摘要:本文針對一類四階方程提出了一種基于降階格式的有效譜 Galerkin 逼近.首先,引入一個輔助函數(shù),將四階方程化為兩個耦合的二階方程,并推導(dǎo)了它們的弱形式及其離散格式.其次,利用 Lax-Milgram 引理和非一致帶權(quán) Sobolev 空間中正交投影算子的逼近性質(zhì),嚴(yán)格地證明了弱解和逼近解的存在唯一性及它們之間的誤差估計.最后,通過一些數(shù)值算例,數(shù)值結(jié)果表明該算法是收斂和高精度的.
關(guān)鍵詞:四階方程;降階格式;譜 Galerkin 逼近;誤差估計
中圖分類號: O241"" 文獻(xiàn)標(biāo)識碼:A"" 文章編號:1009-3583(2024)-0081-04
Spectral Galerkin Approximation and Error Estimates Based on Reduced Order Scheme for A Class of Fourth Order Equations
WANG Yuan-lu , JIANG Jian-tao
(School of Mathematical Science, Guizhou Normal University, Guiyang 550025, China)
Abstract: In this paper, we propose a spectral Galerkin approximation and error estimates based on reduced order scheme for a class of fourth order equations. Firstly, by introducing a auxiliary function, we transform the original problems to two coupled second order equa- tions, and their weak form and corresponding discrete format are also derived. Secondly, by using Lax-Milgram lemma and the approxi- mation properties of orthogonal projection operators in non-uniform weighted Sobolev spaces, we strictly prove the existence and uni- queness of weak solution and approximate solution and as well the error estimate. At the end, we conduct some numerical experiments, which show that the algorithm is convergent and high accurate.
keywords: fourth order equation; reduced order scheme; spectral Galerkin approximation; error estimation
四階方程在流體力學(xué)、物理學(xué)和生物學(xué)等多個領(lǐng)域有著廣泛應(yīng)用,許多復(fù)雜的非線性問題[1]的計算最終都?xì)w結(jié)于反復(fù)求解一個四階方程問題,如Cahn- Hiliard 方程[1-4]、擴(kuò)展的 Fisher-Kolmogorov 方程[5-8]等.因此,提出一種有效求解四階方程的高精度數(shù)值方法是非常有意義的.
到目前為止,已有很多數(shù)值方法求解不同邊界條件下四階方程問題,主要包括有限元法[9-12]、譜方法及其他高階數(shù)值方法[13-19].對于有限元方法,區(qū)域剖分和對連續(xù)可微的有限元空間的要求將產(chǎn)生大量的自由度,要獲得高精度的數(shù)值解將需要很多計算時間和內(nèi)存容量.
眾所周知,譜方法是一種具有譜精度的高階數(shù)值方法[19-20],是求解微分方程的一種重要的數(shù)值方法.據(jù)文獻(xiàn)所知,很少提到關(guān)于四階方程基于降階格式的譜方法.因此,本文針對一類四階方程提出了一種基于降階格式的有效譜 Galerkin 逼近.該方法首先是通過引入一個輔助函數(shù),將四階方程化為兩個耦合的二階方程,并推導(dǎo)它們的弱形式及其離散格式.其次,利用 Lax-Milgram 引理和正交投影算子的逼近性質(zhì),嚴(yán)格地證明弱解和逼近解的存在唯一性及它們之間的誤差估計.最后,給出了一些數(shù)值算例,通過數(shù)值結(jié)果表明算法是收斂和高精度的.
1降階格式及其變分形式
作為一個模型,本文考慮下面的四階問題
令 .則方程(1)可化為下面兩個耦合的二階問題
引入通常的Sobolev 空間: ; , 相應(yīng)的內(nèi)積和范數(shù)分別為,其中I=(-1,1),則(2)、(3)的弱形式為:找, 使得
2 誤差估計
3算法的有效實現(xiàn)
4數(shù)值實驗
為了測試該算法的有效性,本文將給出2個數(shù)值算例,并在MATLAB 2019b 平臺上進(jìn)行編程計算.
例1:令 ,顯然滿足邊界條件. 將代入(3)可得,再將代入(2)可得f.對不同的 N,精確解,和逼近解 N,N 在三種模下的誤差分別在表1和表2中列出,方程(2)和(3)的精確解和逼近解的擬合圖及誤差圖分別在圖1和圖2中給出.
從表1和表2可知,當(dāng)N≥25時,逼近解 N,N 達(dá)到大約10-14的精度.另外, 從圖1和圖2中可以看出該算法是收斂的和高精度的.
例2:令 ,顯然滿足邊界條件。將代入(2.3)可得,再將代入(2.2)可得f.對不同的 N,精確解,和逼近解 N,N 在三種模下的誤差分別在表3和表4中列出,方程(2.2)和(2.3)的精確解和逼近解的擬合圖及誤差圖分別在圖3和圖4中給出.
從表3和表4可知,當(dāng)N≥25時,逼近解 N,N 達(dá)到大約10-12的精度。另外, 從圖3和圖4中可以看出該算法是收斂的和高精度的.
5結(jié)論
本文提出了一種邊界條件下四階方程的高精度數(shù)值方法.首先,將四階問題化為兩個耦合的二階問題,并建立了相應(yīng)的弱形式及其離散格式.其次,對所提出的算法進(jìn)行了嚴(yán)格的誤差分析.此外,通過2個數(shù)值算例,數(shù)值結(jié)果驗證了算法是非常有效的.最后發(fā)現(xiàn)文中提出的方法還可以通過使用譜元方法或有限元方法延伸到復(fù)雜區(qū)域上的高維問題.
參考文獻(xiàn):
[1]廖家鋒,張鵬.一類含超線性項奇異橢圓方程的不可解性[J].遵義師范學(xué)院學(xué)報,2013, 15(4):82-83.
[2]Li D, Qiao Z. On the stabilization size of semi-implicit Four- ier-spectral methods for 3D Cahn Hilliard equations[J]. Communications in Mathematical Sciences,2003, 15(6):1489-1506.
[3]Guo R,Xu Y. Semi-implicit spectral deferred correction meth- od based on the invariant energy quadratization approach for phase field problems[J]. Communications in Computational Physics,2019,26(1):87-113.
[4]Liu F, Shen J. Stabilized semi-implicit spectral deferred cor- rection methods for Allen-Cahn and Cahn-Hilliard equations[J]. Mathematical Methods in the Applied Sciences,2015,38(18):4564-4575.
[5]Shen J,Yang X. Numerical approximations of allen-cahn and cahn-hilliard equations[J]. Discrete Contin. Dyn. Syst,2010, 28(4):1669-1691.
[6]Danumjaya P, Pani A K. Numerical methods for the extended Fisher-Kolmogorov (EFK) equation[J]. International Journal of Numerical Analysis and Modeling, 2006,3(2):186-210.
[7]Ilati M, Dehghan M. Direct local boundary integral equation method for numerical solution of extended Fisher--Ko lmogorov equation[J]. Engineering with Computers,2018,34(1):203-213.
[8]Danumjaya P, Pani A K. Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation [J]. Journal of computational and applied mathematic,2005, 174(1):101-117.
[9]Stepan T,Julia C. Periodic and homoclinic solutions of ex- tended Fisher--Kolmogorov equations[J]. Journal of Mathe matical Analysis and Applications,2001,260(2):490-506.
[10]Canuto C. Eigenvalue approximations by mixed methods[J]. RAIRO-Analyse numérique, 1978, 12(1):27-50.
[11]Rappaz J, Mercier B, Osborn J and Raviart P A. Eigenvalue approximation by mixed and hybrid methods[J].Mathematics of Computation, 1981,36(154):427-453.
[12]Chen W, Lin Q. Approximation of an eigenvalue problem as- sociated with the stokes problem by the stream function-vor- ticity-pressure method[J]. Applications of Mathematics, 2006,51(1):73-88.
[13]Yang Y D , Jiang W. Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the stokes eigenvalue problem[J]. Science China Mathe- matics,2013,56(6):1313-1330.
[14]楊秀德,吳波.Thomas-Fermi 方程的特征分析與數(shù)值求解[J].遵義師范學(xué)院學(xué)報,2010, 12(3):73-74.
[15]Bernardi C, Maday Y, Rapetti F. Discretisations Variationnel les de Problemes aux Limites Elliptique[M].Berlin:Springer, 2004.
[16]Canuto C, Hussaini M Y , Quarteroni A, et al. Spectral Me- thods: Evolution to complex Geometries and Applications to Fluid Dynamics[M].Berlin:Springer,2007.
[17]Guo B Y, Jia H Y. Spectral method on quadrilaterals[J]. Math. Comput, 2010,79,2237-2264.
[18]Guo B Y, Wang L L. Error analysis of spectral method on a triangle[J].Adv. Comput.Math,2007,26, 473-496.
[19]Jia H L, Guo B Y. Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on poly- gons[J]. Chin. Ann. Math, 2010,31B,855-878.
[20]Karniadakis G E, SherwinS J. Spectral/hp Element Methods for CFD[M]. Qxdord:xford University Press,2005.
[21]Shen J, Tang T, Wang L L. Spectral methods: algorithms, analysis and applications[M]. Berlin:Heidelberg Springer
Science and Business Media,2011.
[22]Doha E H, Bhrawy A H. Efficient spectral-Galerkin algor- ithms for direct solution of fourth-order differential equations using Jacobi polynomials[J]. Appl. Numer. Math,2008,58, 1224-1244.
[23]Shen J,Tang T.Spectral methods: algorithms, analysis and applications [M].Beijing:Science Press,2006.
(責(zé)任編輯:羅東升)