSDME引發(fā)的細(xì)胞焦亡可誘導(dǎo)腎損傷、炎癥和纖維化。
5??GSDME抑制劑
caspase-3/GSDME依賴性細(xì)胞焦亡發(fā)生在DN的發(fā)生發(fā)展過程中。在高糖處理的HK-2細(xì)胞中應(yīng)用Z-DEVD-FMK可抑制細(xì)胞焦亡和纖維生成[51]。GSDME衍生抑制劑Ac-DMPD/DMLD-CMK可顯著抑制caspase-3的活化并降低下游效應(yīng)蛋白GSDME的水平,從而防止細(xì)胞凋亡和細(xì)胞焦亡的發(fā)生[52]。綜上所述,GSDME抑制劑對研究GSDME介導(dǎo)的細(xì)胞焦亡有十分重要的意義,可為GSDME介導(dǎo)DN的研究提供有力依據(jù)。
6??小結(jié)與展望
細(xì)胞焦亡促進(jìn)腎臟細(xì)胞的損傷和DN的發(fā)展,主要途徑包括caspase-1介導(dǎo)的經(jīng)典細(xì)胞焦亡通路和caspase-4/5/11介導(dǎo)的非典型細(xì)胞焦亡通路。caspase-3/GSDME依賴性細(xì)胞焦亡是近年來新發(fā)現(xiàn)的焦亡途徑。隨著人們對GSDME研究的不斷深入,GSDME也為DN研究提供新的思路。但目前GSDME在DN領(lǐng)域的相關(guān)研究較少,需進(jìn)一步研究以探索其在DN發(fā)生發(fā)展中的作用。GSDME的研究將為DN的治療提供新的靶點(diǎn)。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] VALENCIA?W?M,?FLOREZ?H.?How?to?prevent?the?microvascular?complications?of?type?2?diabetes?beyond?glucose?control[J].?BMJ,?2017,?356:?i6505.
[2] GHEITH?O,?FAROUK?N,?NAMPOORY?N,?et?al.?Diabetic?kidney?disease:?World?wide?difference?of?prevalence?and?risk?factors[J].?J?Nephropharmacol,?2015,?5(1):?49–56.
[3] STENVINKEL?P.?Chronic?kidney?disease:?A?public?health?priority?and?harbinger?of?premature?cardiovascular?disease[J].?J?Intern?Med,?2010,?268(5):?456–467.
[4] AHMAD?J.?Management?of?diabetic?nephropathy:?Recent?progress?and?future?perspective[J].?Diabetes?Metab?Syndr,?2015,?9(4):?343–358.
[5] HOVIND?P,?TARNOW?L,?ROSSING?P,?et?al.?Predictors?for?the?development?of?microalbuminuria?and?macroalbuminuria?in?patients?with?type?1?diabetes:?Inception?cohort?study[J].?BMJ,?2004,?328(7448):?1105.
[6] ADLER?A?I,?STEVENS?R?J,?MANLEY?S?E,?et?al.?Development?and?progression?of?nephropathy?in?type?2?diabetes:?The?United?Kingdom?prospective?diabetes?study?(UKPDS?64)[J].?Kidney?Int,?2003,?63(1):?225–232.
[7] VALMADRID?C?T,?KLEIN?R,?MOSS?S?E,?et?al.?The?risk?of?cardiovascular?disease?mortality?associated?with?microalbuminuria?and?gross?proteinuria?in?persons?with?older-onset?diabetes?mellitus[J].?Arch?Intern?Med,?2000,?160(8):?1093–1100.
[8] STROWIG?T,?HENAO-MEJIA?J,?ELINAV?E,?et?al.?Inflammasomes?in?health?and?disease[J].?Nature,?2012,?481(7381):?278–286.
[9] SOENGAS?M?S,?ALARC?N?R?M,?YOSHIDA?H,?et?al.?Apaf-1?and?caspase-9?in?p53-dependent?apoptosis?and?tumor?inhibition[J].?Science,?1999,?284(5411):?156–159.
[10] PASPARAKIS?M,?VANDENABEELE?P.?Necroptosis?and?its?role?in?inflammation[J].?Nature,?2015,?517(7534):?311–320.
[11] WALLACH?D,?KANG?T?B,?DILLON?C?P,?et?al.?Programmed?necrosis?in?inflammation:?Toward?identification?of?the?effector?molecules[J].?Science,?2016,?352(6281):?aaf2154.
[12] LEVINE?B,?MIZUSHIMA?N,?VIRGIN?H?W.?Autophagy?in?immunity?and?inflammation[J].?Nature,?2011,?469(7330):?323–335.
[13] COOKSON?B?T,?BRENNAN?M?A.?Pro-inflammatory?programmed?cell?death[J].?Trends?Microbiol,?2001,?9(3):?113–114.
[14] ROGERS?C,?FERNANDES-ALNEMRI?T,?MAYES?L,?et?al.?Cleavage?of?DFNA5?by?caspase-3?during?apoptosis?mediates?progression?to?secondary?necrotic/pyroptotic?cell?death[J].?Nat?Commun,?2017,?8:?14128.
[15] SHI?J,?ZHAO?Y,?WANG?K,?et?al.?Cleavage?of?GSDMD?by?inflammatory?caspases?determines?pyroptotic?cell?death[J].?Nature,?2015,?526(7575):?660–665.
[16] MAN?S?M,?KARKI?R,?KANNEGANTI?T?D.?Molecular?mechanisms?and?functions?of?pyroptosis,?inflammatory?caspases?and?inflammasomes?in?infectious?diseases[J].?Immunol?Rev,?2017,?277(1):?61–75.
[17] WANG?J,?SAHOO?M,?LANTIER?L,?et?al.?Caspase-11-?dependent?pyroptosis?of?lung?epithelial?cells?protects?from?melioidosis?while?caspase-1?mediates?macrophage?pyroptosis?and?production?of?IL-18[J].?PLoS?Pathog,?2018,?14(5):?e1007105.
[18] LIU?X,?ZHANG?Z,?RUAN?J,?et?al.?Inflammasome-?activated?gasdermin?D?causes?pyroptosis?by?forming?membrane?pores[J].?Nature,?2016,?535(7610):?153–158.
[19] LIANG?H,?LIU?Y.?Gasdermins?pore?cell?membrane?to?pyroptosis[J].?Sci?China?Life?Sci,?2016,?59(10):?1090–1092.
[20] BERGSBAKEN?T,?FINK?S?L,?COOKSON?B?T.?Pyroptosis:?Host?cell?death?and?inflammation[J].?Nat?Rev?Microbiol,?2009,?7(2):?99–109.
[21] SHI?J,?ZHAO?Y,?WANG?Y,?et?al.?Inflammatory?caspases?are?innate?immune?receptors?for?intracellular?LPS[J].?Nature,?2014,?514(7521):?187–192.
[22] SHI?J,?GAO?W,?SHAO?F.?Pyroptosis:?Gasdermin-?mediated?programmed?necrotic?cell?death[J].?Trends?Biochem?Sci,?2017,?42(4):?245–254.
[23] HAGAR?J?A,?POWELL?D?A,?AACHOUI?Y,?et?al.?Cytoplasmic?LPS?activates?caspase-11:?Implications?in?TLR4-independent?endotoxic?shock[J].?Science,?2013,?341(6151):?1250–1253.
[24] WANG?Y,?GAO?W,?SHI?X,?et?al.?Chemotherapy?drugs?induce?pyroptosis?through?caspase-3?cleavage?of?a?gasdermin[J].?Nature,?2017,?547(7661):?99–103.
[25] VAN?LAER?L,?HUIZING?E?H,?VERSTREKEN?M,?et?al.?Nonsyndromic?hearing?impairment?is?associated?with?a?mutation?in?DFNA5[J].?Nat?Genet,?1998,?20(2):?194–197.
[26] GREGAN?J,?VAN?LAER?L,?LIETO?L?D,?et?al.?A?yeast?model?for?the?study?of?human?DFNA5,?a?gene?mutated?in?nonsyndromic?hearing?impairment[J].?Biochim?Biophys?Acta,?2003,?1638(2):?179–186.
[27] WU?C,?OROZCO?C,?BOYER?J,?et?al.?BioGPS:?An?extensible?and?customizable?portal?for?querying?and?organizing?gene?annotation?resources[J].?Genome?Biol,?2009,?10(11):?R130.
[28] TAIT?S?W,?GREEN?D?R.?Mitochondria?and?cell?death:?Outer?membrane?permeabilization?and?beyond[J].?Nat?Rev?Mol?Cell?Biol,?2010,?11(9):?621–632.
[29] KROEMER?G,?GALLUZZI?L,?VANDENABEELE?P,?et?al.?Classification?of?cell?death:?Recommendations?of?the?Nomenclature?Committee?on?Cell?Death?2009[J].?Cell?Death?Differ,?2009,?16(1):?3–11.
[30] FANG?Y,?TIAN?S,?PAN?Y,?et?al.?Pyroptosis:?A?new?frontier?in?cancer[J].?Biomed?Pharmacother,?2020,?121:?109595.
[31] WANG?Z,?GU?Z,?HOU?Q,?et?al.?Zebrafish?GSDMEb?cleavage-gated?pyroptosis?drives?septic?acute?kidney?injury?in?vivo[J].?J?Immunol,?2020,?204(7):?1929–1942.
[32] JIANG?M,?QI?L,?LI?L,?et?al.?The?caspase-3/GSDME?signal?pathway?as?a?switch?between?apoptosis?and?pyroptosis?in?cancer[J].?Cell?Death?Discov,?2020,?6:?112.
[33] ILYAS?Z,?CHAIBAN?J?T,?KRIKORIAN?A.?Novel?insights?into?the?pathophysiology?and?clinical?aspects?of?diabetic?nephropathy[J].?Rev?Endocr?Metab?Disord,?2017,?18(1):?21–28.
[34] SAEEDI?P,?PETERSOHN?I,?SALPEA?P,?et?al.?Global?and?regional?diabetes?prevalence?estimates?for?2019?and?projections?for?2030?and?2045:?Results?from?the?International?Diabetes?Federation?Diabetes?Atlas,?9th?edition[J].?Diabetes?Res?Clin?Pract,?2019,?157:?107843.
[35] ALICIC?R?Z,?ROONEY?M?T,?TUTTLE?K?R.?Diabetic?kidney?disease:?Challenges,?progress,?and?possibilities[J].?Clin?J?Am?Soc?Nephrol,?2017,?12(12):?2032–2045.
[36] GU?J,?HUANG?W,?ZHANG?W,?et?al.?Sodium?butyrate?alleviates?high-glucose-induced?renal?glomerular?endothelial?cells?damage?via?inhibiting?pyroptosis[J].?Int?Immunopharmacol,?2019,?75:?105832.
[37] CHENG?Q,?PAN?J,?ZHOU?Z?L,?et?al.?Caspase-11/4?and?gasdermin?D-mediated?pyroptosis?contributes?to?podocyte?injury?in?mouse?diabetic?nephropathy[J].?Acta?Pharmacol?Sin,?2021,?42(6):?954–963.
[38] ZHAN?J?F,?HUANG?H?W,?HUANG?C,?et?al.?Long?non-coding?RNA?NEAT1?regulates?pyroptosis?in?diabetic?nephropathy?via?mediating?the?miR-34c/NLRP3?axis[J].?Kidney?Blood?Press?Res,?2020,?45(4):?589–602.
[39] WANG?Y,?ZHU?X,?YUAN?S,?et?al.?TLR4/NF-κB?signaling?induces?GSDMD-related?pyroptosis?in?tubular?cells?in?diabetic?kidney?disease[J].?Front?Endocrinol?(Lausanne),?2019,?10:?603.
[40] XIE?C,?WU?W,?TANG?A,?et?al.?LncRNA?GAS5/miR-?452-5p?reduces?oxidative?stress?and?pyroptosis?of?high-glucose-stimulated?renal?tubular?cells[J].?Diabetes?Metab?Syndr?Obes,?2019,?12:?2609–2617.
[41] WANG?Y,?YIN?B,?LI?D,?et?al.?GSDME?mediates?caspase-3-dependent?pyroptosis?in?gastric?cancer[J].?Biochem?Biophys?Res?Commun,?2018,?495(1):?1418–1425.
[42] WANG?Y,?ZHANG?X,?WANG?P,?et?al.?Sirt3?overexpression?alleviates?hyperglycemia-induced?vascular?inflammation?through?regulating?redox?balance,?cell?survival,?and?AMPK-mediated?mitochondrial?homeostasis[J].?J?Recept?Signal?Transduct?Res,?2019,?39(4):?341–349.
[43] IZZEDINE?H.?Drug?nephrotoxicity[J].?Nephrol?Ther,?2018,?14(3):?127–134.
[44] VOLAREVIC?V,?DJOKOVIC?B,?JANKOVIC?M?G,?et?al.?Molecular?mechanisms?of?cisplatin-induced?nephrotoxicity:?A?balance?on?the?knife?edge?between?renoprotection?and?tumor?toxicity[J].?J?Biomed?Sci,?2019,?26(1):?25.
[45] SHEN?X,?WANG?H,?WENG?C,?et?al.?Caspase?3/GSDME-?dependent?pyroptosis?contributes?to?chemotherapy?drug-?induced?nephrotoxicity[J].?Cell?Death?Dis,?2021,?12(2):?186.
[46] XIA?W,?LI?Y,?WU?M,?et?al.?Gasdermin?E?deficiency?attenuates?acute?kidney?injury?by?inhibiting?pyroptosis?and?inflammation[J].?Cell?Death?Dis,?2021,?12(2):?139.
[47] LI?Y,?YUAN?Y,?HUANG?Z?X,?et?al.?GSDME-mediated?pyroptosis?promotes?inflammation?and?fibrosis?in?obstructive?nephropathy[J].?Cell?Death?Differ,?2021,?28(8):?2333–2350.
[48] WEN?S,?WANG?Z?H,?ZHANG?C?X,?et?al.?Caspase-3?promotes?diabetic?kidney?disease?through?gasdermin?E-mediated?progression?to?secondary?necrosis?during?apoptosis[J].?Diabetes?Metab?Syndr?Obes,?2020,?13:?313–323.
[49] WADA?J,?MAKINO?H.?Innate?immunity?in?diabetes?and?diabetic?nephropathy[J].?Nat?Rev?Nephrol,?2016,?12(1):?13–26.
[50] 李勝玉.?GSDME誘導(dǎo)的細(xì)胞焦亡在糖尿病腎病中的作用研究[D].?天津:?天津醫(yī)科大學(xué),?2019.
[51] SETYANINGSIH?W?A?W,?ARFIAN?N,?FITRIAWAN?A?S,?et?al.?Ethanolic?extract?of?centella?asiatica?treatment?in?the?early?stage?of?hyperglycemia?condition?inhibits?glomerular?injury?and?vascular?remodeling?in?diabetic?rat?model[J].?Evid?Based?Complement?Alternat?Med,?2021,?2021:?6671130.
[52] XU?W?F,?ZHANG?Q,?DING?C?J,?et?al.?Gasdermin?E-derived?caspase-3?inhibitors?effectively?protect?mice?from?acute?hepatic?failure[J].?Acta?Pharmacol?Sin,?2021,?42(1):?68–76.
(收稿日期:2023–06–27)
(修回日期:2024–04–15)